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Abstract: The rapid development of remote sensing technology has promoted the generation of
different vegetation index products, resulting in substantive accomplishment in comprehensive
economic development and monitoring of natural environmental changes. The results of scientific
experiments based on various vegetation index products are also different with the variation of time
and space. In this work, the consistency characteristics among three global normalized difference
vegetation index (NDVI) products, namely, GIMMS3g NDVI, MOD13A3 NDVI, and SPOT-VGT
NDVI, are intercompared and validated based on Landsat 8 NDVI at biome and regional scale over
the Mongolian Plateau (MP) from 2000 to 2014 by decomposing time series datasets. The agreement
coefficient (AC) and statistical scores such as Pearson correlation coefficient, root mean square error
(RMSE), mean bias error (MBE), and standard deviation (STD) are used to evaluate the consistency
between three NDVI datasets. Intercomparison results reveal that GIMMS3g NDVI has the highest
values basically over the MP, while SPOT-VGT NDVI has the lowest values. The spatial distribution
of AC values between various NDVI products indicates that the three NDVI datasets are highly
consistent with each other in the northern regions of the MP, and MOD13A3 NDVI and SPOT-VGT
NDVI have better consistency in expressing vegetation cover and change trends due to the highest
proportions of pixels with AC values greater than 0.6. However, the trend components of decomposed
NDVI sequences show that SPOT-VGT NDVI values are about 0.02 lower than the other two datasets
in the whole variation periods. The zonal characteristics show that GIMMS3g NDVI in January 2013
is significantly higher than those of the other two datasets. However, in July 2013, the three datasets
are remarkably consistent because of the greater vegetation coverage. Consistency validation results
show that values of SPOT-VGT NDVI agree more with Landsat 8 NDVI than GIMMS3g NDVI and
MOD13A3 NDVI, and the consistencies in the northeast of the MP are higher than northwest regions.

Keywords: NDVI consistency assessment; Mongolian Plateau; intercomparison; consistency validation;
terrestrial ecoregion

1. Introduction

Vegetation is a crucial component of the terrestrial surface system, which plays a vital role
as a regulator in global and regional biochemical cycle, water and energy balance, and climate
change [1–3]. Vegetation spectral characteristics show obvious differences in the adjacent spectral
space. Vegetation index (VI), computed by a specific combination of different bands, can qualitatively
or quantitatively characterize vegetation status on the land surface [1,4,5]. After nearly 40 years of
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development, more than 40 vegetation indices have been defined [6] and have been widely used
in modeling and monitoring global and regional climate change [1,7–12], identifying vegetation
phenology [13–19], investigating the desert boundaries [20], detecting desertification changes [21],
classifying and surveying land use/land cover [22–26], and assessing natural disasters such as drought
and fire risk [3,27–30]. With the rapid development of remote sensing technology, the study of VI has
also changed from pure numerical calculation to factor analysis. Meanwhile, many environmental
factors such as atmospheric conditions and soil background may produce errors in these indices [31].
The enhanced vegetation index (EVI) and the normalized difference vegetation index (NDVI) are both
effective VIs and are widely applied in providing consistent spatial and temporal information regarding
global vegetation. EVI provides improved sensitivity in high biomass regions while minimizing soil
and atmosphere influences, which is superior to NDVI in characterizing surface vegetation in areas
with high vegetation coverage. However, EVI is limited to sensor systems designed with a blue band,
in addition to the red and near-infrared bands, making it difficult to generate long-term EVI time series
as the NDVI counterpart [32]. Furthermore, topographic effect on the EVI is much more obvious than
that of NDVI, especially in areas of rough terrain [31]. Thus, NDVI becomes the most classical VI in
practical application with its advantages of simple calculation, high sensitivity of vegetation detection,
and better temporal and spatial adaptability. Refs. [33,34], while serious oversaturation in areas with
high vegetation cover is the biggest limitation of NDVI [35].

Continuous and consistent VI datasets are the basis and prerequisite for long-term monitoring
of land surface vegetation characteristics [12,13,15,36]. At present, many long time series remote
sensing-based VI products have been produced, among which the Global Inventory Modeling and
Mapping Studies (GIMMS) NDVI, Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI,
and Systeme Probatoire d’Observation de la Terre-VEGETATION (SPOT-VGT) NDVI are the longest
time series and the most widely used NDVI datasets [36–39]. As the vital database to characterize
the vegetation distribution and dynamic variation monitoring over long period of time, these NDVI
datasets have supported massive scientific researches [40–46]. However, because of the different
sensor platforms, data processing methods, precision control flow, and distinctive spatial and temporal
resolutions, diverse NDVI products reflect different fractional vegetation cover and variation trends,
even in the same study region. Beck [47] compared four AVHRR-derived NDVI and MODIS NDVI
datasets in detail at a global scale. The results showed that the MODIS NDVI performed better than
any AVHRR NDVI datasets in consistency evaluation against Landsat-based NDVI, but GIMMS
NDVI could effectively reflect the dynamic changes of vegetation in the four AVHRR NDVI datasets.
Gallo’s [48] research in the United States showed that the values of AVHRR NDVI were very similar to
the 16d synthetic values of MODIS NDVI, and that there was a linear relationship between different
sensors. The results evinced that it is feasible to use different sensors to establish NDVI time series.
Fensholt [49] took MODIS NDVI as a reference and considered that the GIMMS NDVI dataset had poor
ability to explain the interannual changes of vegetation in semi-humid regions of Africa. Song’s [50]
research indicated that MODIS NDVI and SPOT-VGT NDVI in northern Shaanxi Province showed a
significant increase trend from 1999 to 2006, while GIMMS NDVI did not change much in the same
period. The above studies clarify that the NDVI has obvious spatial heterogeneity, and the impacts of
time duration and space environment on different datasets are various. In order to accurately grasp and
recognize the real situation of surface vegetation in specified regions, it is necessary to deeply analyze
the consistency of spatial and temporal succession of the three NDVI datasets. Also, the comparison
could be a reference to reveal the temporal and spatial applicability of each kind of NDVI data.

The Mongolian Plateau (MP) is the core region of the economic corridor between China, Mongolia,
and Russia, and the impact of economic development, industrial structure, and human activities from
these three countries on the natural environment of the MP varies greatly. The arid–semi-arid climate
environment in the MP makes the ecological environment of the region vulnerable and sensitive.
Its extensive vegetation coverage is of great significance for the adjustment of local climate change
and the improvement of human living environment. Clearly understanding the characteristics and
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current situation of vegetation change in the MP plays an important role in decision-making to cope
with climate change in temperate regions of the Northern Hemisphere. At present, there are many
studies based on a single NDVI dataset in the MP region, but few of them focus on various datasets.
Studying the consistency of vegetation index in the MP will have a far-reaching impact on ecological
environment protection and regional and global climate change regulation in the region. It can evaluate
the applicability of various datasets in vegetation assessment of the MP, and provide data references
for subsequent research. Therefore, this study aims to analyze the succession consistency between
GIMMS3g NDVI, MOD13A3 NDVI, and SPOT-VGT NDVI of the MP to reveal the differences of three
NDVI datasets in spatial and temporal distribution. The objectives of this study are: (1) Analyze the
variation characteristics of the three NDVI datasets over the MP in the past 15 years on a monthly scale
and uncover their consistency and differences; (2) reveal the spatial heterogeneity of NDVI distribution
by introducing the World Wildlife Fund (WWF) terrestrial ecoregion; (3) verify the reliability of the
NDVI values of the three datasets using Landsat 8 images. The remainder of this paper is organized
as follow: Section 2 presents the study area, datasets, and methodologies. The results, discussions,
and conclusions are given in Section 3, Section 4, and Section 5, respectively.

2. Materials and Methods

2.1. Study Area

This study was conducted in the MP, covering the whole territory of Mongolia, the Inner Mongolia
Autonomous Region (IMAR) of northern China, Tuva Republic, Buryatia Republic, Zabaykalsky Krai,
and parts of Irkutsk Oblast of southern Russia (Figure 1), with a total area of about 3.82 million
km2. As one of the most important tectonic landform units of the Eurasian continent, and the typical
area of the monsoon marginal zone, the MP is affected by the Siberia–Mongolia high atmospheric
pressure in winter and East Asian summer monsoon in summer, resulting in a dry and cold climate in
winter but rainy and hot climate in summer [51]. Under the combined influences of monsoon and
westerly circulation, the MP becomes the most sensitive and typical region in response to East Asia
and global climate change. Figure 1 shows the digital elevation model (DEM) of the MP based on
global SRTM data (http://srtm.csi.cgiar.org/srtmdata/). The altitude of the study area ranges from
86 to 4203 m, in which the western and southern parts are mountainous with large relief, while the
eastern parts and the Baikal Lake basin have lower elevation and relatively flat terrain. The MP has a
temperate continental climate with an average annual rainfall of about 200 mm. It is one of the cold
areas in the Asian continent because of its long cold winter; the lowest temperature can reach −40 ◦C,
often accompanied by heavy snowstorms. However, in summer, the highest temperature can reach
35 ◦C with abundant light and strong ultraviolet radiation [52,53]. Meanwhile, the MP has a very large
temperature difference between day and night in summer. The MP is a transboundary region, covered
by various types of vegetation and land use because of diverse climate, economic mode, and farming
methods. Forest is concentrated in the relatively flat area of the northern MP, especially in the Russian
region and the Hinggan Mountains forest area of the northern IMAR of China. Grassland and arable
land are the main land cover types in the southeastern part of the IMAR and the northern and eastern
parts of Mongolia. There are large areas of desert and bare land in western and southern parts of
Mongolia and the western part of the IMAR, in which the vegetation coverage is extremely low and
the ecological environment is extremely fragile. The large water bodies in the MP are Lake Baikal in
Russia (the deepest freshwater lake in the world), Lake Kusugur in Northern Mongolia, Lake Ubsu,
Lake Kyrgyz, Lake Hal, Lake Halwusu and Lake Delle in Western Mongolia, Lake Hulun and Lake
Buir in Eastern Mongolia and Northern IMAR.

http://srtm.csi.cgiar.org/srtmdata/
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2.2. Datasets

2.2.1. NDVI Datasets

Three NDVI products were investigated in this work, namely, GIMMS3g.v1 NDVI, SPOT-VEGET
ATION-S10 NDVI, and MOD13A3 NDVI. GIMMS NDVI data comprise a long time series global
vegetation index dataset based on National Oceanic and Atmospheric Administration (NOAA)
meteorological satellites (NOAA 7, 9, 11, 14, 16, 17 and 18). The satellites were launched by National
Aeronautics and Space Administration (NASA) in November 2003, equipped with an Advanced
Very High Resolution Radiometer (AVHRR) sensor, which provides necessary data guarantee for
monitoring multi-year vegetation cover change. Amongst the long-term AVHRR-based datasets
analyzed, the GIMMS3g is found to have the highest temporal consistency and, at present state,
is the most appropriate choice for NDVI trend analysis [12,13,26,36–41]. The GIMMS3g.v1 NDVI
dataset was collected from the Ecological Forecasting Lab at NASA Ames Research Center (https:
//ecocast.arc.nasa.gov/data/pub/gimms/) in netcdf4 format from July 1981 to December 2015 with
a spatial resolution of 1/12 degree and a temporal resolution of 15 days. The SPOT-VGT NDVI
dataset is derived from the VEGETATION sensor sponsored by the European Union Commission.
The VEGETATION sensor was lunched on board SPOT-4 in March 1998 and has been used for global
vegetation cover observations since April 1998. The SPOT VEGETATION-S10 NDVI dataset was
downloaded from the Flemish Institute for Technological Research (https://www.vito-eodata.be/) in
HDF4 format from April 1998 to May 2015 with a spatial resolution of 950.469 m and a temporal
resolution of 10 days. The MOD13A3 NDVI dataset was obtained from the NASA MOD13A3.006
product via the Terra satellite platform at a spatial resolution of 926.625 m and a temporal resolution
of 1 month, and 11 scene (h23v03, h23v04, h24v03, h24v04, h25v03, h25v04, h25v05, h26v03, h26v04,
h26v05, and h27v04) MODIS images were collected from February 2000 to November 2018 over
the MP (https://earthdata.nasa.gov/). The systematic parameters of the three NDVI products are
shown in Table 1. Because of the different time ranges of the three NDVI datasets, we chose the

https://ecocast.arc.nasa.gov/data/pub/gimms/
https://ecocast.arc.nasa.gov/data/pub/gimms/
https://www.vito-eodata.be/
https://earthdata.nasa.gov/
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intersection of the three periods from February 2000 to May 2014 to carry out the research. Referring
to the synthesis method of the MOD13A3 monthly dataset, the 15-day GIMMS3g NDVI and 10-day
SPOT-VGT NDVI were averaged to monthly NDVI values to facilitate comparative analysis of their
consistencies. Moreover, the MOD13A3 NDVI and SPOT-VGT NDVI products were resampled to the
resolution of the GIMMS3g NDVI to satisfy the spatial correspondence of surface features in the three
NDVI datasets. The water bodies in the research area are masked out with the Version 6 MOD44W
dataset, which is derived using a decision tree classifier trained with MODIS data to provide a global
map of surface water at 250 m spatial resolution [54] (https://e4ftl01.cr.usgs.gov/MOLT/MOD44W.006/).

Table 1. Comparison of systematic parameters of three normalized difference vegetation index
(NDVI) products.

NDVI Products GIMMS3g NDVI MOD13A3 NDVI SPOT-VGT NDVI

Satellite
NOAA-16
NOAA-17
NOAA-18

TERRA SPOT-4
SPOT-5

Sensor AVHRR MODIS VEGETATION
Spectral range 0.55–12.5 µm 0.4–14.4 µm 0.43–1.75 µm

Number of bands 5 36 5

Bandwidth RED: 0.585–0.680 µm
NIR: 0.730–0.980 µm

RED: 0.620–0.670 µm
NIR: 0.841–0.876 µm

RED: 0.61–0.68 µm
NIR: 0.79–0.89 µm

Radiometric resolution 8 bits 12 bits 8 bits

Ground resolution
Primary image: 1.1 km

GIMMS3g.v1 NVDI:
1/12 degree

Primary image: 250 m
MOD13A3 NDVI:

926.625 m

Primary image: 1.15 km
SPOT-VGT NDVI:

950.469 m
Temporal resolution 15 days 1 month 10 days

Swath width 2800 km 2330 km 60 km
Frequency of visit 0.5 day 16 days 26 days

Overpass time 10:15
14:00 10:35 10:30

Resampling method used
in this work —— Bilinear Bilinear

Temporal compositing
method used in this work

Average of two
15-day images

Weighted temporal
average of

MOD13A2 images

Average of three
10-day images

2.2.2. Land Cover

The land cover dataset used in this work was collected from the ESA GlobCover 2009 (https:
//www.osgeo.cn/map/mr8a8). The GlobCover 2009 dataset was jointly completed by the European
Space Agency (ESA), United Nations Environment Programme (UNEP), Food and Agriculture
Organization (FAO), the Joint Research Centre (JRC) of the European Commission, the International
Geosphere-Biosphere Programme (IGBP), and the Global Observation of Forest Cover and Land
Dynamics (GOFC-GOLD) [55]. The spatial resolution of GlobCover is 300 m, and different ecoregions
are separately extracted by hierarchical classification method. The Land Cover Classification System
(LCCS) was used to classify the global land surface into 23 land cover types [56]. Figure 2 shows the
land cover of the MP based on the ESA GlobCover 2009.

2.2.3. Terrestrial Ecoregions

The global terrestrial ecoregions dataset used in this work was collected from the WWF website
(https://www.worldwildlife.org/). According to the definition from WWF, the terrestrial ecoregions are
relatively large units of land or water containing a distinct assemblage of natural communities sharing
a large majority of species, dynamics, and environmental conditions [57]. There are 867 terrestrial
ecoregions in the world, classified into 14 different biomes such as forests, grasslands, or deserts.
By extract with the boundary of the MP, a total of 23 terrestrial ecoregions classified into eight biomes

https://e4ftl01.cr.usgs.gov/MOLT/MOD44W.006/
https://www.osgeo.cn/map/mr8a8
https://www.osgeo.cn/map/mr8a8
https://www.worldwildlife.org/
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occur in the study region (Figure 3). In this work, the biome distribution was used to evaluate the
consistency of the three NDVI datasets by zonal analysis.
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Table 2. Classification of GlobCover 2009 land cover types [56].

Land Cover Codes Description of Various Land Cover Types

11 Post-flooding or irrigated croplands (or aquatic)
14 Rainfed croplands
20 Mosaic cropland (50–70%)/vegetation (grassland/shrubland/forest) (20–50%)
30 Mosaic vegetation (grassland/shrubland/forest) (50–70%)/cropland (20–50%)
40 Closed to open (>15%) broadleaved evergreen or semi-deciduous forest (>5 m)
50 Closed (>40%) broadleaved deciduous forest (>5 m)
60 Open (15–40%) broadleaved deciduous forest/woodland (>5 m)
70 Closed (>40%) needleleaved evergreen forest (>5 m)
90 Open (15–40%) needleleaved deciduous or evergreen forest (>5 m)

100 Closed to open (>15%) mixed broadleaved and needleleaved forest (>5 m)
110 Mosaic forest or shrubland (50–70%)/grassland (20–50%)
120 Mosaic grassland (50–70%)/forest or shrubland (20–50%)
130 Closed to open (>15%) (broadleaved or needleleaved, evergreen or deciduous) shrubland (<5 m)
140 Closed to open (>15%) herbaceous vegetation (grassland, savannas, or lichens/mosses)
150 Sparse (<15%) vegetation

160 Closed to open (>15%) broadleaved forest regularly flooded (semi-permanently or
temporarily)—fresh or brackish water

170 Closed (>40%) broadleaved forest or shrubland permanently flooded—saline or brackish water

180 Closed to open (>15%) grassland or woody vegetation on regularly flooded or waterlogged
soil—fresh, brackish, or saline water

190 Artificial surfaces and associated areas (urban areas >50%)
200 Bare areas
210 Water bodies
220 Permanent snow and ice
230 No data (burnt areas, clouds, . . . )



Remote Sens. 2019, 11, 2030 7 of 30  
Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 34 

 

 
Figure 3. Biome distribution of the MP based on the World Wildlife Fund (WWF) terrestrial ecoregion 
map. 

2.2.4. The Landsat Image 

By amassing information of land surface changes for more than 40 years, the Landsat program 
have provided decision makers with integral information about the world’s food, forests, water, and 
how these and other land resources are being used. Landsat 8, lunched in February 2013, has been 
widely used in forest fire monitoring, land use and land cover change analysis, water and forest 
resources mapping, crops monitoring, disaster risk mapping, and so on [58]. In this work, Landsat 8 
OLI/TIRS images were used to compute the NDVI as reference value to verify the agreement of 
GIMMS3g NDVI, MOD13A3 NDVI, and SPOT-VGT NDVI. There were 35 Landsat 8 Images located 
in the MP, which were download from the United States Geological Survey (USGS) 
(https://earthexplorer.usgs.gov/) covering a period from August 2013 to May 2014. In order to 
effectively utilize the rich spectral information of the Landsat 8 images, the radiometric calibration 
tool in the ENVI software was used to convert the DN value of original image to spectral reflectance. 
Then, the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) atmospheric 
correction model embedded in the ENVI software was applied for atmospheric correction to further 
remove atmospheric interference of the Landsat 8 images. After radiometric calibration and 
atmospheric correction, the red and near-infrared bands were used to compute the NDVI value of 
corresponding regions of Landsat images pixel-by-pixel, using the following formula [59]: 

 

Figure 3. Biome distribution of the MP based on the World Wildlife Fund (WWF) terrestrial
ecoregion map.

2.2.4. The Landsat Image

By amassing information of land surface changes for more than 40 years, the Landsat program have
provided decision makers with integral information about the world’s food, forests, water, and how
these and other land resources are being used. Landsat 8, lunched in February 2013, has been widely
used in forest fire monitoring, land use and land cover change analysis, water and forest resources
mapping, crops monitoring, disaster risk mapping, and so on [58]. In this work, Landsat 8 OLI/TIRS
images were used to compute the NDVI as reference value to verify the agreement of GIMMS3g NDVI,
MOD13A3 NDVI, and SPOT-VGT NDVI. There were 35 Landsat 8 Images located in the MP, which were
download from the United States Geological Survey (USGS) (https://earthexplorer.usgs.gov/) covering
a period from August 2013 to May 2014. In order to effectively utilize the rich spectral information of
the Landsat 8 images, the radiometric calibration tool in the ENVI software was used to convert the
DN value of original image to spectral reflectance. Then, the Fast Line-of-sight Atmospheric Analysis
of Spectral Hypercubes (FLAASH) atmospheric correction model embedded in the ENVI software
was applied for atmospheric correction to further remove atmospheric interference of the Landsat 8
images. After radiometric calibration and atmospheric correction, the red and near-infrared bands
were used to compute the NDVI value of corresponding regions of Landsat images pixel-by-pixel,
using the following formula [59]:

https://earthexplorer.usgs.gov/
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NDVILandsat =
bandNIR − bandRED

bandNIR + bandRED
(1)

where bandNIR is the near-infrared band of the Landsat images (band 5 in Landsat 8 images), and bandRED

is the red band of the Landsat images (band 4 in Landsat 8 images).

2.3. Methods

2.3.1. Agreement Coefficient

For objectively assessing the agreement of the data derived from various sources, the agreement
coefficient (AC) was employed to evaluate the consistency to compare different images. Compared with
traditional statistical methods, including Pearson correlation coefficient (r), coefficient of determination
(r2), mean absolute error (MAE), and root mean square error (RMSE), AC is capable of quantifying
actual differences between different datasets and separating systematic and unsystematic errors [60].
The AC is defined as follows:

AC = 1−

∑n
i=1(Xi −Yi)

2∑n
i=1

(∣∣∣X −Y
∣∣∣+ ∣∣∣Xi −X

∣∣∣)(∣∣∣X −Y
∣∣∣+ ∣∣∣Yi −Y

∣∣∣) (2)

where X and Y are the mean values of X and Y, respectively. The numerator of the main term of Equation
(2) is the sum of square difference (SSD) of X and Y, which indicates the degree of disagreement
between X and Y. The denominator is the sum of potential difference (SPOD) used to standardize SSD.
In this work, the AC was computed in Matlab software to evaluate the agreement between the three
kinds of NDVI datasets.

2.3.2. Decompose Analysis

Decompose analysis is a crucial means to effectively identify the change pattern, periodicity,
and outlier test of long time series data [61,62]. It is usually difficult to visualize an overall variation in
NDVI because of its obvious seasonal periodicity. Therefore, decomposing the original data sequence
to separate the periodic parts is strongly necessary to analyze the variation regularity of the remaining
parts of the data sequence. The Classical Seasonal Decomposition by Moving Averages in R Studio
software can efficiently decompose the observed data into three components: Seasonal part, trend
part, and random part. The trend component generally describes the gradual variation patterns of
the time series datasets. The seasonal component is generally expressed as a periodic change at a
special time scale. The residual component is a measure of random variables caused by the observation
methodologies, such as the signal-to-noise ratio, and the atmospheric environment, such as clouds
and aerosols [63,64]. The function first determines the trend component using a moving average,
and removes it from the time series. Then, the seasonal figure is computed by averaging, for each time
unit, over all periods. The seasonal figure is then centered. Finally, the error component is determined
by removing trend and seasonal figure (recycled as needed) from the original time series [65,66].
There are two types of decompose functions: Additive and multiplicative. As shown in Equation (3),
a large number of NDVI values were additively decomposed in this work to reveal its deep-seated
change characteristics.

Yt = Tt + St + et (3)

where Yt is the original observed sequence, Tt means the trend component, St means the seasonal
component, and et means the random component of decomposed data series.
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2.3.3. Spatial Statistical Analysis

In this work, Pearson correlation coefficient (r), RMSE, MBE, and standard deviation (STD)
are used to describe the degree of correlation and the deviation between any two NDVI datasets.
The calculation method of those statistical scores can be demonstrated as below.

r =

∑n
i=1

(
Xi −X

)(
Yi −Y

)
√∑n

i=1

(
Xi −X

)2 ∑n
i=1

(
Yi −Y

)2
(4)

RMSE =

√√
1
n

n∑
i=1

(Xi −Yi)
2 (5)

MBE =
1
n

n∑
i=1

(Xi −Yi) (6)

STD =

√∑n
i=1

(
Xi −X

)2

n− 1
(7)

where X and Y represent two kinds of NDVI data; X and Y are the arithmetic mean of X and Y; and n
is the number of valid NDVI input data. Pearson correlation coefficient is used to measure the linear
relationship between fixed distance variables. The RMSE is used to measure the deviation between
the observed value and the true value. It is very sensitive to the large or small errors in a group of
measurements. Therefore, the RMSE can well reflect the precision of measurement. MBE is used to
describe the degree of difference between two groups of data. STD can objectively and accurately
reflect the discreteness of a group of data. A larger STD represents a large difference between most of
the values and their average values, and a smaller STD represents that these values are closer to the
average value.

3. Results

3.1. Spatial Consistency Characteristics

3.1.1. Overall Spatial Patterns

Spatial distribution is a substantial aspect to visualize the zonal regularity of NDVI. Therefore,
the AC and MBE are computed pixel-by-pixel between each two datasets of the three NDVIs to reveal
their similitudes. Figure 4 shows the spatial distribution of the AC of GIMMS3g NDVI and MOD13A3
NDVI, GIMMS3g NDVI and SPOT-VGT NDVI, and MOD13A3 NDVI and SPOT-VGT NDVI. It was
revealed that the three NDVI datasets are highly correlated in most regions. The high AC values
mainly distribute in the whole Zabaykalsky Krai, eastern Buryatia Republic, southern Irkutsk Oblast
and Republic of Tuva, and northern and eastern Mongolia and the IMAR—more than 70% area of
total the MP. The regions with low correlation are mainly desert and sandy areas in southern and
western Mongolia and the west of the IMAR. The proportions of pixels with AC values greater than 0.6
for GIMMS3g NDVI and MOD13A3 NDVI, GIMMS3g NDVI and SPOT-VGT NDVI, and MOD13A3
NDVI and SPOT-VGT NDVI are 72.80%, 76.62%, and 80.13%, respectively. Overall, the AC values
between MOD13A3 NDVI and SPOT-VGT NDVI are higher than the other NDVI data combinations,
which indicates that MOD13A3 NDVI and SPOT-VGT NDVI have better agreement in expressing
vegetation cover and change trends in the MP from February 2000 to May 2014.
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The spatial distributions of MBE between three NDVI datasets are shown in Figure 5. It was found
that GIMMS3g NDVI values in 50.46% of pixels widely distributed in the southern MP are smaller
than MOD13A3 NDVI values, in which 87% of these pixels with difference below 0.05. Conversely,
GIMMS3g NDVI values in 49.54% of pixels intensively distributed in the Lake Baikal basin of the
northern MP are larger than MOD13A3 NDVI values, in which 86.77% of these pixels with difference
below 0.05. By the same token, GIMMS3g NDVI values in 81.7% of pixels densely distributed in the
Russia region and the northeastern IMAR are larger than SPOT-VGT NDVI values, of which 71.18%
of these pixels with difference below 0.05. For the third group datasets, MOD13A3 NDVI values
in 68.76% of pixels widely distributed in the Russia region and the northeastern IMAR are larger
than SPOT-VGT NDVI values, of which 67.51% of these pixels with difference below 0.05. Generally,
SPOT-VGT NDVI values are substantially smaller than the values of GIMMS3g NDVI and MOD13A3
NDVI, and GIMMS3g NDVI values are relatively larger than MOD13A3 NDVI values in the northern
MP, but just opposite in the southern MP.
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3.1.2. Spatial Zonality of Terrestrial Ecoregions

Considering the heterogeneity of spatial distribution of NDVI, the consistency and agreement
between the three datasets are zonally evaluated over different biomes (regardless of inland water) in
the MP. Tables 3 and 4 show the zonally statistical AC and MBE values, respectively.
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(1) The biome of montane grasslands and shrublands centrally locate in the southern region of the
IMAR and sporadically distribute in Western Mongolia and southwestern regions of Lake Baikal.
The main land cover types in this biome are closed to open herbaceous vegetation, including
grassland, savannas, and shrublands, according to the ESA GlobCover 2009 map. The largest AC
values between GIMMS3g NDVI and SPOT-VGT NDVI in this biome indicate that the correlation
between GIMMS3g NDVI and SPOT-VGT NDVI is higher than other combinations in the biome
of montane grasslands and shrublands. Meanwhile, the smallest mean MBE values between
GIMMS3g NDVI and MOD13A3 NDVI indicate that GIMMS3g NDVI values has a closer average
and discrete degree to MOD13A3 NDVI than other combinations in the biome of montane
grasslands and shrublands.

(2) The biome of temperate conifer forests mainly locates in the northeastern IMAR, the western border
area of Mongolia, the northern part of the Republic of Tuva of Russia, and the Mongolia–Russia
border area in the southwest of Lake Baikal. The main types of land cover in the biome are open
needleleaved deciduous and evergreen forest. Similarly, the largest AC values between GIMMS3g
NDVI and SPOT-VGT NDVI reflect higher consistency of the two datasets in this biome, and the
smallest MBE values between GIMMS3g NDVI and MOD13A3 NDVI explain higher proximity
in the biome of temperate conifer forests.

(3) The boreal forest/taiga biome, covered with open needleleaved deciduous and evergreen forest,
mainly locates in Zabaykalsky Krai, Buryatia Republic, and Irkutsk Oblast in Russia. Because
of high evergreen vegetation coverage, the three NDVI datasets have quite high consistency.
The largest AC values between GIMMS3g NDVI and SPOT-VGT NDVI in this biome with the
smallest STD indicate higher agreement of GIMMS3g NDVI and SPOT-VGT NDVI.

(4) The biome of temperate grasslands, savannas, and shrublands mainly distributes in the north
and east parts of Mongolia and the central part of IMAR, which is the largest biome in the study
region, with an area exceeding one third of the MP. The land covers of this biome are mainly
mosaic vegetation of grasslands, shrublands, forests, and some croplands. The largest AC values
are presented between GIMMS3g NDVI and SPOT-VGT NDVI in this biome and the smallest
MBE occurs in the combination of GIMMS3g NDVI and MOD13A3 NDVI.

(5) The biome of deserts and xeric shrublands mainly locate in Western and Southern Mongolia, and
northwestern IMAR, with dominant land covers of desert and bare areas. Because of very low
vegetation coverage, the NDVI values of the three datasets vary differently. Compared with other
biomes, the consistency of the three NDVI products in the biome of deserts and xeric shrublands
are quite low. The highest average AC value between MOD13A3 NDVI and SPOT-VGTNDVI
indicates that the dataset combinations with higher resolution, such as MOD13A3 NDVI and
SPOT-VGT NDVI, have higher consistency in desert and bare land in the southwest of the MP.

(6) The biome of temperate broadleaf and mixed forests in the eastern IMAR is mainly covered by
mosaic vegetation of shrublands, and needleleaved deciduous and evergreen forests. Just like
most biomes in the MP, GIMMS3g NDVI and SPOT-VGT NDVI have the largest AC value and
the smallest STD of MBE values in the biome of temperate broadleaf and mixed forests.

(7) Tundra is the smallest biome in the MP, which is mainly covered by intersection of open
needleleaved deciduous and evergreen forest and bare areas. Because of near space position
with the biome of boreal forest/taiga, the largest AC values similarly occur in the combination of
GIMMS3g NDVI and SPOT-VGT NDVI in the biome of tundra. Meanwhile, the negative mean
MBE value in the biome of tundra indicates that the values of GIMMS3g NDVI are essentially
smaller than MOD13A3 NDVI in the northern region of Zabaykalsky Krai and Buryatia Republic
in Russia.
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Table 3. Zonal statistic results of the AC values between the three NDVI products over the seven biomes of the MP.

Biome Name
GIMMS3g vs. MOD13A3 GIMMS3g vs. SPOT-VGT MOD13A3 vs. SPOT-VG

Maximum Minimum Mean STD Maximum Minimum Mean STD Maximum Minimum Mean STD

Montane Grasslands and Shrublands 0.95 −0.27 0.75 0.14 0.97 −1.87 0.80 0.16 0.95 −1.54 0.75 0.18
Temperate Conifer Forests 0.95 −1.07 0.76 0.18 0.98 −0.40 0.84 0.16 0.95 −1.49 0.76 0.16

Boreal Forests/Taiga 0.94 0.16 0.81 0.09 0.98 0.20 0.88 0.07 0.94 −0.30 0.80 0.11
Temperate Grasslands, Savannas, and Shrublands 0.95 −0.28 0.80 0.10 0.98 0.12 0.87 0.08 0.95 −0.40 0.83 0.09

Deserts and Xeric Shrublands 0.95 −4.64 0.28 0.46 0.97 −6.18 0.17 0.70 0.96 −3.81 0.46 0.44
Temperate Broadleaf and Mixed Forests 0.96 0.14 0.86 0.07 0.98 0.51 0.89 0.06 0.96 −1.09 0.86 0.10

Tundra 0.93 0.44 0.81 0.07 0.97 0.03 0.85 0.11 0.95 0.09 0.78 0.13

Table 4. Zonal statistic results of the MBE values between the three NDVI products over the seven biomes of the MP.

Biome Name
GIMMS3g vs. MOD13A3 GIMMS3g vs. SPOT-VGT MOD13A3 vs. SPOT-VG

Maximum Minimum Mean STD Maximum Minimum Mean STD Maximum Minimum Mean STD

Montane Grasslands and Shrublands 0.21 −0.27 0.00 0.04 0.22 −0.17 0.02 0.03 0.36 −0.20 0.02 0.05
Temperate Conifer Forests 0.31 −0.34 0.00 0.06 0.23 −0.25 0.05 0.05 0.40 −0.37 0.05 0.07

Boreal Forests/Taiga 0.29 −0.32 0.01 0.06 0.22 −0.21 0.07 0.04 0.43 −0.28 0.06 0.07
Temperate Grasslands, Savannas, and Shrublands 0.25 −0.30 0.00 0.03 0.17 −0.15 0.02 0.03 0.30 −0.31 0.02 0.04

Deserts and Xeric Shrublands 0.17 −0.29 0.00 0.02 0.15 −0.14 0.00 0.01 0.31 −0.21 0.00 0.02
Temperate Broadleaf and Mixed Forests 0.13 −0.17 0.00 0.03 0.12 −0.05 0.03 0.03 0.19 −0.13 0.03 0.04

Tundra 0.18 −0.21 -0.01 0.06 0.20 −0.11 0.06 0.04 0.30 −0.26 0.07 0.06
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3.2. Temporal Variability Characteristics

3.2.1. Overall Temporal Variations

Trends, seasonal components, and residuals of three long-term NDVI datasets are decomposed
in this work. Figure 6a presents the original monthly average NDVI values, and all three NDVI
datasets show similar periodic variation. It is suggested that the values of the three NDVI datasets
in growing seasons (April to September) are relatively consistent, and the maximum values in June
to August gradually increase by nearly 0.05 from 2000 to 2013. However, the lower values of three
datasets in non-growing seasons (October to March) vary differently. GIMMS3g NDVI shows sensibly
higher values in non-growing season than MOD13A3 NDVI and SPOT-VGT NDVI, and the maximum
differences of NDVI values can reach almost 0.04. Meanwhile, SPOT-VGT NDVI remains smallest in
all non-growing periods. Figure 6b presents the trend components, in which all three NDVI datasets
show an overall upward trend from February 2000 to May 2014, but with a significant decline before
April 2000, from 2002 to 2003, from 2008 to 2009, and March to October 2012. The trend curves indicate
that MOD13A3 NDVI values have very similar variation trends to SPOT-VGT NDVI values in general,
and SPOT-VGT NDVI values are about 0.02 lower than the other two datasets in the whole variation
periods. At the same time, the trend curves of GIMMS3g NDVI and MOD13A3 NDVI are much closer.
Only in 2000–2001 do the GIMMS3g NDVI show relatively higher values.

Figure 6c shows the seasonal components of the three NDVI datasets. Like the original data
series, the three seasonal components have completely similar periodic laws, with only a small range of
differences in the amplitudes. The maximum values of SPOT-VGT NDVI in growing seasons are nearly
0.04 higher than the GIMMS3g NDVI and MOD13A3 NDVI, while the latter two NDVI datasets have
almost the same peak values. In the same measure, the three seasonal components in non-growing
seasons are different to some degree. GIMMS3g NDVI has largest values in non-growing seasons,
while MOD13A3 NDVI has the smallest, and the biggest difference between these two datasets is
around 0.02. Figure 6d shows the residual of the original data after subtracting the trend and seasonal
components. The random components of the three datasets fluctuate around 0 in a range from –0.03
to 0.03, reflecting the distribution of outlines in the original datasets. Compared with MOD13A3
NDVI and SPOT-VGT NDVI, the GIMMS3g NDVI values have the smallest residual fluctuation,
indicating that the trend component of GIMMS3g NDVI values is more convincing in experiencing the
original datasets.

3.2.2. Temporal Zonality of Terrestrial Ecoregions

Because of the significant spatial heterogeneity of topography and climate factors, the distribution
and growth of vegetation also showed obvious zonal characteristics. The seasonal components of
three NDVI series were subtracted from the original observed data to get the deseasonalized sequence
of datasets. Figure 7 presents the variation of deseasonalized average NDVI values in the seven
biomes of the MP. It is shown that the three NDVI datasets in all seven biomes have high consistencies,
and essentially share the same or similar peak and valley shape. Overall, the values of SPOT-VGT
NDVI are lower than the other two datasets in varying degrees.

(1) Based on Figure 7a, the average values of deseasonalized NDVI in the biome of montane
grasslands and shrublands range from 0.11 to 0.25, showing an upward trend of fluctuation.
SPOT-VGT NDVI values are about 0.02 lower than the other two NDVI datasets in the whole
periods. GIMMS3g NDVI shares very close variation characteristics with MOD13A3 NDVI
values, in which the GIMMS3g NDVI values are lower than MOD13A3 NDVI values before 2002,
but MOD13A3 NDVI values are higher from 2003.

(2) Figure 7b demonstrates the deseasonalized NDVI values in the biome of temperate conifer forests.
The average NDVI values in this biome range from 0.23 to 0.41 with obvious fluctuation in the
whole interval, and the difference between SPOT-VGT NDVI values and the other two datasets
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in the biome is about 0.04. Compared with MOD13A3 NDVI, the GIMMS3g NDVI values have
smaller fluctuation amplitude, which indicates that GIMMS3g NDVI values are less discrete.

(3) As shown in Figure 7c, the NDVI values in the biome of boreal forest/taiga range from 0.23 to
0.53, which is the largest amplitude in all seven biomes. At the same time, the SPOT-VGT NDVI
values have the largest differences with GIMMS3g NDVI and MOD13A3 NDVI values in the
biome of boreal forest/taiga.

(4) Figure 7d shows the average off-season NDVIs in the biome of temperate grasslands, savannas,
and shrublands. As the largest biome in the study region, the differences between SPOT-VGT
NDVI values and the other two NDVI datasets in this biome are lower than in the other biomes,
and the fluctuation characteristics of the three datasets are relatively consistent, especially in the
performance of outliers. In July 2007, all three NDVI data showed abnormally low values in the
biome of temperate grasslands, savannas, and shrublands, which can probably be related to the
cooling effects caused by the La Niña occurring in 2007.

(5) The average values of deseasonalized NDVI in the biome of deserts and xeric shrublands are
shown in Figure 7e. The NDVI values in this biome vary, with the smallest amplitude due to
very little vegetation cover. The three datasets come the closest to each other in this biome, which
indicates that the three datasets have good consistency in temporal variation in low vegetation
coverage area in the southwestern MP.

(6) As shown in Figure 7f, the NDVI values in the biome of temperate broadleaf and mixed forests in
the eastern IMAR have an upward trend as a whole. The consistencies of the three datasets are
fairly good in this biome, and the differences between SPOT-VGT NDVI values and the other
two datasets shrink with the passage of years. In addition, the values of MOD13A3 NDVI are
generally higher than GIMMS3g NDVI after 2002 in the biome of temperate broadleaf and mixed
forests. However, in December 2012, all three NDVI datasets show abnormally low values in the
east of the IMAR, which is likely to be closely related to the extreme low temperature in winter
caused by the Arctic Oscillation in 2012.

(7) Figure 7g shows the deseasonalized NDVI values of the biome of tundra, as the smallest biome
in the MP, and the variation characteristics of NDVI values in this biome are quite similar to
the biome of boreal forest/taiga. The SPOT-VGT NDVI values are significantly lower than the
other two NDVI products, and the MOD13A3 NDVI values in this biome have the most obvious
fluctuation variation, indicating that it has the highest sensitivity to surface vegetation cover in
the biome of tundra in the northern MP.

In order to quantitatively describe the differences among the three NDVI datasets in more detail,
STD and slope of 10a of primary linear regression of deseasonalized NDVI values were computed over
the seven biomes and the whole MP (Table 5). Overall, the dispersions of MOD13A3 NDVI values and
SPOT-VGT NDVI values are larger and more similar than GIMMS3g NDVI values, while GIMMS3g
NDVI values are closer to its average. From the perspective of linear regression slope, the three datasets
show insignificant growth from 2000 to 2014, in which SPOT-VGT NDVI values have the largest growth
rate, while GIMMS3g NDVI values show the smallest increase. On the biome scale, there are larger STD
values in the biomes of boreal forests/taiga and tundra, especially for MOD13A3 NDVI. In contrast,
the smallest STD values occur in the biomes of deserts and xeric shrublands, montane grasslands and
shrublands due to relatively single vegetation cover and insignificant seasonal variation. In terms of
linear trend, all positive slope values indicate that the three NDVI datasets show similar insignificant
growth trend in the seven biomes. Meanwhile, the MOD13A3 NDVI and SPOT-VGT NDVI have the
largest growth of 2.50E-02/10a and 2.83E-02/10a in the biome of temperate broadleaf and mixed forests
and the smallest growth of 7.08E-03/10a and 1.03E-02/10a in the biome of deserts and xeric shrublands.
However, the GIMMS3g NDVI values show the largest increase at the rate of 9.91E-03/10a in the biome
of temperate grasslands, savannas, and shrublands, and the smallest growth of 4.08E-04/10a in the
biome of temperate conifer forests.
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Table 5. Standard deviation (STD) and slope of primary linear regression of deseasonalized NDVI
values in the different biomes of the MP.

Biome Region GIMMS3g NDVI MOD13A3 NDVI SPOT-VGT NDVI

STD Slope/10a STD Slope/10a STD Slope/10a

Total MP 0.0119 5.19E-03 0.0181 1.44E-02 0.0174 1.95E-02
Montane Grasslands and Shrublands 0.0130 8.72E-03 0.0168 2.05E-02 0.0169 2.44E-02

Temperate Conifer Forests 0.0182 4.08E-04 0.0230 1.57E-02 0.0224 1.90E-02
Boreal Forests/Taiga 0.0263 2.36E-03 0.0360 1.50E-02 0.0324 2.26E-02

Temperate Grasslands, Savannas, and Shrublands 0.0186 9.91E-03 0.0287 1.79E-02 0.0276 2.48E-02
Deserts and Xeric Shrublands 0.0069 2.32E-03 0.0091 7.08E-03 0.0113 1.03E-02

Temperate Broadleaf and Mixed Forests 0.0170 9.70E-03 0.0295 2.50E-02 0.0287 2.83E-02
Tundra 0.0338 1.45E-03 0.0343 1.77E-02 0.0314 1.79E-02  
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in the MP from February 2000 to May 2014. (a) Original observation values, (b) variation trends,
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Figure 7. Time series of deseasonalized NDVI values in the biomes of (a) montane grasslands and
shrublands, (b) temperate conifer forests, (c) boreal forest/taiga, (d) temperate grasslands, savannas,
and shrublands, (e) deserts and xeric shrublands, (f) temperate broadleaf and mixed forests and (g)
tundra in the MP.

3.3. Zonal Characteristics of NDVI Variation

3.3.1. Longitudinal and Latitudinal Zonality

The latitude zonality derived by the difference of the incidence angle of sunlight and uneven
distribution of solar rays in each latitude on the earth’s surface significantly affects climate transition
and surface ecological environment evolution. As the vegetation cover of the MP spans forests,
grasslands, gobi desert, and agro-pastoral ecotone from north to south [67], the changes of NDVI
and its influencing factors have a unique north–south zonal differentiation law. In order to mine the
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latitude zonality characteristics of different NDVI datasets in the MP, the average values are computed
row-by-row of three gridded NDVI datasets from 37.4◦N to 58.4◦N. Taking the latest complete year of
2013 as an example, Figure 8 presents the variation of latitude zonality of the three NDVI datasets
in January and July 2013. In January 2013, there is a downward trend from the south border of the
study region to the center of the MP, reaching a turning point around 46.5◦N, and then NDVI values
grow rapidly and continuously, reaching a maximum around 52◦N. After the peak, the NDVIs show
quick decline to the minimum values at 57.42◦N. At last, an immediate ascent occurs from the valley to
the north border. The values of the three NDVI datasets are highly consistent in the sandy and bare
areas south of 40◦N. However, GIMMS3g NDVI shows significantly higher values than the other two
datasets in the regions north of 40◦N, and the gap varies with the latitudes, reaching a relatively large
difference around 46.5◦N. In the Russia areas north of 50◦N, the differences between GIMMS3g NDVI
values and the other two NDVI datasets tend to be stable due to the dense vegetation cover. The values
of MOD13A3 NDVI and SPOT-VGT NDVI in January 2013 are very close to each other with latitude
variation. In July 2013, the average NDVI values of three datasets are highly consistent from south to
north. NDVI values grow slowly in the south region of sandy and bare areas, in which a period of
abnormally high values appear around 45◦N, with the maximum value of NDVI reaching 0.3. From
then, the NDVI values increase all the way, reaching the maximum value of 0.8 at the latitude of 53◦N,
and then decline in a small range to the north, and the SPOT-VGT NDVI values in the north border
region are obviously lower than GIMME3g NDVI and MOD13A3 NDVI.
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The longitude zonality derived by the interaction between land and sea notably influences
hydrological environment of MP. Similarly, the variation trends of average NDVI values at different
longitudes are computed column-by-column of the three gridded NDVI datasets from 87.8◦E to 126.1◦E
in January and July 2013 (Figure 9). In January 2013, the NDVI values show an overall upward trend
from the western border to the central MP at 108◦E with a small range of downward fluctuation around
the longitude of 98◦E. Between 108◦E and 120◦E, there is a symmetrical trend of firstly decreasing and
then increasing, and the valley values appear at the longitude of about 115◦E. Based on Figure 9a,
GIMMS3g NDVI values in the MP are totally higher than the other two datasets, especially in the
eastern regions. The values of MOD13A3 NDVI are lower than SPOT-VGT NDVI in the valley periods
but higher than SPOT-VGT NDVI in the peak periods. In July 2013, the variation curves of three NDVI
datasets are very close to each other, or even partially coincident, showing a trend of rapid decline and
then fluctuating rise from west to east. The variation trends of latitudinal and longitudinal zonality of
NDVI indicate that evergreen forests are densely distributed in the northeast MP, and there are large
areas of grassland or deciduous forests in the central and eastern regions of the MP.
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3.3.2. Elevation Effects

The terrain features of the mountain areas affect its climatic characteristics, making the vegetation
show significant vertical zonality heterogeneity [68,69]. Revealing the vertical zonal characteristics
of vegetation distribution in the MP is a considerable aspect of comparing the three NDVI datasets.
Consequently, the average values of NDVI in different elevation ranges in the MP were computed to
analyze the vertical zonality of three NDVI datasets. Figure 10 presents the scatter plots and fitting
curves of average NDVI values at different elevations in January and July 2013. In January 2013,
the average NDVI values show a decreasing trend with the increase of altitude in the MP (Figure 10a).
The three NDVI datasets show the same fluctuation characteristics in the altitude range of 200–800 m,
and the maximum NDVI values appear at about 500 m of elevation. Overall, the GIMMS3g NDVI
values are higher than the other two NDVI datasets at all elevation surfaces, and the difference
decreases with the increase of elevation. Furthermore, the values of MOD13A3 NDVI are basically
the same as that of SPOT-VGT NDVI in low altitude areas, but in areas above 1800 m, SPOT-VGT
NDVI values are gradually larger than MOD13A3 NDVI with the increase of altitude. In July 2013,
the average NDVI values increase firstly and then decrease on the whole with the increase of DEM,
and the maximum NDVI values distribute at the altitude of 400 m. The areas with NDVI values greater
than 0.5 mainly distribute below 1000 m. Based on Figure 10b, the three NDVI datasets show a high
degree of uniformity in July 2013. Only in the areas with altitude below 400 m are SPOT-VGT NDVI
values slightly higher than the other two datasets.
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4. Discussion

4.1. Validation against Landsat-Based NDVI

Based on the above results of the zonal differences of NDVI in the MP, 35 Landsat 8 images with
very little cloud cover were selected to conduct the uniformity verification of the three NDVI datasets.
Figure 11 presents the spatial distribution of the 35 Landsat 8 images in the MP, and the corresponding
path/row and image date information for each Landsat 8 image are listed in Table 6. In order to analyze
the consistency between Landsat 8-based NDVI and the other three NDVI datasets homogeneously,
the 35 Landsat 8 images were resampled to the spatial resolution of GIMMS3g NDVI, MOD13A3
NDVI, and SPOT-VGT NDVI, respectively. Then, statistical scores were computed to describe the
discrepancies between Landsat 8-based NDVI and the three NDVI products. Figure 12a shows the
Pearson correlation coefficient between values of Landsat 8 NDVI and the corresponding three NDVI
products. The mean values of the correlation coefficient between Landsat 8 NDVI and GIMMS3g
NDVI, MOD13A3 NDVI, and SPOT-VGT NDVI are 0.57, 0.70, and 0.71, respectively. There are 19
Landsat 8 images with a Pearson correlation coefficient greater than 0.7 between MOD13A3 NDVI and
SPOT-VGT NDVI values, and the higher coherence mostly occurred in late spring. As for GIMMS3g
NDVI dataset, only seven Landsat 8 images have a Pearson correlation coefficient greater than 0.7 with
corresponding GIMMS3g NDVI, and most of the low correlation coefficients are mainly distributed in
winter and spring.

Figure 12b depicts the RMSE between Landsat 8 NDVI and the three NDVI datasets, in which the
percentage of RMSE less than 0.1 between Landsat 8 NDVI and GIMMS3g NDVI, MOD13A3 NDVI,
and SPOT-VGT NDVI are 54.71%, 68.57%, and 71.43%, respectively. Compared with the images in the
eastern MP, the Landsat 8 images located in the northwest region of the MP are more different from the
three NDVI datasets because of the higher RMSE values. The MBE between Landsat 8 NDVI values
and the three datasets are depicted in Figure 12c. Same as the RMSE, the MBE values also have obvious
longitude zonality, and the larger RMSE values generally correspond to larger MBE values. The values
of Landsat 8 NDVI in the northeast of the MP are larger than the values of the other three NDVI datasets
because of the positive MBE values. Conversely, the Landsat 8 NDVI values are essentially smaller than
the three NDVI datasets in the northwest regions due to the negative MBE values. The proportion of
Landsat 8 images with absolute values of MBE smaller than 0.05 between GIMMS3g NDVI, MOD13A3
NDVI, and SPOT-VGT NDVI are 77.14%, 74.29%, and 85.71%, respectively.
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Table 6. Path/row and image date of 35 Landsat 8 images.

Number Path/Row Image Date Number Path/Row Image Date

1 121/026 2014-04-15 19 128/033 2014-03-15
2 122/025 2014-05-24 20 128/033 2013-08-03
3 123/025 2014-04-29 21 128/033 2013-10-06
4 123/026 2014-04-29 22 128/033 2013-11-07
5 123/027 2014-04-29 23 128/033 2013-12-09
6 123/029 2014-04-29 24 129/028 2014-04-23
7 123/030 2014-04-29 25 130/031 2014-03-13
8 125/024 2014-04-27 26 131/032 2014-03-20
9 125/025 2014-04-27 27 132/024 2014-05-30

10 125/027 2014-05-29 28 132/025 2014-04-28
11 125/028 2014-04-27 29 132/025 2014-05-30
12 126/031 2014-05-20 30 132/026 2014-05-30
13 127/020 2014-04-09 31 133/024 2014-05-05
14 127/025 2013-10-15 32 134/024 2014-04-26
15 127/032 2013-08-12 33 136/025 2014-05-10
16 127/032 2013-09-29 34 137/023 2014-05-17
17 128/026 2014-03-31 35 138/027 2014-05-08
18 128/033 2014-01-26
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Figure 12. Consistency test results of Landsat 8 NDVI and the three NDVI products. (a) Pearson
correlation coefficient; (b) root mean square error (RMSE); (c) mean bias error. The number of Landsat
images in the figures corresponded to the number field in Table 6.

From the perspective of spatial distribution, the 35 Landsat images are scattered on different
land cover types, such as forest, grassland, cropland, and bare/sandy land. Table 7 lists the mean
values of statistic scores between Landsat 8-based NDVI and the corresponding three NDVI products
over different land cover types in MP. There are seven Landsat 8 images (No. 1, 2, 8, 13, 31, 32,
34) that overlay the forest regions in the northern and eastern MP, in which the larger RMSE and
smaller correlation coefficient between Landsat images and GIMMS3g NDVI indicate greater difference
between these two datasets. On the contrary, SPOT-VGT NDVI has better consistency with Landsat
8-based NDVI in the forest regions in the MP. Grassland is one of the dominant land cover types in the
MP, and there are 18 Landsat 8 images (No. 3–7, 10–12, 14–23) that overlay grassland, as shown in
Figure 11. The NDVI values of grassland are greatly affected by seasonal changes, and the response
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sensitivity of different satellite platforms to vegetation phenology is different, which leads to lower
correlation between Landsat 8 images and the three NDVI products in grassland areas compared with
other land cover types. In addition, some Landsat images may cover more than one type of land cover,
which also can affect the consistency. SPOT-VGT NDVI has a larger correlation coefficient with Landsat
8 images, but the values of MOD13A3 NDVI are closer to Landsat 8-based NDVI.

Table 7. Average values of statistic scores between Landsat 8-based NDVI and the corresponding three
NDVI products over different land cover types in the MP.

Land
Cover
Types

Mean Correlation Coefficient Mean RMSE Mean MBE

GIMMS3g MOD13A3 SPOT-VGT GIMMS3g MOD13A3 SPOT-VGT GIMMS3g MOD13A3 SPOT-VGT

Forest 0.6056 0.7112 0.7226 0.2147 0.1503 0.1422 −0.0561 −0.0722 −0.0758
Grassland 0.5009 0.6620 0.6674 0.0781 0.0613 0.0687 −0.0070 −0.0047 −0.0272
Cropland 0.6342 0.7371 0.7696 0.1612 0.1128 0.1085 −0.0106 0.0161 −0.0511
Bare/sandy

land 0.5975 0.7603 0.7068 0.0358 0.0275 0.0348 −0.0137 −0.0152 −0.0254

Compared with other land cover types, the area of cropland in the MP is quite small. There are
six Landsat 8 images (No. 9, 27–30, 33) that overlay cropland in the MP, based on Figures 2 and 11.
The largest correlation coefficient and the lowest RMSE in the three combinations indicate that
SPOT-VGT NDVI is the most consistent product with Landsat 8-based NDVI in cropland regions in
the MP. Bare land and sandy land are the largest land cover types in the southwestern MP, and there
are four Landsat 8 images (No. 24–26, 35) that overlay bare land and sandy land. Higher spectral
resolution is more sensitive to identify NDVI in low vegetation coverage areas. Because the band
ranges of Landsat 8 Operational Land Imager sensor are closer to Terra MODIS, Landsat 8-based NDVI
values have higher correlation coefficient and lower RMSE with MOD13A3 NDVI values. Overall,
SPOT-VGT NDVI is more consistent with Landsat 8-based NDVI in the land cover of forest, grassland,
and cropland, while in bare land and sandy land, MOD13A3 NDVI products have better consistency
with Landsat 8 NDVI.

Considering that the resampling process has certain influence on the accuracy of original datasets,
four Landsat images with distinct time and location were selected to carry out visual comparison with
the other three NDVI datasets (Figure 13). The first Landsat 8 image (path = 123, row = 027, image
date: 2014-04-29) and the second image (path = 125, row = 027, image date: 2014-05-29) were selected
because GIMMS3g NDVI, MOD13A3 NDVI, and SPOT-VGT NDVI demonstrated large discrepancy
in spring in the eastern part of Mongolia. The third Landsat 8 image (path = 127, row = 032, image
date: 2013-08-12) and the fourth image (path = 128, row = 033, image date: 2013-11-07) represented
summer and autumn in the southern IMAR, respectively. It was found that the four NDVI datasets are
similar in expressing surface vegetation, but there are inevitably some small-scale differences because
of different spatial and temporal resolution. Among them, the Landsat 8 NDVI values are best matched
with MOD13A3 NDVI values in spatial distribution.

The first column in Figure 13 reveals that MOD13A3 NDVI, SPOT-VGT NDVI, and Landsat 8
NDVI could identify more vegetation cover than GIMMS3g NDVI, and the spatial distribution of
Landsat 8 NDVI values are much closer to the MOD13A3 NDVI. For the second column in Figure 13,
the spatial distribution of MOD13A3 NDVI and SPOT-VGT NDVI are much more similar to Landsat
8 NDVI in expressing the surface vegetation than GIMMS3g NDVI, and GIMMS3g NDVI failed
to describe the features in small areas. The third column in Figure 13 explains the best coherence
of the four NDVI datasets with vegetation identified well in summer, and all four datasets could
better distinguish the vegetation from background, in which MOD13A3 NDVI, SPOT-VGT NDVI,
and Landsat 8 NDVI could identify more detailed surface information because of their higher spatial
resolution. The last column in Figure 13 reveals that GIMMS3g NDVI has weaker recognition of
vegetation in later autumn, and its coarse resolution resulted in many loses of specific information.
On the contrary, the spatial distributions of NDVI of other three datasets with higher resolution were
relatively consistent.
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Figure 13. Contrastive analysis of GIMMS3g NDVI (a–d), MOD13A3 NDVI (e–h), SPOT-VGT NDVI
(i–l) and Landsat 8 NDVI (m–p) in different time and space ranges. The Path/Row in the figure
represents the path and row number of Landsat 8 images.

In general, Landsat 8 data could effectively recognize the fine features of surface vegetation
because of its high spatial resolution. It was revealed that MOD13A3 NDVI and SPOT-VGT NDVI
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values have higher spatial distribution consistency with Landsat 8 NDVI values and best matching
results through visual comparison analysis, while GIMMS NDVI often neglects the small surface
features because of its coarse resolution, resulting in less accurate vegetation expression than other
NDVI datasets. By resampling to the same resolution, the statistic scores between Landsat 8 NDVI and
three NDVI datasets indicate that SPOT-VGT NDVI have higher consistencies with Landsat 8 NDVI
than GIMMS3g NDVI and MOD13A3 NDVI. In addition, the agreements between different NDVI
datasets vary longitudinally and zonally, and the consistencies in the northeast of the MP are higher
than northwest regions.

4.2. Influencing Factors of NDVI Consistency

The intercomparison study of three satellite NDVI products in the MP revealed some discrepancy.
The results show that the distribution and the scope of biomes, basically corresponding to various
land cover types, have obvious influence on the spatial variance of NDVI values. Vegetated areas
have better NDVI agreement than non-vegetated surfaces. Changes of climate and meteorological
factors determine the phenology of vegetation, which affects the exchange of crop-atmospheric energy,
water, and carbon [70,71], thus the differences between the three datasets fluctuate with the change of
latitudes, longitudes, and elevation. Consequently, the three NDVI datasets of the MP have obvious
seasonal variation characteristics and regional differentiation rules. According to the intercomparison
results, there are some inconsistencies among the three datasets during the succession of the MP.
The major reasons that make the three NDVI datasets vary differently can be summed up as follows:

First of all, the three datasets are produced from different satellite with different sensor designs.
The differences in spectral band responses, instrument performances, and atmospheric conditions at the
time of observation increase inconsistencies in measuring surface reflectance [72]. Teillet and Ren [73]
pointed out that the differences in spectral wavelength of various sensors alone can lead to as large
as 10% of the NDVI differences. Compared with AVHRR and VEGETATION, the MODIS sensor has
higher radiometric and spatial resolution and narrower spectral range of red and near-infrared (NIR)
band. The red bands govern chlorophyll sensitivity, and thereby influence the annual NDVI range [74].
The narrower NIR bands are more sensitive to atmospheric conditions [72], which can identify
vegetation characteristics and capture details of vegetation changes more accurately. Different from the
narrower NIR bands of MODIS and VEGETATION sensor, the AVHRR NIR band is superimposed on
strong water vapor absorption bands between 900–980 nm [74]. Also the discontinuity of sensor shifts
may affect the trend analysis in semi-arid regions, such as the sensor shifts from NOAA-16, NOAA-17,
to NOAA-18 for GIMMS3g NDVI and from SPOT-4 to SPOT-5 for SPOT-VGT NDVI datasets [74,75].
It has been proved in the related research of vegetation phenology recognition that spatial resolution
has little influence on trend analysis of time series variation [74,76]. In this work, the three NDVI
products were compared and contrasted in different spatial resolution, and Figure 14 shows the trend
components of decomposed average values of the three datasets in the spatial resolution of GIMMS3g
NDVI (about 8 km) and MOD13A3 NDVI (about 1 km), respectively. The change trends of each data
set are almost the same at two different spatial resolutions, which indicates that the influence of spatial
resolution of satellite sensor on NDVI variation trends can be neglected in the MP.

Secondly, the three satellites have different platform characteristics and sensor viewing conditions.
The visit frequency of the satellite determines the temporal resolution of datasets. The NOAA series
have the highest visit frequency because of the large number of satellites, while the SPOT satellite has
the longest return interval. The overpass time of satellites is an essential basis of the image quality.
Meanwhile, different atmospheric conditions could lead to considerable difference in surface NDVI.
The weather conditions, such as atmospheric visibility, cloud shadows, cirrus, and aerosol amounts,
are also key factors for image quality. Large scale events like El Niño/La Niña and volcanic eruption
may also cause vegetation changes on global or regional scales [76,77]. It was found that solar zenith
angles have small influence in NDVI simulations, but it should be noted that bidirectional reflectance
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distribution function (BRDF) differences between the two sensors caused by different azimuth angles
and rugged terrains could be considerable [72].
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Figure 14. Trend components of decomposed average values of GIMMS3g NDVI, MOD13A3 NDVI,
and SPOT-VGT NDVI in different spatial resolution (1 km and 8 km) in the MP.

At last, the data processing techniques affect the NDVI variation noticeably. Usually, the images
acquired by satellites are deformed to some extent, which requires strict atmospheric and geometric
correction before calculation and scientific practice. On the other hand, the processing methods used
in practical applications are also coordinated aspects leading to data differences. According to the
dataset documents, monthly MOD13A3 NDVIs are composited by weighted temporal average of all the
16-day MOD13A2 products that overlap the month. In order to reduce the difference between diverse
datasets, the average synthesis method is also used in processing of GIMMS3g NDVI and SPOT-VGT
NDVI. Correspondingly, GIMMS3g NDVI and SPOT-VGT NDVI datasets are also resampled to
monthly values by the means of averaging calculation. It is predicted that the cloud contamination
and the actual changes at small scale are balanced out when averaging the NDVI values on regional
scale, but the drawback of the synthesis methodology is the loss of critical temporal information
required to accurately track the processes of vegetation change [71,74,76]. From a spatial point of
view, the MOD13A3 NDVI and SPOT-VGT NDVI datasets were resampled to the spatial resolution of
GIMMS3g NDVI by bilinear interpolation method in order to facilitate the intercomparison. For higher
resolution data such as MOD13A3 NDVI and SPOT-VGT NDVI, this upscale method generalizes the
information of small surface features to some extent, but it still can effectively reveal the consistency of
trend analysis of long time series data.

Therefore, our results may contain uncertainties introduced by the differences of parameters
between satellite platform and sensor system. Even though some systematic errors can be reduced by
geometric correction and atmospheric correction, it is impossible to eliminate all errors completely.
Because of the inconsistent spatial and temporal resolution of various datasets, the processing methods
used in this work, including spatial resample, temporal composite, average extraction, and so on,
also increase the errors among three datasets in varying degree. The reasons behind these discrepancies
need to be further explored, since a growing volume of studies within vegetation and climate change
research is based on these long-term datasets.

5. Conclusions

This study aimed for intercomparison of three global NDVI products, namely, GIMMS3g NDVI,
MOD13A3 NDVI, and SPOT-VGT NDVI over the MP from February 2000 to May 2014. Averaged NDVI
values are in decreasing order of GIMMS3g NDVI, MOD13A3 NDVI, and SPOT-VGT NDVI, based on
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the comparative analysis of temporal evolution, spatial distribution, and regional differentiation of
the three NDVI products. The decomposed NDVI sequences show that the three NDVI datasets have
similar variation trends, but SPOT-VGT NDVI values are about 0.02 lower than the other two datasets
in the whole variation periods. The spatial distributions of the AC values indicate that the three NDVI
datasets are highly consistent with each other in the northern regions of the MP, and MOD13A3 NDVI
and SPOT-VGT NDVI have better consistency in expressing vegetation cover and change trends in
the MP from February 2000 to May 2014. The MBE values show that SPOT-VGT NDVI values are
significantly smaller than the values of GIMMS3g NDVI and MOD13A3 NDVI, while GIMMS3g NDVI
values are relatively larger than MOD13A3 NDVI values in the northern MP, but contrary to those in
the southern MP.

NDVI changes in the seven biomes are full of discrepancy due to the diversity of surface land
cover. The SPOT-VGT NDVI values are generally lower than the other two datasets, and the difference
expands with the increase of surface vegetation coverage. Deseasonalized values of MOD13A3 NDVI
show higher discreteness than the other two datasets by STD over various biomes and the whole of the
MP. Taking 2013 as an example, the zonal characteristics of latitude, longitude, and elevation show
that GIMMS3g NDVI in January 2013 are significantly higher than those of the other two datasets.
However, in July 2013, the three datasets are remarkably consistent. The results of vertical zonal
statistical analysis show that NDVI values decrease with the increase of altitude.

Consistency validation results of three NDVI products against Landsat 8 images show that values
of SPOT-VGT NDVI agree more with Landsat 8 NDVI than GIMMS3g NDVI and MOD13A3 NDVI,
and the consistencies in the northeast of the MP are higher than northwest regions. The other two
NDVI datasets, especially GIMMS3g NDVI, are higher than Landsat 8-based NDVI values in varying
degrees. Hence, we believe that our study helps to deepen understanding of largescale vegetation
variation trends over the MP, which would significantly enhance our knowledge of the potential
future impact of climate warming on inland areas of the Northern Hemisphere and provide important
reference for the follow-up study on vegetation change in Northern Asia.
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