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Abstract: High-resolution optical remote sensing data can be utilized to investigate the human
behavior and the activities of artificial targets, for example ship detection on the sea. Recently, the
deep convolutional neural network (DCNN) in the field of deep learning is widely used in image
processing, especially in target detection tasks. Therefore, a complete processing system called the
broad area target search (BATS) is proposed based on DCNN in this paper, which contains data
import, processing and storage steps. In this system, aiming at the problem of onshore false alarms, a
method named as Mask-Faster R-CNN is proposed to differentiate the target and non-target areas by
introducing a semantic segmentation sub network into the Faster R-CNN. In addition, we propose
a DCNN framework named as Saliency-Faster R-CNN to deal with the problem of multi-scale
ships detection, which solves the problem of missing detection caused by the inconsistency between
large-scale targets and training samples. Based on these DCNN-based methods, the BATS system is
tested to verify that our system can integrate different ship detection methods to effectively solve the
problems that existed in the ship detection task. Furthermore, our system provides an interface for
users, as a data-driven learning, to optimize the DCNN-based methods.
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1. Introduction

With the development of society and technology, measuring and monitoring human activity in
the ocean area is becoming a topic of significance and increasing interest. In this topic, ship objects play
an important role in both areas of the military and civilian, such as the maritime safety, marine traffic,
border control, fisheries management, marine transport, etc. Meantime, the position and behavior
information of the ship objects is the cornerstone of the marine domain awareness (MDA) [1], which
has been defined as the effective understanding of any activity associated with the maritime domain.
Thus, a better performance on ship objects detection can greatly promote the harmonious development
of the human and ocean.

The purpose of the object detection is to find out the targets with more attention in the human‘s
vision, then determine its location and category, which is one of the core issues in the field of computer
vision (CV). Due to the similarity of the object features like background, texture, shape, etc., it is
achievable to finish this task. However, it is still a challenging task because of the differences between
target individuals.

Living in the age of rapid development of deep learning (DL), it will be able to design and realize
an efficient object detection architecture for ship targets on the sea. The nature of DL is to extract and
analyze the intrinsic law and feature representation method of the data, which is similar as the human
learning process, by using the computers’ powerful ability. Actually, the improvement of DL has made
a revolutionary progress in the technology of the CV and machine learning (ML) [2], and promotes the
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objects detection task truly to be a data-driven, human-assisted data analysis method, in which the
computer can automatically learn the sample features from the data rather than matching the target by
using the features precisely created by the human [3,4].

DL includes supervised learning, unsupervised learning, semi-supervised learning, etc. [5], which
indicates the different ways to deal with the data. For example, in the field of object detection, it is the
most common method to use supervised learning carried out based on sample data with categories and
coordinate labels, which can obtain quite accurate results by cooperating with a large number of data
and a series of sufficient training process. Therefore, with its intelligent, automatic and effective feature
extraction ability and more accurate detection results, the DL method breaks through the bottleneck of
traditional digital image processing algorithms and has been widely used in object detection task.

Specifically, the most important step in DL is the construction of the neural network [6], which is
inspired by the animal vision system and the purpose is to transform the original signal of objects into a
high dimensional space to be classified by building a multi-level nonlinear processing mechanism. In a
variety of artificial neural networks, the deep convolutional neural network (DCNN) [7] is the most
common used in field of image processing, including the object detection task, because the operation
of the convolutional kernel fully takes the relationship between adjacent pixels into account, which
fits the distribution pattern of the information in the image. Thus, it is more efficient to extract the
object features from the image, and it is able to be a more accurate detection result by combining with
the activate function, pooling function and fully-connection function [5]. With the application of the
DCNN, the tasks of object detection [8], semantic segmentation [9], scene classification [10], etc. are
more efficient and valuable.

As the continuous optimization of DCNN approaches, the object detection task comes into a
high-speed development period. In 2013, Ross Girshick published the R-CNN algorithm [11], which
introduces the idea of detecting on each region of image obtained by a selective search [12] and greatly
improves its accuracy and efficiency compared to the ML methods. After that, two modified methods
were proposed: The one is the Fast R-CNN [13], which utilizes the convolutional operation on the
whole image rather than on each region in the R-CNN, and it makes the performance much better
than the R-CNN; the other is the Faster R-CNN [14], which imports the region proposal network
(RPN) into the Fast R-CNN and abandons the mechanism of the selective search, this improvement
reduces the number of candidate regions and makes object detection more simpler, more accurate and
more efficient. In fact, this series of algorithms that originated from the R-CNN are summarized as a
two-stage method, representing the idea of regional detection. So far, many excellent algorithms in the
two-stage method have been generated, such as the feature pyramid net (FPN) [15], Mask R-CNN [16],
SNIP [17], etc. More specifically, FPN combines the low-level feature and high-level feature as the
basic feature, and then RPN is employed to complete detection. This method can effectively improve
the accuracy of the small-scale object detection. Mask R-CNN can realize the semantic segmentation
after the object detection task. SNIP introduces the image pyramid to change the object scale into a
similar size to improve the accuracy of the multi-scale object detection.

After the publication of the Faster R-CNN, it arouses the exploration of the methods outside the
two-stage mechanism. For example, single shot multibox detector (SSD), proposed by Liu in 2016 [18],
uses a single DCNN to conduct detecting objects, and discretizes the output bounding boxes into
a set of default boxes over different aspect ratios and scales for each feature map location, which is
like the idea of RPN, but this operation is integrated into the previous neural network instead of two
separate neural networks (like Faster R-CNN). Another famous research is YOLO [19], which pays
more attention to the speed of object detection and chooses a more concise network, containing only 24
convolution layers to directly predict bounding boxes and classification probabilities on full images
via one neural network. Thus, this unified architecture is extremely fast and reaches 155 frames per
second, but its accuracy cannot reach the level of SSD and Faster R-CNN and still remains low until
RPN is imported into the YOLO in 2018 [20].
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The architecture like SSD and YOLO are collectively called the one-stage network because of
its single neural network architecture. Additionally for this reason, one-stage networks are more
efficient but slightly lower in accuracy compared to the two-stage networks. Fortunately, it brings
more alternative in different detection tasks due to these differences.

In fact, the ships detection in the high-resolution optical remote sensing image is one of the
representative applications based on DCNN, in which the ship objects present the characteristics of
multi-scale, multiple directions, multiple shapes and a complex background environment. Thus, taking
these characters into account, the ship detection task is commonly divided into the following several
important steps [1]: Removal of Environment Effects, Sea-Land Separation, Ship Candidate Detection,
and False Alarm Suppression. In addition, it is necessary to propose some effective measures to the
specific problem at each step.

The first step: Removal of Environment Effects. The presence of environmental factors in optical
images is an undesirable, but generally unavoidable fact. Some main factors significantly influence the
ship detection accuracy such as clouds, waves and sunlight reflection. In recent years, some effective
methods have been proposed to solve these environment effect problems. In 2013, a water/cloud clutter
subspace is estimated and a continuum fusion derived anomaly detection algorithm is proposed by
Daniel et al. [21] to remove the clouds. In 2014, Kanjir et al. [22] proposed a method based on histogram
to remove the clouds, which takes advantage of the character of high value of the clouds in spectral
bands. Further, Buck et al. [23], used a Fourier transform algorithm to remove the clouds. While the
effects of waves and sunlight reflection often result in false alarms, it will be solved in the fourth step
rather than in the first step.

The second step: Sea-Land Separation. An accurate sea-land separation is not only necessary
for an accurate detection of ships in harbor areas, but also important because DCNN-based methods
may produce many false alarms when applied in the land scene. Sea-Land Separation falls into two
groups: By introducing extra data such as the coastline data or by generating the segmentation sign
by itself. In 2011, Lavalle et al. [24], imported a GIS data to describe the line that separates a land
surface from the ocean. In 2015, Jin and zhang [25] introduced a shapefile to describe the coastline
data. However, these methods based on extra information are undesirable on accuracy and it is hard
to update the data timely. In another group, many researchers used histogram data to discriminate
the sea and land such as in the works of Li et al. [26] and Xu et al. [27], which take the differences of
sea and land in the distribution of gray value into account. Though these methods have a desirable
efficiency, its accuracy is unsatisfied. To solve this problem, Besbinar and Alatan [28] additionally
used digital terrain elevation data to generate a precise sea-land mask by utilizing the zero values.
Additionally, Burgess [29] used a heuristic approach for land masking based on observations of the
relationships between the values in the two input images for sea and land. In addition to the above
methods, there are still many methods to have a good effect on sea-land separation and reduce the
influence of onshore false alarms.

The third step: Ship Candidate Detection. After the removal of environment effects and sea-land
separation, an appropriate ship candidate detection algorithm will be applied, and it is the most
essential part in the procedure of ship detection. In addition, the purpose of this step is to find out all
regions containing the targets, of course, this needs to consider about the characteristics of different
scenes. For the multi-scale ship, many algorithms often combine the RPN structure introduced in the
Faster R-CNN with the special architecture that fuses the low-level and high-level features, such as
FPN, DFPN [30] and SNIP, which have been mentioned above. Further, for multiple orientations of the
ships, Jiang et al. [31] and Yang et al. [32] both proposed a method, training data with rotate bounding
boxes, to obtain a real orientation of the target in the inference process. Except for these methods,
there are many other works aiming at the specified problems, Zhang [33] combined the convolutional
neural network and manual ship features to improve the accuracy, and Bodla et al. [34] proposed the
Soft-NMS to relieve the problem of overlapping box suppression and improve the accuracy of the ship
in dense scenes.
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The fourth step: False Alarm Suppression. The phenomenon of the false alarm is the result from
the misjudgment of interferes during the detection process, and the false alarm usually exists in the
background and has some similar characteristics with the ship objects. In fact, false alarms in land can
be removed by using sea-land segmentation, and for false alarms in sea caused by waves and sunlight
reflection, Yang et al. [35] proposed a structure named the MDA-Net to describe the saliency of the
ship to suppress non-object pixels, and Zhang et al. [33] imported manual ship features to overcome
the false alarm. Although some measures can suppress the false alarms moderately, it is still a main
challenging problem in ship detection.

Therefore, facing the realization process of the ship detection task, a complete detection framework
has been established by combining the existing defogging algorithm and two DCNN-based algorithms
proposed in this paper, which are aiming at the problems of the multi-scale ship detection and onshore
false alarm suppression. At the first step, an improved network based on the Faster R-CNN with
the function of scene mask estimation is proposed to achieve the sea-land segmentation and object
detection. In this method, the network is trained by special data that includes the mask information of
the target scene, which differentiates the target area (sea) and non-target area (land). By using this
network, we can effectively remove the land area and reduce a lot of false alarms onshore during
detection. In another step, a saliency-based Faster R-CNN is proposed to deal with the problem of
multi-scale ship objects in high-resolution remote sensing image. In this method, a saliency estimation
network is used to extract the salient region which presents the ship objects, then an image pyramid is
used to compress the images containing the large-scale ship objects, in order to make the size of ships
in the real-time image more similar with those in the training dataset, and finally, it will improve the
accuracy of the ship detection. At last, one feasible processing chain is formed, including the image
pre-processing, image database, results display and manual review modules, and the entire processing
system is called the broad area target search (BATS).

The remainder of this paper is organized as follows. The proposed BATS structure and its
details are described in Section 2. Two DCNN-based methods proposed in this work are presented in
Section 3. Section 4 will explain the mechanism of the interaction part between the user and system,
which includes input, display and review modules. Experimental results on a lot of representative
high-resolution remote sensing images are presented in Section 5 followed by the conclusions drawn
in Section 6.

2. The Framework of Broad Area Target Search System

Different from the existing researches about the ship detection task, we not only focus on one
specified algorithmic problem, but comprehensively consider various aspects existing in the task
of the broad area ship detection, and then a processing chain of high-resolution data is established,
named the broad area target search (BATS). In this framework, it includes image pre-processing,
saliency estimation, scene mask estimation, ship detection, results presentation and manual review.
The framework is shown in Figure 1, where a stack (or cube) indicates that the module contains several
effective sub-steps, for example, the object detection step of BATS has some different implementations
including the Saliency-Faster R-CNN, Faster R-CNN, FPN, etc.

Before elaborating on the details of each module in this framework, some explanations of the
detection process will be given. Firstly, a remote sensing image with the resolution better than 1 m is
called the high-resolution image in our method. Based on this resolution, we can get more information
about the shape and context details of the ship, and these high-resolution images reflect multi-scale
features of targets. It is also a main form of remote sensing data for the ship objects detection and
a prerequisite for fine-grained identification. In BATS, each step operates on the high-resolution
remote sensing images. Secondly, the step of the algorithms (D, E, F) in the flow chart can be executed
independently to solve the specified problems during ship detection. Meanwhile, different methods
can be selected according to characteristics of input data and the type of tasks. For example, step D
and F can be used for the broad scene under the clouds without E. Finally, the data of the algorithms
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and system are all derived from a shared image database which is generated after data preprocessing.
This database supports the data import, data and results storage for each step.

Figure 1. The framework of the broad area target search (BATS) system for the ship detection task.

Now, we focus on the meaning of each step and the corresponding implementation process. The
first is the input of data (Step A of Figure 1). In BATS, the high-resolution remote sensing data is
obtained from Google Earth or uploaded from users. This is followed by the preprocessing of the
raw data (Step B of Figure 1). For the high-resolution and wide coverage images, it is necessary
to balance the size of the input image with the GPU performance. The most common processing
method is to cut the input image into fixed-size patches (such as 1024×1024) for prediction. In order to
ensure the integrity of the ship targets, we use an overlap cutting and overlap rate can be controlled.
The data augmentation process includes some image operations such as multi-angle rotation, color
contrast control and addition of random noise to increase the diversity of samples. The results of the
preprocessing of input data are shown in Figure 2. For the structure management of the sample, the
data is stored into the database after augmentation, which is convenient for the subsequent module.

Figure 2. The results of the preprocessing of input data.
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After Step B, the database is utilized to store the real and public datasets separately for multiple
utilization (Step C in Figure 1). In this database, the information of the training set and test set are
stored in different tables. The information table of the training dataset contains the storage path, image
size, file name, position in the original input, etc. The information table for the test dataset contains the
storage path and processing results after testing.

In the following, the ship detection is illustrated from three aspects: Imaging factor, environmental
factor and the ship target itself. First, for input scenes, the image quality should be further analyzed.
In the task of the ship objects detection, the cloud occlusion has a huge impact on the target imaging.
Severe cloud occlusion will directly lead to the blurring and disappearance of ship targets in this scene,
as shown in Figure 3. Therefore, the effective measures should be taken to mitigate the cloud occlusion
problem in such a scene (Step D of Figure 1). The usual algorithms for clouds removal mainly have
two types: Physical model defogging and image enhancement for defogging. Among these methods,
the typical physical model algorithm is the defogging in the dark channel based on the dark channel
prior [36], and the most common traditional image enhancement is the contrast limited adaptive
histogram equalization [37], in which by calculating the histogram of multiple local regions of the
image to redistribute the brightness and contrast to realize defogging. With these effective defogging
methods, the DCNN inside BATS can effectively classify the foggy scene from the fog-free scene, and
then uses the classic algorithm to process the foggy images.

Figure 3. The ship objects covered by clouds and fogs in high-resolution remote sensing images.

After defogging, the environment factors of the ship target are considered in Step E. In the task
of ship detection, there are many ships mooring in ports or sailing in near-land areas. However, the
complex terrestrial environment may easily mislead the feature extraction of DL algorithms and result
in a lot of onshore false alarms. Therefore, there are some papers for ship detection that use sea-land
separation to remove land false alarms. In this paper, we propose a novel false alarms suppression
method based on DCNN, which use the powerful ability of feature extraction to segment the sea and
land. The specific structure will be explained in Section 3.2.

The factors of the ship target itself should be focused to improve the ability of the ship targets
detection (Step F of Figure 1). The size of the ship targets in the high-resolution remote sensing
images varies greatly, while the size of the targets in the commonly used training dataset, such as
DOTA [38], NWPU VHR-10 [39] and UCAS-AOD [40], are mostly similar and large-scale targets are
rare, which results in a poor performance for large-scale ships detection. So far, some methods are
proposed for concerning the problem of targets size, most of which use the combination of multi-layer
feature layers [15,18,30] to retain the feature of different scale targets, and to alleviate the difficulty
of the multi-scale targets detection. There is also a study that compresses the target in the image to
a fixed size to enhance detection performance [17]. In our processing framework, a multi-scale ship
detection method based on the saliency feature is proposed. This method adaptively compresses
scenes containing large-scale ship targets, which improves the detection performance of remote sensing
images in reality. The specific structure is explained in Section 3.3.

After ship detection, the result patches are aligned to the grid of the original image and the
coordinates of the predicted boxes are converted into the original image coordinates. This step is
known as data post-processing (Step G of Figure 1).

The post-processed data is stored in the database for the call of the display module. In the
display module of BATS, the pixel coordinates of the predicted results are converted into geographic
coordinates and the results are displayed in Google Map. In addition, the display module also provides
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an effective feedback mechanism, and that is the manual review for the ship detection algorithm (Step
I of Figure 1). Considering that the DCNN-based methods cannot guarantee the detection result to be
completely correct, the wrong result is selected manually and retrained to make up for the shortage of
training samples, and then achieving the purpose of the iterative optimization of the algorithm. The
structure and implementation of the display module will be explained in Section 4.3.

3. Ship Objects Detection Methods Based on DCNN

This chapter highlights the introduction of the DCNN-based ship detection algorithms proposed
and applied in the BATS system which focuses on the onshore false alarm suppression and multi-scale
ship object detection, respectively, in high-resolution remote sensing image. The first part would
introduce the basic object detection network, which is used in both methods proposed in this paper.
The second part would initially introduce the algorithm named as the Mask-Faster R-CNN focused on
the problem that the near shore ship objects detection is disturbed by the onshore false alarms. This
algorithm is combined with the scene mask extraction network that suppresses land information in
feature maps to avoid the occurrence of onshore false alarms. Then, the algorithm concerning the
problem of the multi-scale ship detection is demonstrated in the second part. In this method, a saliency
estimation network is used to differentiate the scene containing large-scale objects from others, and
then an image pyramid is used to compress these images so that the scale of the ships in real images is
similar to the samples in the training dataset, and this improvement might have a good performance.
Thus, this method is called the Saliency-Faster R-CNN.

3.1. Object Detection Network from Faster R-CNN

The object detection network adopts the classic two-stage detection process, which originated from
the Faster R-CNN [14] by using ResNet-101 [41] as the feature extraction network (FEN) to implement the
feature extraction of high-resolution remote sensing images. Then, the region proposal network (RPN)
is used to conduct the candidate region proposal to obtain the high-confidence region proposals and
corresponding coordinates on the feature map obtained by FEN. At last, it puts the region proposal and
corresponding feature map through ROI pooling operation [14] to obtain the feature map block in the
fixed size, then the classification and regression of the region proposal calculated by RPN is conducted to
obtain a more accurate object class and coordinates and thus this process is known as the classification
and regression network (CRN). The structure of the object detection network is shown in Figure 4.

Figure 4. The structure of the object detection network.

The ResNet-101 network is made up of 99 convolutional layers, which consist of four ResNet
blocks [41] and two fully-connected layers. Due to its special block structure, it could extract the
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deep feature in the image without the problem of the vanishing gradient, which makes it extremely
appropriate for feature extraction of ship objects in the complicated environment. In order to import
this network into the object detection network, we remove the last two fully-connected layers and
divide it into two parts: The first part is used as the FEN, which include the first three ResNet blocks
and the second part (the fourth ResNet block) is used after the operation of the ROI pooling. The
configuration of FEN is shown in part one of Table 1 and the configuration of another block in part two.

Table 1. Configuration of the Resnet-101 in object detection network.

Block Output Size Layers Layer parameter

Part1 (FEN)
Conv1 512×512×64 Convolution 7×7, 64, stride = 2
Pool1 256×256×64 Max pooling 3 × 3, stride = 2

Block1 128×128×256 Convolution group

 1× 1, 64
3× 3, 64
1× 1, 256

×3, stride = 2

Block2 64×64×512 Convolution group

 1× 1, 128
3× 3, 128
1× 1, 512

×4, stride = 2

Block3 64×64×1024 Convolution group

 1× 1, 256
3× 3, 256
1× 1, 1024

×23, stride = 1

Part2 (used after ROI Pooling)

Block 4 7×7×2048 Convolution group

 1× 1, 512
3× 3, 512
1× 1, 2048

×3, stride = 2

Pool2 7×7×2048 Average pooling 2×2, stride = 1

Figure 5. Mechanism of Region Proposal Network (RPN) [14] by using the multi fixed scales anchors to
conduct the region proposal in the original image, where the red boxes represent the large-scale targets
which cannot be fully covered, the yellow boxes represent the false alarm on the land, and the green
boxes focus on the correct targets with a small scale.
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In the object detection network, the most important structure is the RPN, which is used to propose
regions that have a high-confidence and are closer to the ground-truth of targets by using some
fixed-size anchors [14]. However, this process is controlled by the training dataset and the loss of
classification and regression, which means the region proposal mechanism of RPN relies on the samples
in the dataset. Therefore, it is hard to differentiate the objects with similar characteristics of targets in
the non-target area. Furthermore, assuming that there are many small-scale objects in our training
dataset, RPN is restrained so that it only responds to the small-scale targets while the large-scale targets
cannot be fully covered by the insufficient anchors. Theoretically, the anchors and the subsequent
regression process in the RPN prefers to fit the small-scale objects, and thus the large-scale targets are
ignored via the trained RPN. The mechanism of RPN is shown in Figure 5. After RPN, a ROI pooling
operation is used to resize all region proposals with 14×14 (same with the input of the fourth block in
ResNet-101). Then, the feature in each proposal is used to finish the classification and regression to get
the target class and coordinates.

3.2. Mask-Faster R-CNN for Suppression of Onshore False Alarms

In the ship detection process, because of the complexity of the land surface, there are amounts of
objects that have a similar feature with the ships, which results in the fact that these objects might be
regarded as candidate objects and influences the accuracy of the DL algorithm. Therefore, in terms of
the problem of onshore false alarms, we put forward a ship detection method based on the estimated
scene mask, known as the Mask-Faster R-CNN. This method could assist the object detection network
by knowing target and non-target areas. Then, the region proposals are obtained only in the target
area by using RPN and classified by using the softmax classifier to eventually implement the detection
of the ship objects. As a mechanism to accurately judge the region proposals, the estimated scene mask
could be used to suppress false alarms in the non-target area, such as harbor area and island, which
reduces the redundancy of the region proposals, and eventually increases the accuracy of detection.
The flow chart of the training process is shown in Figure 6.

Figure 6. The framework of the Mask-Faster R-CNN for sea-land segmentation and ship detection,
which include a feature extraction network (FEN), a scene mask extraction network (SMEN), a region
proposal network and a classification and regression network (CRN), which is just for regression and
classification of the region feature.

The Mask-Faster R-CNN consists of four sub-networks: The FEN based on Resnet-101, its
parameters is presented in Table 1; a branch of the scene mask extraction network (SMEN) is inserted
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to estimate the scene mask by using the deconvolution operation; the RPN and CRN are used to decide
the class and coordinates of the targets. Additionally in this method, the key point of suppressing the
onshore false alarms is to eliminate the information of the non-target area (i.e., land) which is realized
by SMEN.

3.2.1. Scene Mask Extraction Network

In this method, the role of the scene mask extraction network is a pixel-level classification between
the target area (sea) and non-target area (land) to eliminate the disturbance of the non-target area in
the forward propagation stage, which is the core idea in the onshore false alarm suppression. Since
the boundaries of shores, especially in the harbor area, usually appear to be irregular and have a
variety of shapes, it is necessary to classify each pixel in the input image in order to achieve accurate
segmentation results. Deconvolution is an up-sample mechanism, which could operate the convolution
process and restore the original size of the image at the mean time. By using the combination of the
convolution, down-sample and deconvolution operations [42], we could implement the classification
on each pixel (i.e., semantic segmentation in the context of DL). Therefore, the function of SMEN is a
separation of the sea and land. At first, the scene label is introduced as a binary mask between the
target and non-target areas in our dataset. Next, we add four deconvolution layers after FEN, and
then the intermediate feature map goes through a softmax layer, which calculates the result of the
non-target area (i.e., land scene). Additionally, the configuration of SMEN is shown in Table 2.

Table 2. Configuration of the scene mask extraction network.

Layers Layer parameter Output size

Deconv 1 3 × 3, 512, stride = 2 128 × 128 × 512
Conv 1 3 × 3, 512, stride = 1 128 × 128 × 512

Deconv 2 3 × 3, 256, stride = 2 256 × 256 × 256
Conv 2 3 × 3, 256, stride = 1 256 × 256 × 256

Deconv 3 3 × 3, 128, stride = 2 512 × 512 × 128
Conv 3 3 × 3, 128, stride = 1 512 × 512 × 128

Deconv 4 3 × 3, 64, stride = 2 1024 × 1024 × 64
Conv 4 3 × 3, 2, stride = 1 1024 × 1024 × 2
Softmax 1024 × 1024 × 2

Considering the real circumstance, for example the harbor area, parked ships are common near
the shore, a low accuracy in boundary segmentation would result in the problem that the sea area may
be classified as the land by mistake, which makes the detection stage abandon the ship targets covered
by this inaccuracy land mask. In order to effectively extract the scene mask and avoid disturbing the
parked ship objects, it is necessary to further optimize the accuracy in the segmentation. Therefore, the
low-level feature map of SMEN is imported into the deconvolution layer by using the concatenate
operation to optimize the accuracy of the estimated scene mask. To elaborate, the specific method is to
concatenate the outcome feature map of each block in FEN with the same-size deconvolution layer,
and then put the concatenated feature map through a convolutional layer in order to implement a
further feature extraction. According to the operations above, a more accurate boundary information
and more abstract semantic information are presented in the high-level feature map.

3.2.2. Training Process

In the training process, a multi-task loss function is established to restrain the training. The loss
function is calculated by forward propagating in each iteration, and the parameters in all sub-networks
are updated by using the gradient descent method [5]. When the minimum of the loss function is
obtained, eventually the network is convergent.
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The loss function of SMEN, denoted by Lmask, could be represented as the cross entropy of the
scene mask obtained in the network and ground truth label for each training image, and the expression
is shown by Formula (1).

Lmask = −
1

R×C

R∑
i=1

C∑
j=1

T(i, j) log M
(i, j) + (1− T(i, j)) log(1−M

(i, j)) (1)

where R×C is the size of the scene mask, M
(i, j) is the prediction probability of the scene category of

the pixel (i, j) in the image, and T(i, j), is the ground truth of the pixel (i, j) with the value of zero and
one, representing the scenes of the land and sea, respectively, and the size of the image is R×C.

The loss function of classification in the object detection network could be represented as the
cross entropy of the classification outcome and its ground truth, which is denoted by Lcls, as shown in
Formula (2):

Lcls = −
1

Ncls

∑
p

log
[
O(p)C(p) + (1−O(p))(1−C(p))

]
(2)

where O is the predicted probability being a target of box p, C is ground truth of the target, and it equals
one when the label is positive, and is zero when the label is negative. Ncls is the number of boxes.

The loss function of the bounding box regression could be represented as the smoothL1, which is
the entropy loss between the region proposals and the ground truth box closest to it, denoted by Lreg,
as shown in Formula (3) and Formula (4).

Lreg =
β

Nreg

∑
p

C(p)smoothL1(B(p)
− reg(p)) (3)

smoothL1(x) =
{

0.5x2 if |x|< 1
|x| − 0.5 otherwise

where, x = B(p)
− reg(p) (4)

where Nreg is the number of box locations, β is utilized to balance the process of classification and

regression. reg(p) =
{
reg(p)x , reg(p)y , reg(p)w , reg(p)h

}
is the vector containing four coordinates of bounding

boxes obtained by the object detection network, and B(p) =
{
B(p)

x , B(p)
y , B(p)

w , B(p)
h

}
represents the

coordinates of the ground truth boxes.
The total loss function of Mask-Faster R-CNN is the weighted sum of the three loss functions, as

shown in Formula (5).
Loss = λ1(Lcls + Lreg) + µLmask (5)

whereλ1 andµ are hyper-parameters to balance the loss of classification, regression and mask estimation.

3.2.3. Inference Process

There is a considerable difference between the inference and training process. The scene mask
estimation and the object detection are driven by the above training, however, without any information
interaction, while in the inference process, the outcome of the scene mask extraction network needs to
exert an impact on the object detection network. Initially, the input image goes through the FEN and
SMEN to obtain the information that represents the scene mask, which is a binary matrix with the
value of one for the target area and zero for the non-target area.

S(i, j) =

0, (i, j) ∈ Ωnon−target

1, (i, j) < Ωnon−target
(6)

where S is the estimated scene mask with the value of zero or one obtained from SMEN, and the
Ωnon−target is a set of pixels belonging to the non-target area (i.e., land).
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Then, after compressing this scene mask into the size of the final feature map, i.e., the output of
FEN with c channels, it will be multiplied with each channel of the feature map obtained from FEN,
which would set the value of the non-target area in the feature map to zero, eliminating the effect of
this area in the subsequent RPN process. In addition, this process can be formulated as:

Vp = S� Fp p = 1, 2, · · ·, c (7)

where � represents the Hadamard product, and Fp is a certain channel of the feature map obtained
from FEN. Then Vp is employed in the RPN to effectively reduce the false alarms in the non-target
area, and the inference framework is shown in Figure 7.

Figure 7. The inference framework of object detection based on the Mask-Faster R-CNN.

3.3. Saliency-Faster R-CNN for Multi-Scale Ship Detection

It is usually difficult to get rid of the influence from the training dataset pattern in the object
detection task by using the DL algorithm, and unfortunately, the same problem more obviously exists
in the ship object detection in a high-resolution image. Most of the available training samples of the
ship reflect the small-scale targets, which leads to the fact that the DL algorithm could not correctly
learn the feature of the multi-scale ships, especially some large ships. In other words, the trained
DCNN may be limited by the small-scale ships in the training dataset. Therefore, it is necessary to
adopt an effective scale adjustment mechanism to implement the accurate multi-scale ship detection.
On account of the difference between the training dataset and the real scene with the large ship, an
object detection method based on the saliency estimation network, known as the Saliency-Faster
R-CNN, is proposed in this paper which combines the object detection network with the saliency
estimation network. By making use of the saliency estimation network to describe the object scale of
remote sensing images, it divides inputs into the scene with the large-scale object and the scene with
the small-scale object. Based on this division, it constructs an image pyramid to compress the images
and adjust the input close to the sample scale and increases the detection ability of the object detection
network for multi-scale ships (large-scale object, especially). The overall framework of the network is
shown in Figure 8, where the object detection network has been described in the Mask-Faster R-CNN.

3.3.1. Saliency Estimation Network

In the Saliency-Faster R-CNN, the purpose of the saliency object network is to extract the saliency
feature of the object and further distinguish the scenes containing large-scale or small-scale objects.
Since the current DL algorithm is considerably dependent on the pattern of the samples, it is difficult to
effectively implement the large-scale object detection task in some real scenes by using the small-scale
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object dataset. Therefore, we adopt the traditional digital image processing method to construct the
saliency estimation network, which could extract the saliency feature of objects.

In this saliency estimation network, we first process the high-resolution remote sensing image
and obtain the saliency feature of ships by using the saliency estimation algorithm. Based on this,
the gray values in the saliency map obtained after the saliency estimation are analyzed by using the
histogram method, and then estimating the saliency degree of the ship scale. Second, combined with
the statistical results, we construct a mathematical model which could distinguish the large-scale ship
and small-scale ship scenes. The framework of the saliency estimation is shown as the input in Figure 8.

It is worth noting that there are many saliency estimation algorithms, and thus we studied
the ability of different saliency estimation algorithms for high-resolution images. Comparing and
analyzing the performance in real high-resolution images of several classic algorithms which can
be found in [43], including Saliency Intensity Model (SIM) [44], region Covariance (COV) [45], Fast
and Efficient Saliency detection (FES) [46], Segmenting object detection (SEG) [47], Spectral Residual
approach (SR) [48], Saliency Using Natural statistics [49], Spatially Weighted Dissimilarity (SWD) [50],
and the SIM is assured as the algorithm adopted in saliency estimation network. The saliency map
outcome and histograms analyzing the outcome are shown in Figure 9.

According to Figure 9, we could infer that the results of the SIM algorithm are able to appropriately
present the energy distribution of objects in the high-resolution remote sensing image, and could
effectively distinguish the scenes whether containing the large-scale ships or not. The describing factor
of the target scale is shown in Formula (8).

fscale =

 1 i f 1
Lu−Ll

Lu∑
i=Ll

Xi ≥
1

Ru−Rl

Ru∑
i=Rl

Xi ≥ T

0 otherwise
(8)

where X represents the statistical feature information, and Lu, Ll represent the upper and lower bounds
of left peak in the histogram, Ru and Rl are also boundaries of the gray interval for the right peak, and
T is the threshold. When fscale = 1, the input image is interpreted as a scene with large-scale ships. It is
found in the experiment that the area with the low gray value in the saliency map is related to the
background information, while the area with a high value is related to the object information. It is
worthy to note that this series of parameters are estimated in the ship detection process, so it should be
adjusted dealing with the size of the input image in different circumstances.

Figure 8. The framework of the Saliency-Faster R-CNN for the multi-scale object detection.
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Figure 9. The saliency maps and their histograms for different input scenes. (a) The test outcome
of different saliency algorithms, including Saliency Intensity Model (SIM) [44], region Covariance
(COV) [45], Fast and Efficient Saliency detection (FES) [46], Segmenting object detection (SEG) [47],
Spectral Residual approach (SR) [48], Saliency Using Natural statistics [49], Spatially Weighted
Dissimilarity (SWD) [50]; (b) the corresponding histogram of the saliency feature map.

3.3.2. Training and Inference

In the training process, the saliency estimation network is operated by the traditional processing
method, it is not necessary to train on a specific dataset. Therefore, there is no need to participate in



Remote Sens. 2019, 11, 1965 15 of 31

the training process. Thus, the total loss function is made of the weighted sum of the bounding box
loss function and classification loss function, and the expression is shown in Formula (9).

Loss = Lcls + λ2Lreg (9)

where Lcls and Lreg are elaborated in formula (2) and (3), and λ2 is a hyper-parameter to balance the
loss of classification and regression.

In the inference process, based on the saliency map obtained by the saliency estimation, the scenes
including large-scale ships or small-scale ships are distinguished. Combining with the mechanism of
the image pyramid, it achieves the compression of images including large-scale ships, and implements
the scale consistency of ships between real scenes and training samples. Then, it imports the compressed
images into the object detection network to conduct the ship objects detection.

4. The Construction of the BATS System

This part will mainly introduce the structure, function and display interface of the BATS system,
which belong to Step A, Step H and Step I of Figure 1, respectively. Each interface in the front end is
inseparable from the architecture of the system function. It is an essential tool for the human-computer
interaction and an effective measure to enhance performance. Aiming to detect ships over a broad
area automatically, by using high-resolution remote sensing images collected from Google Earth
or uploaded by users, a visual and interactive system, i.e., BATS, is developed based on the WEB
technology and DL model.

The BATS has two work components: The front end and back end. The front end is developed
based on the Vue.js framework [51] and combined with Google Map API [52] for the data input and
data display. The back end is developed based on Django [53] and uses SQLite [54] as the database.
The service of the back end includes the database interaction, image preprocessing and calling DL
models. Figure 10 shows the architecture of the BATS system.

Figure 10. The architecture of the Broad Area Target Search (BATS) system with the front end established
by Vue.js and the back end implemented by Django.

4.1. Broad Area Search Module

The broad area search module is the main function in BATS for ship detection in the wide coverage
and high-resolution remote sensing images. In this module, we use the wide areas in Google Earth as
an instance to display the detection results (Step A and Step H in Figure 1). The interface of the broad
area search module is shown in Figure 11.
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Figure 11. The interface of the broad area search module.

As illustrated in Figure 11, on the left side of this interface, there is a window displaying
high-resolution remote sensing image with wide coverage, and this broad area has many regular areas
of interest (AOIs), in which the user can scan and select one or more AOIs to search the ships. After
clicking the search button, the red markers of the targets are shown in this window and the thumbnails
of the predicted results of the cropped images are displayed in the right side of the interface. The user
can click on the thumbnail to view the image details.

The realization process of this module is as follows: (1) A broad region on Google Map is divided
into several large regular AOIs which correspond to some remote sensing images. (2) Users select the
AOIs to search ship targets. (3) The system begins pre-processing (format conversion, image segment)
the corresponding images, and calls the DL model for ship detection, and records the position of the
marked targets. (4) The markers of the targets and thumbnails of the predicted results will be displayed
on the page. The data flow of the broad area search module is shown in Figure 12

Figure 12. The data flow of the broad area search module.
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4.2. Target Detection Module

The target detection module is mainly to meet the inference requirements of individual images
(Step A and Step H in Figure 1). The interface of the target detection module is shown in Figure 13.
There is the upload file function located on the left side of this page, in which the user can drag a single
image or folder into the box to upload. The results of the inference will be displayed by the carousel on
the right side of the page, and the user can switch the current displayed images.

Figure 13. The interface of the target detection module for an independent image.

In the target detection module, we first determine whether the type and size of the uploaded
images are correct and call the pre-processing procedure and DL models for the ship target detection.
Finally, the results of detection are displayed in the web page. The data flow in the target detection
module is same as Figure 12.

4.3. Manual Review Module

The purpose of the manual review module is to artificially inspect the results after inference,
which is relative to step I in the architecture of BATS. In fact, it is necessary to conduct a manual review
because the problems inside the network are directly reflected on these results, and this could give us a
lot of chances to develop effective improvements.

The interface of the manual review module is shown in Figure 14. There is a presentation area on
the left side of this page, in which the user can preview the result image and then vote for problems
contained in this image shown on the right side. After that, the result with an error will be stored into
the database for the process of subsequent relabeling and training. During the steps of the manual
review, the data flow is shown in Figure 15.
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Figure 14. The interface of manual review module.

Figure 15. The data flow of the manual review module.

5. Results

This section is devoted to present the results of the different DCNN-based algorithms on their
aspects of concern and the results of the entire system in the real high-resolution remote sensing image.
During the experiment, the validity is carried out by using the same infrastructure and evaluation
indicators, then, we analyze the result and compare it to baseline method, i.e., the Faster R-CNN,
to validate the effectiveness of our methods. At last, some additional discussions about the system
application environment and scene are presented.

5.1. Introduction of Dataset

In this paper, DOTA [38] is utilized as the training dataset, and the resolution of most images in
this dataset is better than 1 m. In DOTA, there are 434 scenes of different sizes containing multi-scale
ships, it is fortunate that this distribution, i.e., small-scale ships occupy the majority of the dataset and
most of them are close to the harbor in these scenes as shown in Figure 16, accords with the problems
that have been solved in this paper. Eventually, 400 images are obtained from the dataset by manual
selection (excluding the relative low-resolution images) and labeled with mask information in order to
be able to train in both proposed DCNN algorithms. The background information and target categories
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of these images are complex, which include the different lighting conditions and cloud occlusions, and
the dataset contains a variety of ship categories such as the cargo, cruise, carriers, etc. It ensures the
diversity of the samples.

Figure 16. The labeled ship samples in DOTA, which have been scaled down.

The testing dataset consists of some images randomly picked from DOTA, and some remote
sensing images collected from Google Earth are chosen as the testing images, in which the resolution is
0.3 m. Therefore, the images with labeled targets in our dataset are shown in Figure 17, in which the
green box represents the ground truth of the ship target, and the white part represents the land (i.e.,
non-target) area while the black one is the sea in the mask map of the ground truth.

Figure 17. The dataset used in the experiments. The first two row are images in DOTA (training dataset)
and their mask labels, the last two rows are images collected from Google Earth and their mask labels
in the testing dataset.
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In order to keep the consistency of the input in networks and the effective training process under
one GPU, the images in the dataset are cut into the fixed size of 1024×1024 with a 20% overlap rate,
and thus more than 1600 images are generated in the pre-processing step. Then, the images from
DOTA are split into the training data and testing data with the rate of 8:2. Eventually, we form the
testing dataset by merging about 310 images from the DOTA testing data and 152 images collected
from Google Earth after pre-processing. Further, the augmentation operations have been operated to
improve the generalization ability of networks.

All models are built on a Tensorflow DL framework and calculated on the GeForce GTX 1080 Ti
GPU. As a result of the same structure of RPN in both proposed networks, we set its parameters to be the
fixed value that the scale is in (4, 8, 16, 32, 64) and the aspect ratio is in (0.5, 1, 2). Additionally, all models
are trained with the initial weight value based on ResNet-101 and overall training steps are 80,000.

5.2. Results of Multi-Scale Ship Detection

A set of comparison experiments has been conducted in this part, which compares the
Saliency-Faster R-CNN proposed in this paper to the baseline method (Faster R-CNN) to validate
the accuracy and superiority of our method. In fact, SVM [55], as a classic machine learning method,
can also be combined with DCNN for classification, however, relevant studies have proved that the
classification accuracy of SVM is slightly less than the softmax used in the Fast R-CNN [13], Faster
R-CNN [14] and Bengio’s research [56], in addition, the method based on SVM is not an end-to-end
system, that is the reason for choosing Faster R-CNN as the benchmark method in our paper. In
these experiments, we select the images containing the large-scale ship as an independent dataset to
highlight the advantages of our method, and during the testing process, we adopt Ll = 30, Lu = 100,
Rl = 130, Ru = 170 and T = 2000 to calculate the describing factor of the target scale (see Formula (8)).
The value of the average precision (AP) is used to indicate the performance of detection results, which
is shown in Table 3. The value of APL represents the AP index on the large-scale ship dataset. The
NCR (not compressing rate) represents the rate of failure to differentiate the ship size, i.e., not properly
compressing the input image containing the large-scale ships, during the process of saliency estimation.

Figure 18. Cont.
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Figure 18. The saliency map and statistic histogram of some images in the testing dataset.

It should be noted that the AP of the ship by using the Faster R-CNN is only 0.504 in the literature
of the first proposed DOTA [38], but our baseline method here has a value of 0.606, the reason for
the improvement of accuracy is not only the effectiveness of our processing but the single category
detection in our experiments. In Table 3, the APL of the Saliency-Faster R-CNN is 0.727, which is much
better than APL of the Faster R-CNN, and it is more obvious than the improvement in AP. Actually,
this is a reasonable result because the number of large-scale ships in the dataset is much less than the
others, it is hard to promote a lot on AP. Therefore, on the basis of maintaining the detection accuracy
of small-scale ships, our method also has a significant improvement on the detection of large-scale
ships, which is an important aspect in the ship detection task by using the high-resolution remote
sensing image.

Table 3. Comparison of the Saliency-Faster R-CNN and Faster R-CNN.

Method AP APL NCR

Faster R-CNN 0.606 0.664 N/A
Saliency-Faster R-CNN 0.606 0.727 0.105 (16/152)

Furthermore, according to the result in Table 3, the NCR of the Saliency-Faster R-CNN is only
0.105, which fully demonstrates the effectiveness of the saliency estimation. Some testing images and
their saliency maps are shown in Figure 18. The intuitive detection results of the baseline and our
method are shown in Figure 19, and it is obvious that the large-scale ships can be accurately detected
after the compressing process in our method.

Figure 19. Cont.
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Figure 19. The comparison of the Faster R-CNN and Saliency-Faster R-CNN in the case of the large-scale
ships. The first and third rows are results of the Faster R-CNN, and the second and fourth rows are
results of the Saliency-Faster R-CNN.

5.3. Results of Onshore False Alarm Suppression

In order to validate the accuracy of the Mask-Faster R-CNN, the experiment between the Faster
R-CNN and our method has been realized. AP, utilized in the above experiment, and two extra
indicators known as the false rate and mean intersection over union (mIOU) are introduced to evaluate
the detection results. The assessment is presented in Table 4, where the false rate indicates the false
alarm rate in the detection results, and the mIOU demonstrates the performance of the scene mask
estimation in the Mask-Faster R-CNN.

Table 4. Comparison of the Mask-Faster R-CNN and Faster R-CNN.

Method AP False Rate mIOU

Faster R-CNN 0.606 0.686 N/A
0.877Mask-Faster R-CNN 0.628 0.397

In Table 4, the AP of the Mask-Faster R-CNN is 0.628, which is 2.2% higher than that of the Faster
R-CNN, and at the same time, the value of the false rate has a huge reduction from 0.686 to 0.397.
Obviously, when the land (non-target area) information is reduced during the detection process, some
improvements on the false alarm and accuracy are obtained. This also demonstrates that our method can
effectively suppress the onshore false alarms and promote the nearshore ship detection. Furthermore, we
get a value of 0.877 on mIOU, which means the scene mask predicted in the inference process is very
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similar to the ground truth, and it can prove that this network is able to differentiate the target area
(sea) and non-target area (land). Some inference results of the Faster R-CNN and Mask-Faster R-CNN
are shown in Figure 20, in which the yellow region represents the predicted scene mask, the red boxes
represent the ship detection results, and the blue boxes represent the existing false alarms. In these results,
the Mask-Faster R-CNN effectively reduces the number of onshore false alarms.

Figure 20. The comparison results of the Mask-Faster R-CNN and baseline method. The first and third
row are results of the Mask-Faster R-CNN, the second and forth row are results of the Faster R-CNN.

6. Discussions

The above experiments are designed to analyze the accuracy of two DCNN models independently.
Then in this part, an analysis on the effectiveness of the system and cascading model (connecting the
Saliency-Faster R-CNN with Mask-Faster R-CNN) is presented. First, the results of the cascading
model are compared with each DCNN model separately to validate the accuracy and effectiveness of
the cascading model. The evaluation results of the different models are shown in Table 5, where time
represents the average inference time on each image with 1024 × 1024.

According to Table 5, the AP of the cascading mode (the fourth row) is 0.629, which has a little
improvement compared with the Mask-Faster R-CNN, and it indicates that the cascading model really
fuses the advantages of two DCNN models proposed in this paper. However, the consumption time
of both the DCNN model is larger than that of the Faster R-CNN, which only has 0.173 sec/image,
while the time of the Saliency-Faster R-CNN reaches 2.181 sec/image because of the saliency estimation
in this network, so that the time of the cascading model even reaches 2.233 sec/image. Objectively
speaking, this is unbearable in real-time detection tasks of massive data, but it still can be used as a
time-accuracy balance choice because of its improvement on the large-scale ship detection.



Remote Sens. 2019, 11, 1965 24 of 31

Then, an evaluation of the efficiency on the entire system is conducted by using some
high-resolution remote sensing images not in the testing data set. The environment of evaluation
consists of one GPU, a communication network with 1000 Mbps, one CPU with quad core and eight
threads. The results are shown in Table 6.

Table 5. The comparison of time consumption.

Baseline (Faster R-CNN) Mask Saliency AP Time (sec/image)
√

0.606 0.173
√ √

0.606 2.181
√ √

0.628 0.231
√ √ √

0.629 2.233

Table 6. The results of the system efficiency test.

Size (MBytes) Image pixels Upload
(sec/image)

Pre-processing
(sec/image)

Post-processing
(sec/image)

Num of
Images

1440.4 8576 × 5176 1.55 0.155 0.232 77
99.1 5896 × 5328 1.12 0.098 0.235 49
540.1 17152 × 10352 5.34 1.068 0.241 273

In Table 6, the upload represents the time consumption when uploading the images by the
site designed in this paper, the pre-processing represents the time consumed in pre-processing,
which includes images cutting with the fixed size and its position record in the original image, the
post-processing represents the time consumed by dealing with the results after the detection process,
which includes the coordinates transformation of boxes in the original images, the removal of repeated
detection results by using the NMS operation in the overlapping area, finally the Num of Images
represents the total number of images by using the overlapping cutting. According to statistics in
Table 6, the times of processing and transferring are very short compared to the detection time, it will
not influence the efficiency of the entire system and can be accepted.

In addition, in order to demonstrate the superiority of the cascading model and each individual
model on different conditions, the curve of the precision-recall (PR) for each DCNN model is drawn in
Figure 21.

Figure 21. The curves of the precision-recall (PR) of different methods on the same conditions. The
blue dash-dotted line represents the Faster R-CNN, the purple line represents the Saliency-Faster
R-CNN, the red dash-dotted line represents the Mask-Faster R-CNN, and the green line represents the
cascading model.
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From Figure 21, in the same value of the recall, the precision from high to low is the cascading
model, Mask-Faster R-CNN, Saliency-Faster R-CNN and Faster R-CNN. The result indicates that not
only our two individual models can improve the accuracy of ship detection on their respective different
concerns but the cascading model has a comprehensive improvement because of its fusion of two
DCNN models.

In addition to the harbor scenes, we have encountered some scenes which contain icebergs located
in the Arctic, and it is frequent to be some false alarms near or on iceberg during ship detection.
Fortunately, our method still has a good performance on these scenes. Some results are shown in
Figure 22, and the Faster R-CNN is deteriorated because of the false alarms, however, the Mask-Faster
R-CNN avoids such a problem by using the estimated scene mask. In order to prove the applicability
ability of BATS, we uploaded some high-resolution panchromatic remote sensing images via the target
detection module, which are obtained from Gaofen-2 (GF-2) and the resolution of images is 0.8 m,
and the results are shown in Figure 23. It is obvious that our method still has a good performance
compared with the Faster R-CNN, even the type of input data is different from our training set. The
generalization performance of the proposed system is verified to some extent.

Figure 22. The detection result for iceberg scenes by using the Mask-Faster R-CNN and Faster R-CNN,
and the first row is result of the Mask-Faster R-CNN and the second row is result of the Faster R-CNN.

Figure 23. The ship detection result for the GF-2 panchromatic images by using the proposed method
and Faster R-CNN, the first row is the result of our method and the second row is the result of the
Faster R-CNN.
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Finally, one broad-area high-resolution remote sensing image is used to demonstrate the
effectiveness and accuracy of our BATS for the complex scene. The size of the input image is
10656 × 7130, which is collected from Google Earth and it is one part of the Norfolk harbor, and the
resolution of image is 0.3 m, which means it can nearly present a Nimitz-class aircraft carrier. The
detection result is shown in Figure 24.

Figure 24. Cont.
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Figure 24. The detection results of the cascading model on a board area image. The result of our
method in shown in (a) the purple box in (a) represents the area with 1024×1024, (b) is the enlarged
image of the red box in (a), (c) is the same place with (d) and they are proposed by our method and the
Faster R-CNN separately, and (e) is one example in (a) and (f) is the same ship that is conducted by the
Faster R-CNN.

It can be seen that in (a) of Figure 24 almost each ship can be exactly detected in this complex
scene, and some huge ships, for example the Nimitz-class aircraft carrier close to the harbor, which is
shown in (e), can be marked through the Saliency-Faster R-CNN. Meanwhile, a dense ships scene is
located on the right side of the image, and its scaled up image is shown in (b), and each small-scale
ship has been detected, and it is amazing that some onshore alarms are suppressed, which means our
Mask-Faster R-CNN plays its role in the system. At the same time, (d) and (f) obtained from the Faster
R-CNN are the contrast of (c) and (e), respectively, which indicates that our method suppresses the
onshore false alarms and detect the large-scale ship. Therefore, the BATS system has a good detection
performance on the broad area.

7. Conclusions

In order to implement the DCNN-based ship detection in the broad area by using high-resolution
remote sensing images, a ship detection system consisting of data pre-processing, core algorithms
based on DCNN, results display module and manual review module is proposed in this paper, known
as the broad area target search (BATS) system. The ship detection algorithms in this system are the key
step in the ship detection task. For the problem of object scale differences between the training dataset
and real scenes, a method known as the Saliency-Faster R-CNN combining the saliency estimation
network with the object detection network is proposed in this paper, which uses the saliency feature to
describe the scale of the ship inside the image, then the image pyramid is utilized to compress the
input image that includes the large-scale objects so that the ship scale in the real high-resolution image
is close to the scale of samples in the training dataset, and eventually it improves the detection accuracy.
Additionally for the problem of onshore false alarms, a method named as Mask-Faster R-CNN is
introduced, which inserts a branch of the scene mask estimation network into the object detection
network to learn how to discriminate the target area (sea) from the non-target area (land), and then
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cover the land area with a zero response during the RPN process. This method can effectively reduce
the appearance of onshore false alarms.

Furthermore, this system also incorporates the capabilities of the data structure management
of database technology to realize the results storage and display of each step inside the system, and
meantime, it also provides users an interface to review the results and iteratively optimize the core
DCNN-based algorithms. The processing chain based on the database unit constitutes an important
foundation of the data interaction between the BATS system and users.

Through the independent experiment of each DCNN algorithm, the validity of each part has been
verified. Firstly, we validate the Saliency-Faster R-CNN and obtain its superiority compared to the
Faster R-CNN on the large-scale ship detection. Then, the Mask-Faster R-CNN is verified to have its
greatly improvement compared to the Faster R-CNN on the suppression of onshore false alarms. In
the last part, two DCNN-based algorithms are combined to validate the accuracy and efficiency of
the entire system. Actually, the results are really satisfied either on the independent experiment or on
the cascade experiment. To summarize, the framework proposed in our research provides a series of
effective solutions for ship detection in the high-resolution remote sensing image.

At last, taking the data-driven and complexity of the ship detection task into account, the scalability
of the BATS system is increased by using the database and the way of algorithm cascading so that it
inserts more DCNN-based algorithms and constantly improves the performance of ship detection. In
future work, some targets of interest in high-resolution remote sensing images, such as the airplane,
vehicle, storage tank etc., will be concerned in the BATS system. The DCNN models proposed in
this paper need to be continuously optimized according to the diversity of targets and scenes in
the detection task. Furthermore, considering the all-time and all-weather capability of the synthetic
aperture radar (SAR) images, it can be used as a powerful complement to the optical remote sensing
images to achieve an accurate target detection under the condition of the heavy cloud and fog and
inadequate optical data.
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