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Abstract: Satellite-derived aerosol optical depths (AODs) have been widely used to estimate surface
fine particulate matter (PM2.5) concentrations over areas that do not have PM2.5 monitoring sites.
To date, most studies have focused on estimating daily PM2.5 concentrations using polar-orbiting
satellite data (e.g., from the Moderate Resolution Imaging Spectroradiometer), which are inadequate for
understanding the evolution of PM2.5 distributions. This study estimates hourly PM2.5 concentrations
from Himawari AOD and meteorological parameters using an ensemble learning model. We analyzed
the spatial agglomeration patterns of the estimated PM2.5 concentrations over central East China.
The estimated PM2.5 concentrations agree well with ground-based data with an overall cross-validated
coefficient of determination of 0.86 and a root-mean-square error of 17.3 µg m−3. Satellite-estimated
PM2.5 concentrations over central East China display a north-to-south decreasing gradient with the
highest concentration in winter and the lowest concentration in summer. Diurnally, concentrations are
higher in the morning and lower in the afternoon. PM2.5 concentrations exhibit a significant spatial
agglomeration effect in central East China. The errors in AOD do not necessarily affect the retrieval
accuracy of PM2.5 proportionally, especially if the error is systematic. High-frequency spatiotemporal
PM2.5 variations can improve our understanding of the formation and transportation processes of
regional pollution episodes.

Keywords: hourly PM2.5 concentrations; ensemble machine learning; spatiotemporal patterns; central
East China

1. Introduction

The concentration of atmospheric particulate matter with an aerodynamic diameter of less
than 2.5 micrometers (PM2.5) is an important index of air pollution and has been widely used in
epidemiological studies, such as the exposure response functions for health effects of air pollutants [1]
and an assessment of mortality attributable to pollution [2]. PM2.5 has been reported to be strongly
associated with cardiovascular diseases, public morbidity, and premature death (e.g., [3,4]). Studies
on PM2.5 have garnered more and more attention from the public health, government, and scientific
communities in recent years (e.g., [5,6]) because PM2.5 has become the primary air pollutant in the
rapidly growing megacities of developing countries such as China. Air quality monitoring sites are
often sparse and often make measurements at a low spatial resolution. This limits our ability to evaluate
the dynamics of air pollution, do human exposure assessments, and contribute to policy making.

Various methods have been developed for estimating the spatial and temporal distributions of
PM2.5 concentrations on a global scale using satellite-derived column aerosol optical depth (AOD)
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estimates [6]. These methods include the combination of chemical transport model outputs and AOD
(e.g., [7–10]), semi-empirical models based on physical understanding (e.g., [11,12]), and empirical
statistical models (e.g., [13–15]). Among them, empirical statistical models are much easier to implement
and can estimate PM2.5 concentrations with an acceptable accuracy [16,17] even if they still suffer from
some problems, e.g., regional differences. Different statistical models have been developed to estimate
surface-level PM2.5 concentrations using AOD only or a combination of AOD and other variables
such as meteorological variables, including linear regression models (e.g., [13,18–20]), geographically
weighted regression models (e.g., [21–23]), mixed-effects models (e.g., [24,25]), generalized additive
models (e.g., [26,27]), multi-stage models (e.g., [5,26,28]), and Bayesian hierarchical models (e.g., [6,29]).

Nonlinear and nonparametric machine learning algorithms involve learning model structures
from training data and generally show a better predictive performance than conventional statistical
models [30,31] in capturing the complex relationship between PM2.5, AOD, and multiple related
variables. Various machine learning algorithms have been tested and developed to predict PM2.5

concentrations such as the geo-intelligent deep belief network (e.g., [17]), the back-propagation neural
network (e.g., [19]), and support vector regression (e.g., [32]). Random forests (RFs), an ensemble
learning algorithm, provide multivariate, nonparametric, nonlinear regression, and predictions with
high accuracy and interpretability [33]. Unlike many other machine learning algorithms (e.g., the deep
belief network, the gradient boosted machine), the RF is very user-friendly in the sense that it has only
two parameters to fine-tune to achieve optimal performance and is usually not very sensitive to their
values [34]. Because of the advantage of providing an importance estimate for each predictor variable,
results from the RF algorithm are more interpretable.

AOD products derived from different sensors have been widely used to estimate surface PM2.5

concentrations, including the MODerate-resolution Imaging Spectroradiometer (MODIS) (e.g., [15,33]),
the Multi-angle Imaging SpectroRadiometer (e.g., [23,35]), the Visible Infrared Imaging Radiometer
Suite (e.g., [36]), the Polarization and Directionality of the Earth’s Reflectances instrument (e.g., [37]),
and the Geostationary Operational Environment Satellite (e.g., [26]). Most studies have focused on
daily PM2.5 estimations using polar-orbiting satellite data (once-a-day, “snapshot” observations) due
to their relative high accuracy in AOD retrievals (e.g., MODIS). They are, however, inadequate for
understanding the temporal evolution of PM2.5. There is also a lack of knowledge on the agglomeration
distribution patterns of PM2.5 concentrations over highly polluted regions in China, such as central
East China. Hourly PM2.5 estimations can help improve our understanding of how the column AOD
and surface PM2.5 vary during the day for practical air quality applications.

This study presents a multivariable RF model incorporating AOD retrieved from a geostationary
satellite and meteorological parameters to estimate hourly surface PM2.5 concentrations in central East
China in 2016. Examined are the spatial distribution and agglomeration patterns, seasonal variations,
and hourly evolutions of model-estimated PM2.5 concentrations. In the following sections, the data and
the model development are described first, followed by analyses of retrieval results. Section 4 compares
our products with others and elaborates the potential limitations and improvements. Conclusions are
given at the end.

2. Data and Methods

2.1. Data

2.1.1. Himawari-8 Satellite Products

The Advanced Himawari Imager (AHI) onboard the Himawari-8 satellite, the eighth in a series of
Himawari geostationary weather satellites operated by the Japan Meteorological Agency, acquires
full-disk observations of top-of-the-atmosphere reflectances at six visible and near-infrared wavelengths
and brightness temperatures at 10 infrared wavelengths with a 10-min resolution. Level-2 and Level-3
AOD products with 10-min and hourly temporal resolutions and a 5-km spatial resolution have
been released and can be downloaded from the Japan Aerospace Exploration Agency P-Tree system
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(ftp://ftp.ptree.jaxa.jp/). The AOD products have four confidence levels, namely, “very good”, “good”,
“marginal”, and “no retrieval”. Level-3 hourly AODs with the highest confidence level (“very good”)
are used in this study. Figure S1 shows the annual and seasonal availabilities of AOD data for each
AHI pixel over central East China.

2.1.2. Ground-Level PM2.5 Concentrations

Ground-level hourly PM2.5 concentrations measured at ~1500 sites covering the whole year of 2016
were used (Figure S2). Data were downloaded from the China National Environmental Monitoring
Center website (http://www.cnemc.cn), administered by the Ministry of Environmental Protection of
China. A tapered element oscillating microbalance instrument having a minimum detectable limit
of 0.06 µg m−3 and an accuracy of ±1.5 µg m−3 for hourly averages automatically measured PM2.5

concentrations. Not considered in the analyses were measurements with values less than 0.06 µg m−3.

2.1.3. Meteorological Variables

The relationship between AOD and PM2.5 is closely related to ambient meteorological conditions.
ERA-Interim reanalysis data [38], including the total column water (kg m−2), relative humidity (%),
surface pressure (hPa), 2-m height air temperature (K), u-wind (east–west component of the wind
vector) and v-wind (north–south component of the wind vector) at an altitude of 10 m, and the
planetary boundary layer height (PBLH, m) were used. These predictors were selected based on many
previous studies (e.g., [15,17]). PBLHs were available two times per day (at 0000 and 1200 coordinated
universal time, or UTC), and the other quantities were operationally produced four times daily (at 0000,
06000, 1200, and 1800 UTC). Used were data with a spatial resolution of 0.125◦ × 0.125◦.

2.2. Methods

2.2.1. Model Development and Validation

AOD retrievals and meteorological variables are collocated with surface PM2.5 measurements at
each site using the nearest distance approach, i.e., the closest pixels to a site with AOD are matched
with PM2.5 concentrations. European Centre for Medium-Range Weather Forecasts model-gridded
meteorological variables were then matched in time and space with the AODs in AHI pixels and
ground-based PM2.5 measurements. If multiple ground sites were located within one AHI pixel, the
matched PM2.5 and meteorological variables were averaged.

RF machine learning is an ensemble method that provides multivariate, nonparametric, nonlinear
regression, and classification based on a training dataset. It builds multiple decision trees where each
tree is independently constructed using the best split for each node among a subset of predictors
randomly chosen at that node. It merges the results from multiple trees to get a more accurate and
stable prediction. Unlike many other machine learning algorithms (e.g., the deep belief network, the
gradient boosted machine), the RF model has only a few parameters to fine-tune to achieve excellent
performance. The parameters ntree (the number of trees to grow) and mtry (the number of variables
randomly sampled as candidates at each split) are the most important parameters. The algorithm first
draws ntree bootstrap samples from the original dataset, and for each of the bootstrap samples, grows
an unpruned classification or regression tree with randomly sampled mtry of the predictors at each
node and chooses the best split from among those variables. Then the predictions of the ntree trees are
aggregated to make a final prediction from the new data. At each bootstrap iteration, the algorithm
uses the predictions of out-of-bag samples (i.e., data not in the bootstrap samples) to calculate the error
rate [34].

The RF model used here was developed by incorporating AOD retrievals and meteorological
variables to estimate PM2.5 concentrations. Input variables include the PM2.5 concentration, AOD,
latitudes and longitudes of the monitoring sites, dummy variables for month, day, and hour of
observations, and all meteorological variables. The use of latitudes, longitudes, and dummy variables
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accounts for the spatial and temporal variations of AOD and PM2.5 concentrations [33]. By comparing
the model performance (e.g., the coefficient of determination, or R2, and the root-mean-square error,
or RMSE) of the different settings of ntree and mtry, ntree and mtry are assigned values of 1000 and
9, respectively, to achieve the best model performance. Note that the RF is a supervised machining
learning algorithm, requiring that the training data contain pairs of input (X; e.g., all inputs except
PM2.5 concentration in the current study) and an output variable (Y; e.g., PM2.5 concentration in the
current study). The RF is then applied to train the data to learn the mapping function from the input to
the output [Y = f(X)]. Thus, surface PM2.5 concentrations are critical for the model fitting but are not
necessary for the model application.

The 10-fold cross-validation (CV) technique is used to assess the potential of model fitting and
the model robustness [39]. Training data are randomly and equally split into ten subsets. One subset
predicts the PM2.5 concentration to validate the model, and the remaining nine subsets train the model.
This process is repeated 10 times until every subset is tested. Several statistical indicators are used to
quantitatively evaluate the model performance: R2, RMSE, the mean prediction error (MPE), and the
relative prediction error (RPE) between the CV-predicted and observed PM2.5 concentrations. The MPE
is the average absolute difference between the prediction and observation results, and RPE is the mean
ratio of the absolute error of the prediction to the observed value. The MPE and RPE are calculated as
follows:

MPE =
1
n

n∑
i=1

∣∣∣PMobs
2.5(i) − PMpre

2.5(i)
∣∣∣ (1)

and

RPE =
1
n

n∑
i=1

∣∣∣PMobs
2.5(i) − PMpre

2.5(i)
∣∣∣

PMobs
2.5(i)

(2)

where n is the total number of samples, and PMobs
2.5 and PMpre

2.5 are the observed and predicted PM2.5

concentrations, respectively.

2.2.2. Spatial Pattern Analysis of PM2.5 Concentrations

The global Moran Index (MI; [40]) is used to examine the overall spatial distribution patterns of
the estimated PM2.5. The local indicator of spatial association [41] is used to determine the specific
positions of spatial patterns identified from the local MI. The MI is one of the most commonly used
indicators of spatial autocorrelation. Such an analysis can be used to determine clustered, dispersed,
or random distribution patterns. Global and local MIs are calculated as follows:

I =
n
S

∑n
i=1

∑n
j=1Wi, j(xi − x)

(
x j − x

)
∑n

i=1(xi − x)2 (3)

and

Ii =
xi − x

S2
i

n∑
j=1

Wi, j
(
x j − x

)
(4)

where I and Ii are the global MI and the local MI, respectively, xi and x j are the PM2.5 concentrations
at satellite pixels i and j, respectively, x is the mean PM2.5 concentration for the whole region under
consideration, Wi, j refers to the spatial weight matrix with adjacent and nonadjacent units equal
to 1 and 0, respectively, n is the number of samples, S is the sum of all the weights, defined as

S =
∑n

i=1
∑n

j=1Wi, j, and S2
i is calculated as S2

i =

∑n
j=1, j,i(x j−x)

2

n−1 . The MI ranges from −1 to 1. A positive
MI indicates a positive spatial correlation and clustering, i.e., a high (low) value is adjacent to another
high (low) value. A negative MI indicates a negative correlation and dispersion, i.e., a high (low) value
is adjacent to a low (high) value. A zero-valued MI means that the value is randomly distributed.
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3. Results

3.1. Descriptive Statistics

Figure 1 shows the probability distribution functions (PDFs) and cumulative distribution functions
(CDFs) along with descriptive statistics of the modeling variables in the training dataset. The AOD
has a mean and standard deviation of 0.32 and 0.24, respectively, with 80% of the values less than 0.5.
The corresponding hourly ground-level PM2.5 concentrations range from 1 µg m−3 to ~1000 µg m−3

with a mean and standard deviation of 55 and 46 µg m−3, respectively. More than 90% of PM2.5

concentrations are less than 100 µg m−3. AODs and PM2.5 concentrations have a similar frequency
distribution at the lower bounds of their value ranges. The meteorological variables are more variable
and have nearly normal distributions. The distribution of PBLHs shows that a large number of samples
are associated with low PBLHs. This is possible because the PBLH is only available at 00:00 and 12:00
UTC, corresponding to 08:00 and 20:00 local time (LT). Compared with the PBLH at noon, the PBLH is
lower in the early morning and late afternoon.
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Figure 1. Probability distribution functions (PDFs, bars) and cumulative distribution functions (CDFs,
lines) with descriptive statistics of the modeling variables in the training dataset. The modeling
variables are aerosol optical depth (AOD), particulate matter with diameters less than 2.5 µm (PM2.5),
2-m temperature (TEMP), surface pressure (PRESS), relative humidity (RH), total column water (TCW),
the east–west component of the wind vector (U-Wind), the north–south component of the wind vector
(V-Wind), and the planetary boundary layer height (PBLH).

3.2. Model Fitting and Validation

Figure 2 shows scatter plots displaying the model fitting and 10-fold CV results of the RF
model. The R2 for the model fitting is 0.86, and the RMSE and MPE are 17 and 10 µg m−3, respectively.
The model CV has the same R2, and RMSE and MPE are increased by 0.3 to 17.3 µg m−3 and 10.3 µg m−3,



Remote Sens. 2019, 11, 2120 6 of 20

respectively. This suggests that there is no substantial model overfitting. Figure 3 shows the PDFs and
CDFs of CV R2 and RMSE for hourly and daily PM2.5 concentrations. R2 ranges from 0.28 to 0.97, with
more values located between 0.8 and 0.95. Approximately 70% of the R2 values are greater than 0.8.
The PDFs and CDFs of RMSE for hourly PM2.5 concentrations show that the local RMSE varies from 4
to 40 µg m−3 with most of the values located between 5 and 20 µg m−3 (Figure 3b). More than 80% of
the values are less than 20 µg m−3. The biases of model CV-estimated PM2.5 concentrations are also
defined and calculated as the difference between model-estimated and observed PM2.5 concentrations.
About 87% and 70% of the biases fall in the range of −20 to 20 µg m−3 and −10 to 10 µg m−3, respectively,
with a mean value of 0.4 µg m−3 (Figure S3). Many potential factors influence the relationship between
PM2.5 and AOD and thus the model performance, including the number of samples, aerosol chemical
composition, aerosol particle size, and weather conditions [42]. The aerosol composition influences the
aerosol swelling, which increases the AOD but does not influence the PM2.5 concentration. The aerosol
particle size determines the contribution of fine particles to the AOD. The following paragraph provides
more discussion about this. Despite the poor model performance at some sites, the overall model
performance is relatively high.
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The seasonal and spatial variabilities of the model performance are also evaluated (Table 1 and
Figure 4). The CV model has the highest R2 during the December–January–February (DJF) period
(0.87), followed by the September–October–November (SON; 0.86), March–April–May (MAM; 0.82),
and June–July–August (JJA; 0.72) periods. The RMSE and MPE are the largest and smallest during
the DJF and JJA periods, respectively. These metrics provide different information about the model
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estimates. R2 represents how well the estimated and observed PM2.5 concentrations are correlated, and
RMSE, MPE, and RPE demonstrate how close the absolute levels of these two PM2.5 concentrations are.
The highest R2 during the DJF period was possibly due to the frequently observed stagnant atmosphere
and low PBLH [43]. Under such conditions, more aerosols are constrained to the boundary layer,
resulting in high surface PM2.5 concentrations and contributing to a large fraction of the boundary-layer
AOD [44], which possibly increases the correlation between PM2.5 concentration and AOD. The low
R2 during the JJA period likely occurred because of lower surface aerosol concentrations due to
the higher PBLH, even though the AOD is large. Aerosol swelling due to the higher RH in the
summertime partly explains this [44]. The large RMSE and MPE for the DJF period are partially
attributed to the large variations in the surface PM2.5 concentration and the model-underestimated
PM2.5 concentration under highly polluted conditions [15,45]. This will be discussed later. The spatial
distribution of local R2 shown in Figure 4a indicates that higher R2 are found over areas with more
densely distributed monitoring stations (e.g., East China), consistent with previous studies (e.g., [17]).
Figure 4b,c show that the CV RMSE and MPE over the North China Plain, which has relatively high
PM2.5 concentrations [5,17], are higher than over the other regions. Figure 4d shows that most of the
CV RPEs are less than 20% with smaller values found over East China, a region with more densely
distributed monitoring stations.

Table 1. Mean values of R2, RMSE, MPE, RPE, and the slope for the 10-fold cross-validation between
measured and estimated PM2.5 concentrations in each season.

N R2 RMSE (µg m−3) MPE (µg m−3) RPE (%) Slope

MAM 145,310 0.82 15.9 10.0 20.2 0.80
JJA 90,530 0.72 11.8 7.5 20.4 0.78

SON 109,793 0.86 16.3 10.2 18.4 0.82
DJF 144,020 0.87 21.8 12.4 17.6 0.83

N: Number of samples; R2: Coefficient of determination; RMSE: Root-mean-square error; MPE: Mean
prediction error; RPE: Relative prediction error; MAM: March–April–May; JJA: June–July–August; SON:
September–October–November; DJF: December–January–February.
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Figure 5 shows scatter plots of the comparison between model-estimated and surface-measured
PM2.5 concentrations at different hours of the day. The CV R2 ranges from 0.79 to 0.89 with relatively
high values between 1300 and 1500 LT and low values in the early morning. As previously discussed,
many factors influence the model performance, including the number of samples, aerosol chemical
composition, aerosol particle size, and weather conditions [42]. The larger solar zenith angle in the early
morning may reduce the accuracy of Himawari-8 aerosol retrievals, which possibly weakens the model
performance. The CV RMSEs (MPEs) vary between 10 and 22.1 µg m−3 (6.5 and 13 µg m−3). The CV
RMSE and MPE at 1600 LT are smaller than at other hours, which may be due to the relatively small
number of matchups. The CV RPE varies slightly with values between 17.7% and 20.3%. The high CV
R2, low CV RMSE (MPE, RPE), and highly consistent values between observed and estimated PM2.5

concentrations at different hours suggest that the model can provide information about the diurnal
cycle of PM2.5 concentrations, which will help improve the understanding of the evolution of PM2.5.
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Figure 5. Scatter plots of estimated PM2.5 concentrations as a function of surface-measured PM2.5

concentrations at (a–i) different local times (8:00-16:00 LT). The dashed line is the 1:1 line. LT: local time;
N: Number of samples; R2: Coefficient of determination; RMSE: Root-mean-square error (µg m−3);
MPE: Mean prediction error (µg m−3); RPE: Relative prediction error (%); OPM2.5: Mean and standard
deviation of observed PM2.5 concentrations (µg m−3); EPM2.5: Mean and standard deviation of
estimated PM2.5 concentrations (µg m−3).

The CV of model-estimated PM2.5 concentrations versus surface-measured PM2.5 concentrations
at daily, monthly, seasonal, and annual levels are also evaluated (Figure S4). Daily, monthly, seasonal,
and annual PM2.5 contributions are derived from hourly PM2.5 concentrations by averaging over the
respective periods. The CV R2 at the daily level is 0.92 and ranges from 0.30 to 0.99, with most values
located between 0.85 and 1.0. Nearly 80% of the values are greater than 0.8 (Figure 3a). The PDF and
CDF of RMSE at the daily level show that RMSE ranges from 2.8 to 40 µg m−3, with most values falling
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in the range of 5 to 15 µg m−3 (Figure 3b). The overall CV RMSE (MPE) and RPE at the daily level
are 12.3 (7.7) µg m−3 and 13.7%, respectively. The biases of the model-estimated PM2.5 concentrations
show that ~93% and 76% of the bias values fall in the range of −20 to 20 µg m−3 and −10 to 10 µg m−3,
respectively (Figure S3b). Figure S4b–d shows that the CV R2 are 0.89, 0.9, and 0.9 at monthly, seasonal,
and annual levels, respectively. The model-estimated seasonal mean PM2.5 concentration at each site is
consistent with the seasonal mean surface measurement at that site. Seasonal mean biases agree well
in all seasons at most sites (Figure S5). This suggests that compared to statistical measures based on
hourly data, the model shows a better performance for PM2.5 estimates at daily, monthly, seasonal, and
annual levels. Overall, the RF model predicts PM2.5 concentrations at different temporal scales well.
The model can generate reasonable PM2.5 concentration estimates in areas where AODs are available.
However, ground-level PM2.5 measurements are available at only a limited number of stations that are
not uniformly distributed with more stations located in more densely populated regions. The spatial
and temporal variations in PM2.5 concentration, especially at the hourly level, can now be provided in
greater detail.

The overall CV slope (y-intercept) of model-estimated PM2.5 concentrations versus
surface-measured PM2.5 concentrations is 0.82 (10.0) (Figure 2a), the CV slope (y-intercept) ranges from
0.76 (7.5) to 0.86 (14.6) at different hours of the day (Figure 5), and the CV slopes (y-intercepts) change
from 0.82 (7.3) to 0.88 (9.7) at daily, monthly, seasonal, and annual levels (Figure S4). The result suggests
that the model under- and over-estimates PM2.5 concentrations when PM2.5 concentrations are higher
and lower than ~56 µg m−3, respectively. Figure 6 shows the variation in relative prediction error, i.e.,
[(estimated PM2.5 concentrations − observed PM2.5 concentrations)/observed PM2.5 concentrations],
as a function of surface-observed PM2.5 concentrations. The model overestimates (underestimates)
PM2.5 concentrations by more than 20% for PM2.5 concentrations less (greater) than 20 (400) µg m−3.
Based on different algorithms, others have shown that their models underestimate (overestimate)
PM2.5 concentrations (slopes of 0.73–0.88) when ground-level PM2.5 concentrations are higher (lower)
than 60 µg m−3 [5,6,11,17,23,45–48]. This underestimation possibly happens for many reasons, e.g.,
the hygroscopicity of urban aerosols and the possibility of mixed types and layers of aerosols in
the atmosphere [17]. Another possible reason is that the model training uses point-based PM2.5

measurements, which may not fully represent the spatial conditions of the collocated AOD pixel with
a 5-km resolution. Also, aerosol retrievals based on the dark-target algorithm are not valid for heavy
haze pollution because current cloud mask algorithms tend to mistake haze for clouds [49] and over
bright surfaces in winter when high PM2.5 concentrations usually occur. Large variations in PM2.5

concentration may be overlooked if there are gaps in the satellite-retrieved AOD time series, which
may contribute to the underestimation of PM2.5 concentrations under high pollution conditions [45].
This underestimation is likely a systematic error related to the complicated aerosol situation in China
and the modeling framework [17].

3.3. Variable Importance Assessment

Figure 7 illustrates the variable importance assessment for predictor variables in the model. The RF
gives two measures of variable importance, namely, the increase in mean square error (%IncMSE)
and the increase in node purities (IncNodePurity). The %IncMSE indicates the increase in the mean
square error of the prediction if that variable is not involved in the training data. Thus, the higher the
%IncMSE for a variable, the more important is that variable. The IncNodePurity represents the total
mean increase in node purity from splitting on a predictor in the trees’ construction process. The larger
the IncNodePurity of a predictor, the more important is that predictor [33,34]. AOD, PBLH, and
regional variables (e.g., latitude) are among the top five most important predictor variables according
to both importance measures. The AOD is related to the columnar aerosol concentration, and the
PBLH significantly influences aerosol vertical and surface aerosol concentrations. These results also
support our discussions on the model performance in different seasons (Section 3.2). The accuracies of
both AOD and PBLH may thus play an important role in the model performance. The Discussion
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section elaborates on this. Note that estimating the variable importance in the RF algorithm is difficult,
in general, because the importance of a variable may vary according to different combinations of input
variables and numbers of samples in the training dataset.
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Figure 7. The importance assessment for predictor variables: (a) Increase in mean-square errors
(%IncMSE) and (b) increase in node purities (IncNodePurity). The variables are aerosol optical depth
(AOD), hour of the day (HOUR), latitude (LAT), planetary boundary layer height (PBLH), month
(Month), day in the month (Day), relative humidity (RH), total column water (TCW), longitude (LONG),
2-m temperature (TEMP), the north–south component of the wind vector (V10), surface pressure
(PRESS), and the east–west component of the wind vector (U10).
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3.4. Spatiotemporal Distribution of Model-Estimated PM2.5 Concentrations over Central East China

Figure 8 shows the annual and seasonal mean distributions of PM2.5 concentration estimated
by averaging the hourly model results over the central East China region where air pollution is
relatively high. Figure S6 shows the corresponding annual and seasonal mean surface-observed
PM2.5 concentrations. The spatiotemporal distributions of model-estimated and surface-observed
PM2.5 concentrations are consistent. A north-to-south decreasing gradient is seen, which agrees
with findings from previous studies (e.g., [5,17]). The heaviest pollution occurred in the southern
parts of Hebei and Shanxi provinces, the northern part of Henan province, and the western part of
Shandong province. The annual mean PM2.5 concentration over these regions was ~80–100 µg m−3.
The dense concentration of local steel and power industries and rapid urbanization is responsible
for this severe air pollution. PM2.5 concentrations over the middle part of central East Asia were
slightly less than in the northern part with annual mean values falling in the range of 60 to 80 µg m−3.
Compared with PM2.5 concentrations over the northern and middle parts of central East Asia, PM2.5

concentrations are generally lower than 60 µg m−3 in the south. Other than differences in the source of
aerosols, the stagnant weather, weak winds, relatively low boundary layer heights, and lesser amount
of precipitation over the northern region play important roles in the high PM2.5 concentrations there.
The spatial distributions of PM2.5 concentrations in MAM and DJF are similar to the annual PM2.5

distributions, but the spatial distributions in JJA and SON are slightly different with the largest values
in the northern region, followed by the southern region, and the lowest values in the middle part of
central East Asia.
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Figure 8. Model-estimated PM2.5 concentrations (µg m−3) over central East China: (a) For the whole
year of 2016, (b) March, April, and May (MAM), (c) June, July, and August (JJA), (d) September, October,
and November (SON), and (e) December, January, and February (DJF).

The seasonal spatial distributions of PM2.5 (Figure 8b–e) show that seasonal mean PM2.5

concentrations are the highest in winter, followed by fall and spring, and the lowest in summer.
This could be related to the variation in local emissions and general atmospheric circulation conditions.
Winter indoor heating in the northern region and stationary regional meteorological conditions
contribute to high PM2.5 concentrations. With lower mixing layer heights and less precipitation, it
is easy for pollutants to accumulate in the air. The lowest PM2.5 concentrations in the summertime
occurred mainly because of prevailing unstable atmospheric conditions and heavier precipitation,
which enhanced the dispersion, dilution, and diffusion of atmospheric pollutants. This reduces PM2.5
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concentrations near the surface. The variation in seasonal mean PM2.5 concentration shown in this
study is consistent with previous studies (e.g., [15,17]).

Figure 9 shows the spatial distributions of annual mean model-estimated PM2.5 concentrations over
central East China for different hours of the day. Figure S7 shows the corresponding surface-observed
PM2.5 concentrations. The model-estimated PM2.5 concentrations are generally consistent with
surface-observed PM2.5 concentrations at each hour. The lowest mean PM2.5 concentrations occurred
in the afternoon (1600 LT), and the highest mean PM2.5 concentration occurred before noon (1000 LT),
consistent with results from studies focused on the Beijing–Tianjin–Hebei region [47]. Meteorological
factors, among others, may have influenced this variation, which could synergistically affect PM2.5

concentrations [47]. For example, air pollution is dispersed more effectively in the afternoon than
in the morning because the PBL is more stable and shallower in the morning than in the afternoon.
However, this does not mean that PM2.5 concentrations always have the same diurnal cycle as the PBL
since the relationship between PM2.5 concentrations and the PBL varies considerably with location,
season, and other meteorological conditions [50]. Figure 9 also shows that during all hours of the
day, PM2.5 concentrations are higher over the northern region and lower over the southern region,
consistent with the spatial distribution of the annual mean PM2.5 concentration (Figure 8a).
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Understanding of the general evolution of a high pollution episode is critical for epidemiological
studies and pollution-controlling measures. Figure 10 shows the spatial distributions of
model-estimated hourly PM2.5 concentrations for a high pollution episode that occurred on 14 January
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2016 over the North China Plain. Figure S8 shows the corresponding surface-observed hourly PM2.5

concentrations. The PM2.5 concentrations from our model estimation are consistent with the PM2.5

concentrations from surface measurements at each hour. Northeast Hebei and Shandong provinces
have the highest PM2.5 concentrations, with values greater than 200 µg m−3. PM2.5 concentrations are
significantly higher in the morning than in the afternoon, consistent with the annual mean diurnal cycle
of PM2.5 concentration (Figure 9). Figure S9 shows the mean diurnal cycle of model-estimated and
surface-observed PM2.5 concentrations for six heavy PM2.5 episodes that occurred in winter over the
North China Plain (35–42◦N, ll3–122◦E). The diurnal cycle of model-estimated PM2.5 concentrations is
highly consistent with the diurnal cycle of surface-observed PM2.5 concentrations for all heavy pollution
episodes examined. Our model appears to successfully capture the annual mean diurnal cycle of PM2.5

concentrations and the diurnal cycle of PM2.5 concentrations for a specific air pollution episode.
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3.5. Spatial Agglomeration Pattern of Model-Estimated PM2.5 Concentrations over Central East China

Figure 11a,b show the scatter plot of the global MI and the spatial agglomeration diagram of annual
PM2.5 concentrations over central East China, respectively. Figure S10 shows the same kind of plots for
each season. Each spatial agglomeration diagram passes the significance test at a significance level (p)
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of 0.05. The scatter plot of MI shows four categories of spatial agglomeration pattern. The first (I) and
third (III) categories represent the high-high (HH) and low-low (LL) aggregation patterns, meaning
that the PM2.5 concentrations in a satellite pixel and in its surrounding pixels are both high and both
low, respectively. The second (II) and fourth (IV) categories represent the high-low (HL) and low-high
(LH) aggregation patterns, meaning that high (low) PM2.5 concentrations in areas are surrounded by
low (high) PM2.5 concentrations. The PM2.5 concentrations over areas with HH (LL) and HL (LH)
aggregation patterns are homogeneous and heterogeneous, respectively. The large positive global
MI values indicate that, overall, PM2.5 concentrations have a significant (p < 0.05) positive spatial
autocorrelation in central East China in each season and throughout the whole year. The global MI is
highest in winter (DJF), indicating that the spatial spillover effect is higher, and PM2.5 concentrations
are more homogeneous than in other seasons. Most of the samples in each season are in categories I
and III (left panels of Figure S10). Figure 11b shows that mainly the LL and HH spatial agglomeration
types characterize central East China. HH spatial clusters are mainly observed in the southern parts of
Shanxi and Hebei provinces, the western and northern parts of Henan province, the western part of
Shandong province, and part of northern Anhui province where high PM2.5 concentrations are also
observed. LL spatial clusters are primarily located in the northern part of Hebei province, the eastern
coastal region of Shandong province, the eastern coastal regions of Zhejiang and Fujian provinces,
and most of Guangdong province where PM2.5 concentrations are also relatively low. The seasonal
distributions of the HH and LL spatial clusters (right panels of Figure S10) are consistent with the
seasonal distributions of the high and low PM2.5 concentrations (Figure 8b–e). The short-term (daily)
spatial distribution of PM2.5 concentrations and their relevant spatial agglomeration characteristics
over central Eat China are also evaluated based on two different pollution cases (Figure S11). One
case is a severe pollution episode that occurred on 2 January 2016 over the North China Plain, and the
other case is a moderate pollution episode that occurred on 28 July 2016. Similar to the annual and
seasonal distributions of spatial agglomeration, the daily spatial distribution of MI clustering is also
highly consistent with the daily distribution of PM2.5 concentrations.
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Figure 11. (a) Scatter plot of the global Moran Index and (b) spatial agglomeration diagram of annual
model-estimated PM2.5 concentrations over central East China. The numbers in (a) are the percentages
of samples with aggregation patterns of I, II, III, and IV. The spatial agglomeration diagram passes
the significance test at a significance level of 0.05. The legend in (b) gives the spatial agglomeration
category: high–low (HL), low–high (LH), low–low (LL), high–high (HH), and no significance (NS).
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4. Discussion

4.1. Comparison with Previous Studies

It is well known that the relationship between AOD and PM2.5 concentration is affected by multiple
factors (e.g., aerosol type, meteorological variables), making the relationship more complicated.
Machine learning, a newly developed method of data analysis, may better capture this complex
relationship over large spatial and temporal scales compared to traditional regression algorithms.
This study estimated hourly PM2.5 concentrations based on the RF model, a type of ensemble learning
algorithm, which is a nonparametric, nonlinear, and multivariate regression algorithm. Table S1 lists
some previous studies on estimating PM2.5 concentrations from satellite remote sensing over China
based on statistical models. R2 have ranged from 0.18 to 0.87 in regional-scale studies and from 0.24
to 0.88 in national-scale studies. Both depend on the different selected models and input predictor
variables. In almost all of the studies, the primary predictor, AOD, was derived from MODIS retrievals
with one or two observations per day, and daily mean PM2.5 concentrations were estimated from that.
The CV of the RF model in our study shows that the model estimates PM2.5 concentrations well at
the hourly level with an R2 of 0.86 and an RMSE of 17.3 µg m−3. The CV R2 and RMSE at the daily
level are 0.92 and 12.3 µg m−3, respectively. The performance of our RF model is better than that of
many models from previous similar studies and is comparable to some machine learning approaches
(e.g., [17]; see Table S1). Compared with other machine learning approaches, the RF approach is based
on a simple, one-stage structure and is user friendly. It can address the problem of complex interactions
and highly correlated predictor variables [33]. Apart from the good performance and advantages
of the approach we used, the model developed in the current study to estimate hourly mean PM2.5

concentrations can provide information about the diurnal cycle of PM2.5 concentration at a fine spatial
resolution. This will improve our understanding of the evolution of PM2.5.

4.2. Potential Limitations and Room for Model Improvement

Although the model can predict PM2.5 concentrations well, there are still potential limitations
and room for future algorithm improvements. The assessment of the relative importance of different
variables in Section 3.3 shows that AOD and PBLH are the most important predictors for the model
performance. Due to the lack of high spatial- and temporal-resolution observations of the PBLH,
reanalysis data are commonly used in most studies and also in the current study. The PBLH product is
only available twice daily, which may have some effect on estimating hourly PM2.5 concentrations
with our model. Note that the PBLH is not completely independent from other meteorological
variables such as the surface temperature. Since the other meteorological variables (e.g., surface
temperature) are measured four times a day, the evolution of meteorological conditions can be
monitored. If high-frequency meteorological data were available, the model performance would
improve. Many techniques have been developed to determine the PBLH, for example, through
radiosonde measurements, remote sensing, laboratory experiments, and model simulations [51].
PBLHs from these methods show significant differences for both the stable and convective boundary
layer. Zang et al. [52] incorporated the PBLH into a regression model of AOD to PM2.5, noting
that different methods derived optimal PBLHs for the stable boundary layer and convective layer.
Su et al. [53] showed that using lidar observations to estimate PBLHs was effective for PM2.5 remote
sensing. Improving the AOD-PM2.5 model by considering both stable and convective PBLHs and using
measurements instead of reanalysis data may enhance the accuracy of estimated PM2.5 concentrations.

A geostationary satellite can overcome the problem of PM2.5 estimates from polar-orbiting
satellite retrievals with a low frequency. Himawari-8 can provide AODs every 10 min. Since the
accuracy evaluation of Himawari-8 aerosol products is limited, studies have shown that the accuracy of
Himawari-8 AOD retrievals still needs to be improved compared with surface Aerosol Robotic Network
and MODIS retrievals [47]. The AHI-retrieved AOD over Eastern China suffers from an obvious
underestimation compared with ground-based and MODIS observations [54]. Figure S12 shows a
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comparison of AHI and MODIS AODs over all PM2.5 sites. MODIS Terra and Aqua 3-km AOD retrievals
with the highest confidence levels from pixels falling within 5 km of each PM2.5 site were averaged and
matched with the training dataset. AHI AODs are significantly and systematically lower than MODIS
AODs with large RMSE and MPE, consistent with previous studies (e.g., [47,54]). PM2.5 concentrations
are also estimated from AHI and MODIS AODs using the RF algorithm. Figure S13 shows scatter
plots of the cross-validation results. Although AHI AODs are significantly lower than MODIS AODs,
the performance of the RF model using AHI AODs is comparable with, even somewhat better than,
that using MODIS AODs. This suggests that errors in AOD, especially the bias, do not necessarily
affect the machine-learning-based retrievals of PM2.5, especially if the error is systematic. Like many
previous studies, total columnar AODs are used to estimate ground-level PM2.5 concentrations in
the current study. However, PM2.5 concentrations are likely more related to fine aerosol particles.
Compared to the total AOD, the AOD for fine-mode particles is more correlated with ground-level
PM2.5 concentrations [55–57]. The fine-mode fraction (FMF) can be used to separate the contributions
from smaller and larger particles to the total AOD and to calculate the fine-mode AOD. However,
current FMF retrievals from satellite still suffer from significant uncertainties, limiting the application
of the fine-mode AOD in PM2.5 estimations from satellite remote sensing. A look-up-table-based
spectral deconvolution algorithm for FMF retrievals was developed by Yan et al. [58] and incorporated
into a model to estimate PM2.5 from MODIS retrievals. The accuracy of these PM2.5 estimates improved
when the fine-mode AOD was used instead of the total AOD [57].

More predictor variables, e.g., land-use variables (forest cover and water cover), population data,
and elevation data, were used in previous studies for model development (e.g., [5,59]). We did not
include these data in our RF model, a limitation that will be examined in future work. It is possible that
the model performance would improve if these data were considered. Even though we did not include
more predictor variables, our model performed as well as, if not better, than those from similar studies.

5. Conclusions

Most studies have focused on making daily PM2.5 estimations using polar-orbiting satellite data
(e.g., from the MODIS) which are inadequate for understanding the evolution of PM2.5. The current
study developed a multivariable model by incorporating Himawari-8 AODs and meteorological
parameters to estimate surface PM2.5 concentrations at an hourly scale based on an ensemble learning
algorithm. The model performance was evaluated using the 10-fold across-validation technique and
several statistical indicators, including R2, RMSE, MPE, and RPE between CV-estimated and observed
PM2.5 concentrations. The CV results showed that the model predicts PM2.5 concentrations well at
the hourly level with R2 and RMSE values of 0.86 and 17.3 µg m−3, respectively. About 70% of the R2

values are greater than 0.8, and more than 80% of the RMSE values are less than 20 µg m−3. Model
results are better in fall and winter, and over regions with more densely distributed monitoring stations.
The model also estimates PM2.5 concentrations well at daily, monthly, seasonal, and annual levels.

The spatial distribution of annual mean PM2.5 concentrations in central East China derived from
our model shows a north-to-south decreasing gradient with high concentrations in the northern part
of the region and low concentrations in the southern part. Seasonal spatial distributions of PM2.5

concentration show that seasonal mean PM2.5 concentrations are the highest in winter, followed by fall
and spring, and the lowest in summer. Estimated PM2.5 concentrations are lowest in the early morning
and late afternoon. PM2.5 concentrations exhibit a significant (p < 0.05) spatial agglomeration effect in
central East China for each season and throughout the whole year.

The AHI AODs are significantly lower than MODIS AODs, but the performance of the RF model
using AHI AODs is comparable with, even somewhat better than, that using MODIS AODs. Errors in
AOD do not necessarily affect the machine-learning-based retrieval accuracy of PM2.5 proportionally,
especially if the error is systematic. The model presented in this study has the capacity to identify PM2.5

spatial distributions at various scales, especially at the hourly level. It can potentially improve our
understanding of the diurnal cycle and general evolution of PM2.5, as well as the sources, the formation
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processes, transportation, and diffusion behavior of regional PM2.5 pollution episodes. This would also
help develop sound pollution-controlling measures. The model products are also useful for studying
the influence of air pollution on human health, a topic that has drawn increasing attention from public
health, government, and scientific communities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/18/2120/s1.
Figure S1. The number of (a) annual and (b–e) seasonal AHI Level-3 AODs with the highest confidence level over
central East China from 1 January 2016 to 31 December 2016. The seasons are defined by groups of months: spring
(March–April–May, or MAM), summer (June–July–August, or JJA), autumn (September–October–November, or
SON), and winter (December–January–February, or DJF). Figure S2. Spatial distribution of PM2.5 monitoring sites
in mainland China used in this study. Figure S3. Histograms of the biases of model cross-validation-estimated
PM2.5 concentrations at (a) hourly and (b) daily levels. Each panel shows the percentage of samples falling
within two ranges of values (in square brackets). Figure S4. Scatter plots of the cross-validation of estimated
PM2.5 concentrations by comparing surface-measured PM2.5 concentrations at (a) daily, (b) monthly, (c) seasonal,
and (d) annual levels. The dashed lines are 1:1 lines. N: number of samples; R2: coefficient of determination;
RMSE: root-mean-square error (µg m−3); MPE: mean prediction error (µg m−3); RPE: relative prediction error (%).
Figure S5. Differences between model-estimated and surface-measured seasonal mean PM2.5 concentrations at
each site in different seasons: (a) March, April, and May (MAM), (b) June, July, and August (JJA), (c) September,
October, and November (SON), and (d) December, January, and February (DJF). Units are µg m−3. Figure S6.
Surface-observed PM2.5 concentrations (µg m−3) over central East China: (a) for the whole year of 2016, (b) March,
April, and May (MAM), (c) June, July, and August (JJA), (d) September, October, and November (SON), and
(e) December, January, and February (DJF). Figure S7. Spatial distributions of mean surface-measured PM2.5
concentrations (µg m−3) over central East China for (a-i) different hours of the day (0800–1600 local time, or LT).
Figure S8. Spatial distributions of surface-measured hourly PM2.5 concentrations (µg m−3) for a high pollution
episode that occurred on 14 January 2019 over the North China Plain for (a-i) different hours of the day (8:00-16:00
LT). LT: local time. Figure S9. Diurnal cycles of mean model-estimated (red bars) and surface-observed (blue
bars) PM2.5 concentrations with standard deviations for (a-f) several high PM2.5 episodes that occurred over the
North China Plain (35–42◦N, 113–122◦E; LT: local time). The dates are in the YYYYMMDD format where YYYY =
year, MM = month, and DD = day. Figure S10. Left panels: Scatter plots of the global Moran Index for the four
seasons (from top to bottom, March–April–May (MAM), June–July–August (JJA), September–October–November
(SON), and December–January–February (DFJ). Right panels: Spatial agglomeration diagrams of seasonal
model-estimated PM2.5 concentrations over central East China for the four seasons. The numbers in the left panels
are the percentages of samples with the aggregation patterns of (going clockwise from the upper right) I, II, III,
and IV. The spatial agglomeration diagrams pass the significance test at a significance level of 0.05. The legends
on the right give the spatial agglomeration category: high-low (HL), low-high (LH), low-low (LL), high-high
(HH), and no significance (NS). Figure S11. Spatial distributions of PM2.5 concentrations (a,c) and their relevant
spatial agglomeration characteristics (b,d) for a high pollution episode that occurred on 2 January 2016 over the
North China Plain (a,b) and a relatively low pollution episode that occurred on 28 July 2016 (c,d). The spatial
agglomeration diagrams pass the significance test at a significance level of 0.05. The legends in (b,d) give the
spatial agglomeration category: high-low (HL), low-high (LH), low-low (LL), high-high (HH), and no significance
(NS). Figure S12. Scatter plot of the AHI-retrieved AOD as a function of MODIS-retrieved AOD at 500 nm over all
PM2.5 sites in 2016. The dashed line is the 1:1 line. N: number of samples; R2: coefficient of determination; RMSE:
root-mean-square error (µg m−3). Figure S13. Scatter plots of cross-validation of the RF model of (a) AHI AOD and
(b) MODIS AOD. The dashed lines are 1:1 lines. N: number of samples; R2: coefficient of determination; RMSE:
root-mean-square error (µg m−3); MPE: mean prediction error (µg m−3); RPE: relative prediction error. Table S1.
Summary of estimates of PM2.5 concentrations from satellite AODs based on statistical models at regional and
national scales in China. NA stands for “not available”.
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