
remote sensing  

Article

Extracting Raft Aquaculture Areas from Remote
Sensing Images via an Improved U-Net with a
PSE Structure

Binge Cui 1, Dong Fei 1, Guanghui Shao 1, Yan Lu 1,* and Jialan Chu 2

1 College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China

2 National Marine Environmental Monitoring Center, Dalian 116023, China
* Correspondence: luyan@sdust.edu.cn; Tel.: +86-151-5322-5928

Received: 5 August 2019; Accepted: 30 August 2019; Published: 1 September 2019
����������
�������

Abstract: Remote sensing has become a primary technology for monitoring raft aquaculture products.
However, due to the complexity of the marine aquaculture environment, the boundaries of the
raft aquaculture areas in remote sensing images are often blurred, which will result in ‘adhesion’
phenomenon in the raft aquaculture areas extraction. The fully convolutional network (FCN) based
methods have made great progress in the field of remote sensing in recent years. In this paper,
we proposed an FCN-based end-to-end raft aquaculture areas extraction model (which is called
UPS-Net) to overcome the ‘adhesion’ phenomenon. The UPS-Net contains an improved U-Net
and a PSE structure. The improved U-Net can simultaneously capture boundary and contextual
information of raft aquaculture areas from remote sensing images. The PSE structure can adaptively
fuse the boundary and contextual information to reduce the ‘adhesion’ phenomenon. We selected
laver raft aquaculture areas in eastern Lianyungang in China as the research region to verify the
effectiveness of our model. The experimental results show that compared with several state-of-the-art
models, the proposed UPS-Net model performs better at extracting raft aquaculture areas and can
significantly reduce the ‘adhesion’ phenomenon.

Keywords: raft aquaculture areas extraction; remote sensing image; fully convolution network;
U-Net; pyramid upsampling; squeeze-excitation module

1. Introduction

The raft aquaculture is an important intensive aquaculture method. In coastal seas, floating
raft racks are constructed of floats, bamboo and ropes, and fixed by piles or anchors on both sides.
These racks are used to breed various aquaculture species, as shown in Figure 1. The development
of the raft aquaculture industry has produced enormous economic benefits [1–3]; however, it has
also caused some problems such as illegal aquaculture [4,5]. Moreover, encroachment of marine
protected areas and sea lanes has become increasingly common, and has negatively impacted the
coastal ecological environment and maritime traffic [6]. Therefore, there is an urgent need for improved
monitoring of raft aquaculture areas to ensure the orderly development of the raft aquaculture industry.
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(a) (b)

Figure 1. Raft aquaculture areas in natural environments: (a) Raft aquaculture species being cultivated
in seawater; (b) Raft aquaculture species raised above the seawater surface to kill the green algal and
germs on surface of the thallus.

Remote sensing technology has many advantages, including wide coverage, real time availability,
objectivity, accuracy and so on [7]. Therefore, remote sensing has become a primary technology of
environmental and biological monitoring [8,9]. In recent years, researchers have proposed many
methods for extracting aquaculture areas based on remote sensing images. Fan et al. proposed a
joint sparse representation classification method to extract aquaculture areas from high-resolution
SAR images [10]. In their work, wavelet decomposition and gray-level co-occurrence matrix (GLCM)
statistic approach were adopted to construct the required texture features. Wang et al. proposed
a region-line primitive association framework in aquaculture area extraction based on multiscale
feature fusion and spatial rule induction [11]. Hu et al. modified statistical region-merging algorithm
for superpixels segmentation and used fuzzy compactness and separation clustering algorithm to
recognize raft aquaculture areas from SAR images [12]. However, the parameters of these methods
have to be adjusted and analyzed manually [13]. Therefore, the accuracy of raft aquaculture areas
extraction is largely dependent on lengthy parameter investigations and professional experience.

In the field of deep learning, the CNN (Convolutional Neural Network), R-CNN (Regions
with Convolutional Neural Network features) and FCN (Fully Convolutional Network) models are
rapidly developing and evolving respectively for image classification, target detection and semantic
segmentation tasks. For examples, Thibaut et al. proposed an end-to-end method to learn a multi-label
classifier with partial labels [14]. They introduced a loss function that generalizes the standard
binary cross-entropy loss by exploiting label proportion information and significantly improves
performance on multi-label classification. Li et al. proposed a Stereo R-CNN model for autonomous
driving by exploiting the sparse and dense, semantic and geometry information in stereo imagery [15].
Unlike classification tasks, Stereo R-CNN is used for target detection tasks and it can provide 3D
localization metrics of the targets. Chen et al. proposed DeepLabv3+ model and achieved excellent
results based on FCN [16]. They applied several parallel atrous depthwise convolutions with different
rates to extract the multiscale contextual object information.

Typical CNN were designed primarily for image-level classification tasks. For example, Simonyan
et al. evaluated very deep convolutional networks (VGG-16) with small (3 × 3) convolution filters
for large scale image classification [17]. However, raft aquaculture areas extraction is a semantic
segmentation task, which expects a dense class map that has the same size as the original image [18].
Long et al. proposed FCN trained in an end-to-end manner that performed pixel-to-pixel semantic
segmentation and outperformed the state-of-the-art methods at that time [19]. In recent years, some
FCN based methods have shown striking improvements on semantic segmentation benchmark
tasks. However, after several pooling and upsampling operations, FCN loses a large amount of
detailed information. Chen et al. summarized two types of neural networks for image semantic
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segmentation [16], that is, using encoder-decoder structure [20] and using spatial pyramid pooling
(SPP) [16]. The former one is able to obtain sharp object boundaries while the latter one captures
rich contextual information by pooling features at different resolution. Using an encoder-decoder
structure, U-Net [20] achieved good boundary extraction results on biomedical image segmentation.
PSPNet applies several parallel poolings with different rates, which explicitly capture a wide range of
information [21]. Kaiming et al. proposed a Mask R-CNN model by adding a branch to Faster R-CNN
for predicting an object mask in parallel with the existing branch for bounding box recognition [22],
which can be used for semantic segmentation and object bounding box detection.

In recent years, the FCN-based deep learning methods have made great progress in the field of raft
aquaculture areas extraction. Yueming et al. introduced a deep-learning Richer Convolutional Features
network (RCF) [23] for edge detection of raft aquaculture areas in Sanduao, China [24]. Since the
boundaries in the boundary probability map of the RCF are often broken, it is necessary to repair the
extracted vector boundary. Shi et al. design a dual-scale homogeneous convolutional neural network
(DS-HCN), which combines a small receptive field and a large receptive field to mine the association
between multiple targets [13]. DS-HCN achieved a satisfactory performance on aquaculture areas
exaction of Dalian, China. However, when extracting other species of seaweed aquaculture areas,
it seems that some of the aquaculture areas are stuck together (we named it ‘adhesion’ phenomenon),
as shown in Figure 10. We experimented with several typical deep learning models (FCN, U-Net,
PSPNet and DeepLabv3+) to extract raft aquaculture areas, and found that the ‘adhesion’ phenomenon
also appeared in the result maps.

Raft aquaculture areas are characterized by large quantities, dense distribution, complex spectral
information and so on, as shown in Figure 2. These characteristics have brought many challenges
for the raft aquaculture areas extraction. One of the most difficult challenge in raft aquaculture areas
extraction is the ‘adhesion’ phenomenon, which will lead to inaccurate statistics of the number and
area of raft aquaculture areas. The ‘adhesion’ phenomenon is usually caused by several reasons.
First, the boundaries of the raft aquaculture areas in remote sensing images are often blurred due
to the complex marine environment. Second, the spectrum of some raft aquaculture areas is similar
to that of the surrounding seawater due to the influence of seaweed growth stage and harvesting
status. Therefore, in order to overcome the ‘adhesion’ phenomenon, detailed boundary information is
required to prevent boundary-blurring. And context information is required to accurately locate the
aquaculture areas, whose spectrum is similar to the surrounding seawater.

Figure 2. Raft aquaculture areas images: Remote sensing images of laver raft aquaculture areas with
1.8-m spatial resolution. The right image shows the close-up view of the raft aquaculture areas image
denoted by red dashed boxes in the left figure.

Motivated by the encoder-decoder and the SPP structure, we propose a novel FCN-based model
(UPS-Net) for raft aquaculture areas extraction. The motivations of this paper include two aspects.
First, we want to combine the detailed boundary and contextual information of raft aquaculture
areas to overcome the ‘adhesion’ phenomenon in a single model. The improved U-Net is designed
to capture multi-scale feature maps. Large-scale feature maps (the output layer of U-Net) are used
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to provide detailed boundary information, and small-scale feature maps (copy from decoder of the
U-Net) are used to provide contextual information. Second, multi-scale feature maps captured from
the improved U-Net should have different contributions. More reliable and qualified feature maps
should get higher confidence [25]. Therefore, we designed a new PSE structure to adaptively fuse the
detailed boundary and contextual information of raft aquaculture areas. The PSE structure combines
a pyramid upsampling module and a squeeze-excitation module to fuse multiscale feature maps.
The pyramid upsampling module is used to upsample and concatenate the multiscale feature maps
firstly. Then, the squeeze-excitation module, following the procedure of Hu et al. [26], exploits the
modeling interdependencies between channels. In addition, a depthwise separable convolution is
used to reduce the model parameters [27]. The experimental results on raft aquaculture areas dataset
demonstrated that UPS-Net achieves better F1-measure scores compared with the state-of-the-art deep
learning methods and other raft aquaculture areas extraction method.

In this work, we proposed an improved U-Net with a PSE structure (UPS-Net) for extracting raft
aquaculture areas extraction. The main contributions of our work are summarized as follows:

1. The improved U-Net is designed to capture multiscale feature maps, which contains detailed
boundary and contextual information of raft aquaculture areas.

2. The pyramid upsampling module and the squeeze-excitation module were combined for the first
time into the PSE structure, which can adaptively fuse the multiscale feature maps.

The remainder of this paper is organized as follows: Section 2 describes the related work, including
the structures of FCN, U-Net, the spatial pyramid pooling module and the squeeze-excitation module.
In Section 3, we introduce the proposed UPS-net model in detail. Section 4 reports the details of the
experimental dataset, the hyperparameter and the experimental results. Finally, a discussion and
conclusion are provided in Sections 5 and 6, respectively.

2. Related Works

In this section, we will give a brief review of the traditional FCN model, U-Net model and spatial
pyramid pooling. In addition, a detailed introduction for the Squeeze-excitation module is also given
in this section.

2.1. FCN and U-Net

FCN is trained in an end-to-end manner, performing pixel-to-pixel semantic segmentation
and object extraction. CNNs are typically used for image-level classification tasks because they
all output the probability distribution over different classes [18]. For example, AlexNet outputs a
1000-dimensional vector to represent the probability that an input image belongs to each class [28].
In contrast to typical CNNs, an FCN is a CNN rearchitected to perform semantic segmentation tasks by
replacing the fully connected layers with convolutional and upsampling layers, producing an efficient
model for end-to-end pixelwise learning. FCNs adds a skip-layer module between layers to fuse
semantic information and refine the spatial precision of the prediction [19]. However, FCNs generate
coarse segmentation maps due to their large number of pooling and upsampling layers.

U-Net [20] is an FCN-based network suitable for processing gray biomedical images. U-Net yields
outstanding performances on biomedical images because it captures detailed boundary information.
The U-Net architecture consists of a contracting path and an expanding path [20]. The contracting path
alternately uses four groups of convolution and pooling layers to capture multiscale feature maps,
while the expanding path alternately uses four groups of convolution and upsampling layers to obtain
refined feature maps. Meanwhile, to retain detailed information, the feature maps from the contracting
path are copied and concatenated to the corresponding upsampling layers in the expanding path.
This U-shaped multi-level fusion structure can retain more boundary information of the target.
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2.2. Spatial Pyramid Pooling

To accurately extract the target in semantic segmentation, Zhao et al. found that the current
FCN-based model lacks a suitable strategy for utilizing multiscale contextual clues [21]. Therefore,
spatial pyramid pooling (SPP) is used in DeepLabv3+ and PSPNet, which fuses multiscale features by
controlling the size of the receptive field. In CNNs, the receptive field is defined as the region of the
input space at which a particular CNN convolution kernel is looking, and it roughly indicates how well
the spatial information is being used [29]. DeepLabv3+ [16] and PSPNet [21] perform SPP in different
ways. DeepLabv3+ applies several parallel atrous depthwise convolutions with different rates to
explicitly control the filter’s receptive field and capture a wide range of information. Atrous depthwise
convolution is a combination of atrous convolution and depthwise separable convolution with fewer
parameters [16]. PSPNet applies several parallel poolings with different rates, which also explicitly
capture a wide range of information. By exploiting this multiscale contextual information, DeepLabv3+
and PSPNet have achieved outstanding results on natural scene semantic segmentation benchmarks.

2.3. Squeeze-Excitation Module

In image classification, considering the relationship between channels, squeeze-excitation module
weights feature maps in a channelwise manner by explicitly modeling the interdependencies between
channels [26,30,31]. This approach emphasizes informative features and suppresses those that are
less informative [26]. The squeeze-excitation module includes both a squeeze operation, Fsqueeze, and
an excitation operation, Fexcitation. As illustrated in Figure 3, the given feature maps X, X ∈ RH×W×C,
where H, W, and C refer to the height, width, and number of channels of the feature maps, respectively,
first pass through a squeeze operation (global average pooling [32,33]), which generates z ∈ RC,
where zk is the k-th element of z, and Xk is the k-th feature map of X:

zk = Fsqueeze(Xk) =
1

H ×W

H

∑
i=1

W

∑
j=1

Xk(i, j). (1)

The excitation operation includes two fully connected layers with the parameters W1, W2 and
two activation functions, and it generates z̃ ∈ RC as follows:

z̃ = Fexcitation(z, W) = σ(g(z, W)) = σ(W2δ(W1z)), (2)

where σ refers to the sigmoid activation function, and δ refers to the ReLU [34] activation function.
At last the Fscale operation rescales the given feature maps X with z̃:

X̃k = Fscale(Xk, zk) = Xk · zk, (3)

where Fscale(Xc, Zc) refers to channelwise multiplication, and X̃k is the k-th feature map of X̃.

Figure 3. Squeeze-excitation module.
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3. Methods

In this section, we first introduce the general process for raft aquaculture areas extraction. Then,
we describe the proposed UPS-Net in detail, including the improved U-Net and the PSE structure.

3.1. The General Process of Raft Aquaculture Areas Extraction

The raft aquaculture areas extraction process includes three stages: a data preprocessing stage,
a training stage and a testing stage, as shown in Figure 4. In the remote sensing data preprocessing
stage, experts manually draw the extent of each raft aquaculture areas in the study region using ArcGIS
software [35]. Then, the manually labeled result is converted to a binary ground truth map, where one
represents raft aquaculture areas and zero represents seawater. We cropped the study region image and
the ground truth map to generate the training samples, where each patch corresponds to a small truth
map. Similarly, we also created validation samples and test samples. In the training stage, the training
samples are fed to the proposed UPS-Net model, which is shown in a simplified version of the network
in Figure 4. UPS-Net is iteratively optimized using the mini-batch gradient descent algorithm [36].
Iteration is terminated when the loss no longer decreases. In the testing stage, the trained UPS-Net will
be applied to the test image to extract the raft aquaculture areas. The general steps of our proposed
raft aquaculture areas extraction method are given in Algorithm 1.

Figure 4. The general process of our raft aquaculture areas extraction. The data preprocessing stage,
the training stage and the testing stage are illustrated in the upper, middle, and lower parts of the
figure, respectively. The UPS-Net model is a simplified version of the network.
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Algorithm 1: Raft aquaculture areas extraction by using the proposed UPS-Net.
Input: the high-resolution images I, the parameter k of cross-validation, the iteration m,
the initial hyperparameter h, the threshold of loss δ.
1. Data preprossessing:

Input high-resolution images I and label raft aquaculture areas.
Convert the labeled results to binary ground truth maps.
Crop the images I and ground truth map to make raft aquaculture areas dateset.
Split the dataset to generate training set, validation set and test set.
Shuffle the training set and validation set randomly and split the dataset into k groups for

cross-validation.
2. Training:

Build the UPS-Net model and input hyperparameter h.
Input training set and validation set of the raft aquaculture areas.
while Loss L > δ do

Tune the hyperparameter h.
for i = 1, 2, ..., m do

Implement forward propagation and extract raft aquaculture areas on training set.
Compute loss between the extraction results and the ground truth on training set.
Implement backward propagation to get the gradients.
Update parameters of the UPS-Net model.

end for
Implement forward propagation and compute Loss L on validation set.

end while
3. Cross-validation:

Repeat step 2. Training by using k-fold cross-validation.
4. Testing:

Input test set of the raft aquaculture areas.
Extract raft aquaculture areas on test set by UPS-Net.

3.2. The Proposed UPS-Net

The proposed UPS-Net contains an improved U-Net and a PSE structure. In Section 3.2.1,
we introduce the improved U-Net, which can simultaneously capture detailed boundary and contextual
information of raft aquaculture areas. In Section 3.2.2, we introduce the PSE structure, which can
adaptively fuse multiscale feature maps. The complete network structure and detailed configuration
of UPS-Net is shown in Table 1.

Table 1. Complete network structure of UPS-Net. Conv, sepconv and FC refer to convolution,
depthwise separable convolution, fully connect, respectively.

Module Layer Name Kernel Size Kernel Number Connect to

Encoder

Conv1_1 (Input) 3 × 3 64 Conv1_2
Conv1_2 3 × 3 64 Maxpooling1 & SepConv6_1

MaxPooling1 2 × 2 - SepConv2_1

SepConv2_1 3 × 3 128 SepConv2_2
SepConv2_2 3 × 3 128 Maxpooling2 & SepConv7_1
MaxPooling2 2 × 2 - SepConv3_1

SepConv3_1 3 × 3 256 SepConv3_2
SepConv3_2 3 × 3 256 Maxpooling3 & SepConv8_1
MaxPooling3 2 × 2 - SepConv3_1

SepConv4_1 3 × 3 512 SepConv4_2
SepConv4_2 3 × 3 512 Maxpooling4 & SepConv9_1
MaxPooling4 2 × 2 - SepConv5_1

SepConv5_1 3 × 3 1024 SepConv5_2
SepConv5_2 3 × 3 1024 SepConv10_1
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Table 1. Cont.

Module Layer Name Kernel Size Kernel Number Connect to

Dncoder

SepConv6_1 3 × 3 64 SepConv6_2
SepConv6_2 3 × 3 64 UpSampling11_1

SepConv7_1 3 × 3 128 SepConv7_2
SepConv7_2 3 × 3 128 UpPooling7 & UpSampling11_2

UpSampling7 2 × 2 - SepConv6_1

SepConv8_1 3 × 3 256 SepConv8_2
SepConv8_2 3 × 3 256 UpPooling8 & UpSampling11_3

UpSampling8 2 × 2 - SepConv9_1

SepConv9_1 3 × 3 512 SepConv9_2
SepConv9_2 3 × 3 512 UpPooling9 & UpSampling11_4

UpSampling9 2 × 2 - SepConv10_1

SepConv10_1 3 × 3 1024 UpSampling11_5

Pyramid upsampling module

UpSampling11_1 2 × 2 64 Concatenate12
UpSampling11_2 2 × 2 128 Concatenate12
UpSampling11_3 2 × 2 256 Concatenate12
UpSampling11_4 2 × 2 512 Concatenate12
UpSampling11_5 2 × 2 1024 Concatenate12

Squeeze-Excitation module

Concatenate12 - - FC12_1 & Multiplication12
FC12_1 - - sigmoid12

sigmoid12 - - FC12_1
FC12_2 - - Multiplication12

Multiplication12 - - SepConv13_1

SepConv13_1 3 × 3 1984 SepConv13_2
SepConv13_2 3 × 3 2 sigmoid13

Sigmoid13 - - (Output)

3.2.1. The Improved U-Net

The U-Net [20] is used as the backbone of the model, which contains an encoder and a decoder.
We divided U-Net into five layers. The sizes of the feature maps in each layer are 128× 128, 64× 64,
32× 32, 16× 16, 8× 8, respectively. At the end of Layer2, Layer3, Layer4 and Layer5 of decoder,
we added four copy operations to improve the U-Net. Therefore, the improved U-Net can capture
five scales feature maps. Max pooling (rate = 2, as indicated by the red arrow in Figure 5) is used in
the encoder to extract deep feature maps of the raft aquaculture. Upsampling (rate = 2, as indicated
by the green arrow in Figure 5) is used in the decoder to restore the multiscale feature maps. Finally,
the multiscale feature maps obtained by the decoder (the yellow block in Figure 5) are copied to the
PSE structure. The depthwise separable convolution is used to reduce the network parameters (as
indicated by the black arrow in Figure 5).

Figure 5. The improved U-Net. Each gray rectangle represents a multichannel feature map with the
channel number at the top of the gray rectangle and the size on the left sides.
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3.2.2. The PSE Structure

The PSE structure contains a pyramid upsampling module and a squeeze-excitation module
(as shown in the yellow blocks in Figure 6). In this paper, we designed a new pyramid upsampling
module to fuse the multiscale feature maps from different layers of the improved U-Net. Copy and
upsamplings at different rates (rates = 2, 4, 8 and 16) are used to obtain feature maps FM1, FM2, FM3,
FM4 and FM5 (as shown in the pyramid upsampling module in Figure 6). The channels of FM1, FM2,
FM3, FM4 and FM5 are 64, 128, 256, 512, and 1024, respectively. Then, these feature maps will be copied
and concatenated. Thus, the pyramid upsampling module integrates feature maps with different
resolutions that contain different scales of raft aquaculture contextual information. Compared with
SPP, pyramid upsampling module require fewer numbers of parameters, since pyramid upsampling
module contains only upsampling which does not require parameters.

Figure 6. The PSE structure, including the pyramid upsampling module and the
squeeze-excitation module.

After this simple concatenation, the different channels of the feature maps are reweighted by
the squeeze-excitation module to produce robust feature representations. First, the operation Fs

(Global Average Pooling) is used to produce a vector S (S ∈ R1×c). Second, the operation Fe is a
nonlinear transformation applied to learn the channelwise weight vector E (E ∈ R1×c), including
FC1 (a fully connected layer), a ReLU function, FC2 and a sigmoid function. Finally, the weighted
feature matrix Ũ is obtained by channelwise multiplication (Fm) between matrix U and vector E, where
U is the feature matrix concatenated by the pyramid upsampling module, whose size is w× h× c
(w = 128, h = 128, c = 1984).

4. Experiments and Evaluation

In this section, we compare the UPS-Net on the selected dataset with several state-of-the-art
methods. The experiment was performed on a laboratory server equipped with an NVIDIA Tesla K80
GPU with 11,440 MB of graphic memory and a CentOS Linux 7.5 operating system. UPS-Net and the
other FCN-based methods were trained and tested with Keras [37], using TensorFlow as the backend
engine [38].
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4.1. Experimental Dataset and Evaluation Metrics

Our raft aquaculture areas extraction method was verified using Gaofen-1 remote sensing image
of the offshore area of eastern Lianyungang (see Figure 7a). The image acquisition date was 17 February
2017, and the sensor model was PMS2 (1.8-m spatial resolution after image fusion). The high-resolution
experimental image contains more than 2000 raft aquaculture areas. Each raft aquaculture area is
labeled manually by visual interpretation. The experimental image and the ground truth map (as
shown in Figure 7b,c) are cropped and divided into a training set, a validation set and a test set (as
shown in Table 2). The remote sensing images and ground truth maps are cropped into small patches
of 128× 128 pixels. The ground truth map is a binary image, with white representing raft aquaculture
areas and black representing seawater.

Table 2. Training, validation and test set of the experiments.

The Data Set Number of Images Size of Images

Training set The experimental images 2263 128× 128× 3
The ground truth map 2263 128× 128× 1

Validation set The experimental images 564 128× 128× 3
The ground truth map 564 128× 128× 1

Test set The experimental images 5 1325× 1325× 3
The ground truth map 5 1325× 1325× 1

Figure 7. (a) Experimental area; (b) Experimental image; (c) Ground truth map.
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In the ground truth map, the aquaculture areas are regarded as positive samples, and the seawater
is regarded as negative samples. In the experiment, we use precision, recall and the F1-measure to
evaluate the different models for extracting raft aquaculture areas. Precision and recall are respectively
defined as follows:

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

where TP, FP and FN represent the number of true positives, false positives, and false negatives,
respectively. The F1-measure is defined as follows:

F1−measure =
2× Precision× Recall

Precision + Recall
(6)

4.2. The Process of Hyperparameter Tuning and Setting

In the experiment, the Adam algorithm [39] was used to minimize the overall loss, which can
automatically adjust the learning rate. However, the initial learning rate must be determined in
advance. We experimented with various initial learning rates, such as 0.01, 0.001, 0.0001 and 0.00001.
Finally, we set initial learning rate to 0.0001, because it can converge faster, as shown in Figure 8. The
iteration will be stopped when the loss no longer decreases on the validation set. In this paper, the
number of iterations and epochs are 1132 and 40, respectively. The batch size defines the number of
training samples that will be propagated through the network in one iteration. In the experiment, we
set the number of bath size to 8 and obtained a satisfactory convergence speed and accuracy.

Figure 8. Different learning rate of Adam algorithm on validation set.

4.3. Experimental Results and Comparison

In order to verify the effectiveness of our proposed raft aquaculture areas extraction method, we
compare the UPS-Net on the selected dataset with several state-of-the-art methods, i.e., SVM [40],
Mask R-CNN [22], FCN [19], U-Net [20], PSPNet [21], DeepLabv3+ [16] and DS-HCN [13]. The SVM
method uses a radial basis kernel function [40] with two important parameters, C and γ, which were
set to 1.8 and 0.34 respectively in the experiment. We modified the input of U-Net from one band to
three bands so that it could process high resolution remote sensing images. The backbone of Mask
R-CNN, FCN, PSPNet, DeepLabv3+ and DS-HCN are ResNet-50, VGG-19, ResNet-50, Xception and
VGG-16, respectively. The architectures of FCN, U-Net, PSPNet, DeepLabv3+ and DS-HCN in the
experiment are in strict accordance with the original settings. Further, the robustness of the model was
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endorsed by five-fold cross-validation experiment. As shown in Table 3, the final result present with
mean and standard deviation of precision, recall and F1.

Table 3. Comparison of raft aquaculture areas extraction between SVM, Mask R-CNN, FCN, U-Net,
PSPNet, DeepLabv3+, Encoder-Decoder and UPS-Net (average of 5 runs with the standard deviation).
The values in bold format are the highest numbers.

Method Precision (%) Recall (%) F1 (%) Parameter

SVM 84.6 ± 2.61 77.9 ± 1.32 81.1 ± 1.93
Mask R-CNN 85.9 ± 2.07 87.5 ± 2.30 86.7 ± 2.15 67.3 M

FCN 89.2 ± 2.18 79.3 ± 1.40 83.6 ± 1.79 55.5 M
U-Net 87.5 ± 0.76 87.1 ± 0.83 87.3 ± 0.80 31.0 M

PSPNet 85.5 ± 1.26 87.4 ± 2.13 86.4 ± 1.70 46.7 M
DeepLabv3+ 87.2 ± 3.81 86.5 ± 1.77 86.8 ± 3.29 41.3 M

DS-HCN 87.8 ± 0.84 84.7 ± 1.98 86.2 ± 1.41 11.2 M
UPS-Net (ours) 89.1 ± 1.52 88.7 ± 1.17 89.0 ± 1.35 4.6 M

Table 3 provides a detailed comparison of these methods, where we can see that the recall and
F1-measure of the proposed UPS-Net are higher than those of the other methods. Compared with
deep learning methods, the precision, recall and F1-measure scores of SVM is not so good because
it only uses the spectral information of the raft aquaculture areas. The FCN method achieves the
highest precision (89.2%), but its recall is lower than that of the other deep learning methods. Mask
R-CNN performs semantic segmentation for raft aquaculture areas object and achieves better recall
and F1 than FCN. The proposed UPS-Net has a precision of 89.1% and is superior to other methods
except the FCN method. The Recall and F1-measure are 88.7% and 89.0%, respectively, which are the
highest compared to other methods. In addition, using depthwise separable convolution and pyramid
upsampling module can significantly reduce the parameters. As shown in the last column in Table 3,
UPS-Net only has 4.6 M parameters, which is several times smaller than other FCN based methods.
In terms of the standard deviation, the U-Net performes best and the proposed UPS-Net achieves
satisfactory results.

Figure 9 shows the result maps of different methods for extracting raft aquaculture areas,
with white representing the extracted raft aquaculture areas and black representing seawater.
To discriminate visually among the different methods, we added some annotations to the result
maps. In Figure 9c–j, the red rectangles indicate raft aquaculture areas here were misidentified as sea
water, and the green rectangles indicate seawater here were misidentified as raft aquaculture areas.
The result maps of SVM and FCN contain many raft aquaculture areas that are not fully identified,
as shown in the red rectangles. In the result map of Mask R-CNN and PSPNet, the interiors of many
raft aquaculture areas are misidentified as seawater, as shown in the red rectangles. In the maps of
DeepLabv3+ and DS-HCN, many seawater areas are misidentified as raft aquaculture areas, as shown
in the green rectangles. In terms of raft aquaculture areas extraction accuracy and detail preservation,
UPS-Net outperforms the other methods.

The details of some raft aquaculture areas extraction result maps are given in Figure 10. As shown
by the yellow rectangles in Figure 10c–e, the raft aquaculture areas appear to have an ‘adhesion’
phenomenon (some of the raft aquaculture areas are stuck together). This ‘adhesion’ phenomenon
mainly occurs in the U-Net, PSPNet, DeepLabv3+ and DS-HCN methods. As shown in Figure 10f,
the UPS-Net significantly reduced the ‘adhesion’ phenomenon. However, although the proposed
UPS-Net performed satisfactorily on raft aquaculture areas extraction, in some special cases, it did not
completely extract aquaculture rafts. For example, the boundaries of the aquaculture area extracted by
the proposed UPS-Net look relatively rough, while the boundaries of labeled raft aquaculture areas
usually maintain morphological characteristics such as straight lines and right angles [41].
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(a) Test image (b) Ground truth

(c) SVM (d) Mask R-CNN

(e) FCN (f) U-Net (g) PSPNet

(h) DeepLabv3+ (i) DS-HCN (j) UPS-Net (ours)

Figure 9. Extraction of raft aquaculture areas on the test image: (a) Test image; (b) Ground truth;
(c) SVM; (d) Mask R-CNN; (e) FCN; (f) U-Net; (g) PSPNet; (h) DeepLabv3+; (i) DS-HCN; (j) UPS-Net.
The red rectangles indicate raft aquaculture areas here were misrecognized as seawater, and the green
rectangles indicate seawater areas here were misrecognized as raft aquaculture areas.
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(a) Test image (b) Ground truth (c) U-Net

(d) DeepLabv3+ (e) DS-HCN (f) UPS-Net (ours)

Figure 10. The ‘adhesion’ phenomenon in the result maps of raft aquaculture areas extraction: (a) Test
image; (b) Ground truth; (c) U-Net; (d) DeepLabv3+; (e) DS-HCN; (f) UPS-Net. The yellow rectangles
indicate that raft aquaculture areas appeared ‘adhesion’ phenomenon.

4.4. The Evaluation of the PSE Structure

The contextual information is important to semantic segmentation and object extraction [21,42,43].
However, the sizes of raft aquaculture areas are generally not fixed, which makes it difficult to select
an appropriate size for extracting multiscale contextual information. Therefore, we designed a PSE
structure, which can adaptively utilize these multiscale feature maps. First, the pyramid upsampling
module is used to concatenate the multiscale feature maps from the improved U-Net. Then, the
squeeze-excitation module learns to use global information to selectively emphasize the informative
features and suppress the less useful ones [26]. The visualized the weights of the channels in the
squeeze-excitation module are shown in Figure 11. Channels 1–64, 65–192, 193–448, 449–960 and
961–1984 correspond to FM1, FM2, FM3, FM4 and FM5, respectively. As Figure 11 shows, the weights
of FM1, FM2 and FM3 are higher than those of FM4 and FM5. Hence, the visualized experiment
suggests that the squeeze-excitation module can learn the weight information among the different
feature maps.

To further verify the effectiveness of the PSE structure, we designed comparative experiments.
We combined different CNNs (U-Net, improved U-Net, PSPNet and DeepLabv3+) with the PSE
structure to extract multiscale features. PSPNet and DeepLabv3+, use ResNet50 and Xception as
backbones, respectively. The FCN was omitted because it fuses multiscale feature maps by adding
skips [19]. Hence, it cannot be combined with the PSE structure. As shown in Table 4, with the
PSE structure, the F1-measure of U-Net improves from 87.1% to 88.3%, and the F1-measure of ours
improved U-Net increases from 87.3% to 88.8%. With the PSE structure, PSPNet and DeepLabv3+ also
have certain performance promotion. From Table 4, we can see that the models with the added PSE
structure generally outperform the original models for raft aquaculture areas extraction.
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Figure 11. Visualization: the weight information of vector E from the squeeze-excitation module.
The horizontal axis shows channels of the vector E. The vertical axis shows weights of the vector E.

Table 4. Comparison of different FCN-based networks with and without the PSE structure (average of
5 runs with the standard deviation). The values in bold format are the highest numbers.

Method Precision (%) Recall (%) F1 (%)

The improved U-Net 88.5 ± 1.38 86.3 ± 1.61 87.4 ± 1.53
UPS-Net (ours) 89.1 ± 1.52 88.7 ± 1.17 89.0 ± 1.35

U-Net 87.6 ± 0.76 87.1 ± 0.83 87.6 ± 0.80
U-Net + PSE 87.4 ± 0.88 89.0 ± 1.29 88.2 ± 1.13

PSPNet 85.5 ± 1.26 87.4 ± 2.13 86.4 ± 1.70
PSPNet + PSE 87.8 ± 1.31 87.2 ± 1.93 87.6 ± 1.82

DeepLabv3+ 87.2 ± 3.81 86.8 ± 1.77 86.9 ± 3.29
DeepLabv3+ + PSE 87.6 ± 2.25 87.5 ± 2.06 87.5 ± 1.88

5. Discussion

Raft aquaculture areas are characterized by large quantities, dense distribution, complex spectral
information and so on. These factors will lead to the occurrence of ‘adhesion’ phenomenon and
inaccurate statistics of the number of raft aquaculture areas. Hence, the goal of this study is to
overcome the ‘adhesion’ phenomenon, while improving the classification accuracy of the model.

5.1. Compared with Some Popular FCN-Based Models

The proposed UPS-Net has higher accuracy than do some popular FCN-based models. FCN-based
models are convolutionalized version of standard CNNs [18]. They generally use CNNs to obtain
the feature maps of the last convolutional layer, and then use up-sampling, feature extraction and
feature fusion for semantic segmentation. DeepLabv3+ and PSPNet use spatial pyramid pooling to
fuse multiscale contextual features, which increases the accuracy of raft aquaculture areas extraction.
However, DeepLabv3+ apply upsampling operations four times, which causes a loss of the detail
information and an ‘adhesion’ phenomenon in the result maps of raft aquaculture areas, as shown in
Section 4.3, Figure 10. Similarly, in the results of PSPNet, the interiors of many raft aquaculture areas
are misidentified. U-Net applies an encoder-decoder structure, which captures detailed boundary
information. However, U-Net does not make full use of contextual information, thus ‘adhesion’
phenomenon also appeared in the result maps. In this paper, the proposed UPS-Net is designed
to simultaneously capture detailed boundary and multiscale contextual information, which can
significantly reduce the ‘adhesion’ phenomenon, and the accuracy is therefore improved.

Moreover, multiple parallel poolings or atrous depthwise convolutions are required in popular
FCN-based models such as DeepLabv3+ and PSPNet to obtain multi-scale contextual features,
which will increase computation and parameters of these models. In the proposed UPS-Net, multi-scale
feature maps of U-Net that were originally discarded are reused and combined by the PSE structure.



Remote Sens. 2019, 11, 2053 16 of 19

Coupled with the use of depthwise separable convolution, the amount of parameters of the UPS-Net
is significantly reduced. Therefore, the performance of UPS-Net is far superior to other popular
FCN-based models.

5.2. Compared with DS-HCN

The proposed UPS-Net has higher adaptability in raft aquaculture areas extraction because it can
automatically fuse multiscale feature maps. DS-HCN is also an outstanding FCN-based method to
extract raft aquaculture areas, which includes two fixed scales branches [13]. The small-scale branch
is a homogeneous convolutional network with a receptive field of 33× 33. The large-scale branch
has a large receptive field. However, the shape and size of laver raft aquaculture areas are not fixed.
Therefore, the proposed UPS-Net applies five different branches to extract multiscale contextual feature
maps, and a PSE structure is designed to adaptively utilize these different branches (the multiscale
feature maps), which achieved better extraction results for the aquaculture area.

6. Conclusions

In this paper, based on the FCN model, we proposed an improved U-Net with a PSE structure
(UPS-Net) for raft aquaculture areas extraction from high resolution optical remote sensing images.
The proposed UPS-Net has three main advantages. Its first advantage is that the improved U-Net
can capture detailed boundary information and multiscale contextual information of raft aquaculture
areas. Its second advantage is that the novel PSE structure can adaptively fuse multiscale feature maps.
Hence, UPS-Net achieved outstanding performance on the raft aquaculture areas extraction task and
reduce the ’adhesion’ phenomenon. Its third advantage is that, by introducing depthwise separable
convolution and pyramid upsampling module, UPS-Net requires fewer parameters. Finally, the
complex environments in which aquaculture rafts exist should be considered in future raft aquaculture
areas extraction research, such as seaweed growth stage, seaweed harvesting status, etc.

Author Contributions: Conceptualization, B.C.; Investigation, B.C.; Methodology, B.C. and D.F.; Resources, J.C.;
Software, D.F.; Validation, G.S., Y.L. and J.C.; Writing—original draft, D.F.; Writing—review & editing, B.C., D.F.,
G.S. and Y.L.

Funding: This work was co-supported by National key R&D Program of China (2017YFC1405600); National
Natural Science Foundation of China (NSFC) (41406200).

Acknowledgments: The authors would like to thank all reviewers and editors for their comments on this paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
FCN Fully Convolutional Network
R-CNN Regions with Convolutional Neural Network features
UPS-Net Improved U-Net with a PSE structure
GLCM Gray-Level Co-occurrence Matrix
SPP Spatial Pyramid Pooling
PSPNet Pyramid Scene Parsing Network
RCF Richer Convolutional Features network
DS-HCN Dual-Scale Homogeneous Convolutional Neural Network
PSE Pyramid upsampling and Squeeze-Excitation
FM Feature Maps
ReLU Rectified Linear Unit
FC Fully Connected layer
TP True Positives
FP False Positives
FN False Negatives
SVM Support Vector Machine
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