
remote sensing  

Article

A New Pseudoinvariant Near-Infrared Threshold
Method for Relative Radiometric Correction of
Aerial Imagery

Hua Zhang 1,*, Paul V. Zimba 2 and Emmanuel U. Nzewi 3

1 School of Engineering and Computing Sciences, Texas A&M University-Corpus Christi,
Corpus Christi, TX 78412, USA

2 Center for Coastal Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
3 Department of Civil and Environmental Engineering, Prairie View A&M University,

Prairie View, TX 77446, USA
* Correspondence: hua.zhang@tamucc.edu

Received: 2 July 2019; Accepted: 15 August 2019; Published: 17 August 2019
����������
�������

Abstract: The utilization of high-resolution aerial imagery such as the National Agriculture Imagery
Program (NAIP) data is often hampered by a lack of methods for retrieving surface reflectance from
digital numbers. This study developed a new relative radiometric correction method to retrieve
1 m surface reflectance from NAIP imagery. The advantage of this method lies in the adaptive
identification of pseudoinvariant (PIV) pixels from a time series of Landsat images that can fully
characterize the temporally spectral variations of land surface. The identified PIV pixels allow
for an effective conversion of digital numbers to surface reflectance, as demonstrated through the
validation at 150 sites across the contiguous United States. The results show substantial improvement
in the agreement of NAIP-derived normalized difference vegetation index (NDVI) values with
Landsat-derived NDVI reference. Across the sites, root mean square error and mean absolute error
were reduced from 0.37 ± 0.14 to 0.08 ± 0.07 and from 0.91 ± 0.64 to 0.18 ± 0.52, respectively. Over 70%
PIV pixels on average were derived from vegetated areas, while water and developed areas together
contributed 27% of the PIV pixels. As the NAIP program is continuing to generate new images
across the country, the advantages of its high spatial resolution, national coverage, long time series,
and regular revisits will make it an increasingly crucial data source for a variety of research and
management applications. The proposed method could benefit many agricultural, hydrological, and
urban studies that rely on NAIP imagery to quantify land surface patterns and dynamics. It could
also be applied to improve the preprocessing of high-resolution aerial imagery in other countries.

Keywords: radiometric correction; pseudoinvariant (PIV) pixels; National Agriculture Imagery
Program (NAIP); Landsat; Google Earth Engine; pseudoinvariant near-infrared threshold (PINT)

1. Introduction

The National Agriculture Imagery Program (NAIP) orthoimagery is the only high-resolution
aerial imagery with repeated nationwide coverage in the United States. It is available at the spatial
resolution of 0.6 to 2 meters with very low cloud coverage and consists of repeat images during the
growing season with two or three year cycles for more than 15 years [1]. It has been a unique choice for
a variety of geospatial mapping applications, such as analysis of land cover and land use change [2–4],
evaluation of ecosystem services [5–7], monitoring of forest health [8–11], and assessment of urban
green infrastructure [12,13]. The NAIP imagery will likely continue to be the one of the best data
sources for many research and operational efforts that need high-resolution multispectral imagery
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for feature extraction, change detection, or collection of ground truth for validate coarse-resolution
satellite products.

While available with low or no cost, the NAIP data have not been recognized and utilized as
effectively as one might expect, since important challenges in data preprocessing have hindered the
exploration of this often overlooked valuable data [1]. Compared to satellite imagery programs such
as Landsat and MODIS, the NAIP data are acquired from aerial platforms using different sensors that
have lower radiometric resolutions and the information on sensor characteristics is less available and
consistent over time [1]. Because of the small swath of NAIP images (approximately 7 km × 8 km),
the acquisition of imagery for one region usually involves multiple flights that may last weeks or
potentially even months, and the mosaics of NAIP images have artifacts associated with atmospheric
interference, viewing geometry, illumination, shadows, time of the day, and plant phenology [1,14].
More importantly, NAIP images are distributed in the format of digital numbers (DNs), which are
integer values to facilitate computation and transmission and to scale brightness for convenient
display [15]. The number of brightness values within a DN image is determined by the number of bits
(e.g., 256 values for an 8-bit NAIP image) available. DNs only express relative brightness within the
scene, but they lack the physical units that are necessary to understand the optical processes behind
the observed brightness and the interference of atmosphere. Due to the differences in acquisition
times and dates, DN values can vary between adjacent image tiles [1]. DNs cannot be directly used to
examine brightness over time, to match one scene with another, to prepare mosaic of large regions,
nor to serve models of physical processes such as those in agriculture, forestry or hydrology [15].
The conversion from DNs to surface reflectance is increasingly understood as a minimum standard
for analysis-ready data in order to ensure consistency when comparing images over time and from
different sensors [16]. This is important to the calculations of many multispectral indices, such as the
normalized difference vegetation index (NDVI) and the normalized difference water index (NDWI),
that are very sensitive to atmospheric effects. However, many studies directly applied NAIP without
correction for spectral analysis such as NDVI calculation, land cover classification, and vegetation
cover estimation [3,4,6,8,9,11–14,17]. This is mainly due to a lack of easy access to radiometric response
data for the sensors used and the lack of methods for retrieving surface reflectance from NAIP DN
values [1].

To reduce influences from the atmosphere and retrieve surface reflectance, two categories of
radiometric correction approaches are available: absolute correction and relative correction [18].
Absolute correction primarily uses physical-based radiative transfer models, such as the MODerate
resolution atmospheric TRANsmission (MODTRAN) [19] and the Satellite Signal in the Solar Spectrum
(6S) code [20]. Their implementations require supplementary field measurements of radiance and other
atmospheric conditions at the date and time of the image acquisition [21] and involve many complicated
steps and manual operations [18], which make them usually only available for the processing of satellite
imagery. Absolute correction can also be used to calibrate the sensor if ground measurement includes
a measure of surface reflectance. When the coincident measurements of atmospheric conditions
and surface reflectance are not available, it is necessary to use relative correction approaches [16].
These approaches aim to find a conversion from DN to reflectance that would allow for calibration
and comparison of images taken under different conditions. This often involves identifying pixels
whose absolute reflectance is not changing over time and using them as references for all the images.
Ideally, such pixels would be found for a range of absolute reflectance so that a linear regression can be
performed. The relative correction approaches assume that at-sensor radiance measurements in DNs is
proportional to surface reflectance within visible and shortwave infrared regions when solar angle
variations are minimal and sky irradiance are common, leading to uniform downwelling irradiance
across the scene. When information is available for two or more pseudoinvariant (PIV) features that
have minimal spectral variations over time, a linear regression can be established to convert DNs or
at-sensor radiance into to surface reflectance [21–24]. The linear transformation can be extended to the
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rest of the image or even multitemporal images [25]. This is the basis of the empirical line approach that
has been widely used for relative radiometric corrections of a variety of satellite and aerial imagery.

A small number of studies have included the radiometric correction of NAIP images to retrieve
surface reflectance. The empirical line approach has been applied using pseudoinvariant features
based on calibration panels [26,27] or constructed field plots [28,29]. Those man-made objects have
a specific reflectance value that is almost constant over the targeted wavelength range, which can be
verified in field and/or laboratory conditions using a handheld spectrometer. Natural features were
also used for the empirical line method, such as bare sand pixels [5]. Alternatively, Buffington et al.
(2016) [30] applied the dark object subtraction approach using the histogram of each band, which was
an empirical form of absolute correction. In addition, a color balancing approach was implemented in
conjunction with object-oriented analysis to estimate fractional vegetation cover in tidal marshes [6].
Furthermore, a few studies have explored the integration of satellite and NAIP imagery to develop
linear regression models, for example, through extracting randomly placed points in a Landsat surface
reflectance image [31] or identifying the highest 10% and lowest 10% NDVI pixels [32]. The success
of the relative correction depends strongly on the selection of PIV features, as the degree to which
there are truly spectrally invariant determines the amount of error propagated through the correction
process [21]. However, the establishment of the DN-reflectance relationship in previous studies relied
on ground measurements or pixels derived from a single satellite reference image. The effect of the
temporally spectral variations of the selected PIV pixels or features was not addressed in the assessment
of the established linear transformation.

The objective of this study is to develop a new relative radiometric correction method that can
convert NAIP digital numbers into surface reflectance using PIV pixels extracted from the near-infrared
(NIR) band of satellite images. It takes advantage of the decadal archive of Landsat surface reflectance
data to characterize the temporal stability of land surface spectral variations. We demonstrate the
performance of this method by examining corrected NDVI values at 150 sites across the contiguous
United States that address a variety of land cover and cloud conditions.

2. Materials and Methods

2.1. Study Area and Data

Four primary sites were selected for the development of the proposed method (Table 1 and
Figure 1). Site 1 in southeastern New Hampshire (43◦10′58′′N, 70◦52′58′′W) demonstrates a landscape
dominated by urban development (42.2%) and natural vegetation (46.3%). Site 2 is located in the
northern region of South Carolina (39◦48′7′′N, 77◦6′44′′W), featuring a mixture of cropland (75.6%)
and medium development (12.2%). Site 3 in southern Washington (34◦36′26′′N, 81◦15′10′′W) has
extensive forest coverage (71.0%). Site 4 is located in south Texas along the Gulf of Mexico (26◦54′23′′N,
97◦31′52′′W), dominated by coastal wetlands consisting of tidal flats (69.3%) and marshes (30.1%).

Table 1. Summary of four primary study sites.

Site NAIP ID Landsat ID NAIP-Landsat
Date Difference

Cloud
Cover

Major Land Cover
Categories

Landsat Images
in 10 Years

1 m_4307049_ne_
19_1_20110717 LT05_012030_20110716 1 0.5% Developed (42.4%),

forest (29.9%) 218

2 m_3907716_sw_
18_1_20100703 LT05_015032_20100702 1 <0.1% Cropland (75.6%),

developed (12.2%) 208

3 m_3408131_nw_
17_1_20110430 LT05_017036_20110430 0 <0.1% Forest (71.0%),

grassland (13.5%) 231

4 m_2609704_se_
14_1_20100430 LT05_026041_20100426 4 0.2% Bare (69.3%),

grassland (30.1%) 264
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acquisition was used as the reference image for the DN-to-reflectance conversion. The identification 
of PIV pixels used all Landsat TM and ETM+ images that had acceptable cloud cover and were 
acquired within 10 years of the NAIP image acquisition. The Landsat images were Collection 1 Tier-1 
surface reflectance data with four bands used in this study: green, red, NIR, and the 16-bit quality 
assessment band [33] that is generated based on the C Function of Mask (CFMask) algorithm [34]. 
The CFMask algorithm labels cloud and cloud shadow pixels with different confidence levels using 
a multi-pass decision tree approach and then refines those labels according to scene-wide statistics. 
All NAIP and Landsat data were accessed through Google Earth Engine [35], which hosts the full 
archive of NAIP imagery since 2004 and Landsat imagery since 1986. 

The four primary sites were used for initial algorithm development that involved empirical 
adjustments and visual inspections. After the algorithm was able to provide an accurate depiction of 
the primary sites, it was extended to an additional set of 146 sites (Figure 2) to fully test its 
performance under a broader range of land cover and cloud cover conditions. These sites were 
selected using a stratified sampling scheme. First, ten points were randomly generated within each 
of the 462 Landsat WRS-2 scenes that covered the contiguous United States. At each point, available 
NAIP images and Landsat TM images in 2011–2012 were screened to identify if there was a pair of 
coincident Landsat and NAIP images that were acquired no more than four days apart. If multiple 
pairs were available for one site, the pair with the least cloud cover was used. The National Land 
Cover Database for 2011 was used to examine the land cover conditions of the study sites. A complete 
list of NAIP and Landsat images used in this study is shown in Supplementary Information (Table 
S1). 

Figure 1. The overview of 150 study sites across the contiguous United States. Pie graphs indicate the
land use pattern at each site. Purple circles indicate the four primary sites.

At each site, the NAIP data included an image that was selected from the 2011–2012 archive with
three bands: green, red, and NIR. A Landsat-5 TM image acquired within 4 days of the NAIP image
acquisition was used as the reference image for the DN-to-reflectance conversion. The identification of
PIV pixels used all Landsat TM and ETM+ images that had acceptable cloud cover and were acquired
within 10 years of the NAIP image acquisition. The Landsat images were Collection 1 Tier-1 surface
reflectance data with four bands used in this study: green, red, NIR, and the 16-bit quality assessment
band [33] that is generated based on the C Function of Mask (CFMask) algorithm [34]. The CFMask
algorithm labels cloud and cloud shadow pixels with different confidence levels using a multi-pass
decision tree approach and then refines those labels according to scene-wide statistics. All NAIP and
Landsat data were accessed through Google Earth Engine [35], which hosts the full archive of NAIP
imagery since 2004 and Landsat imagery since 1986.

The four primary sites were used for initial algorithm development that involved empirical
adjustments and visual inspections. After the algorithm was able to provide an accurate depiction of
the primary sites, it was extended to an additional set of 146 sites (Figure 2) to fully test its performance
under a broader range of land cover and cloud cover conditions. These sites were selected using
a stratified sampling scheme. First, ten points were randomly generated within each of the 462 Landsat
WRS-2 scenes that covered the contiguous United States. At each point, available NAIP images and
Landsat TM images in 2011–2012 were screened to identify if there was a pair of coincident Landsat
and NAIP images that were acquired no more than four days apart. If multiple pairs were available for
one site, the pair with the least cloud cover was used. The National Land Cover Database for 2011 was
used to examine the land cover conditions of the study sites. A complete list of NAIP and Landsat
images used in this study is shown in Supplementary Information (Table S1).
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Figure 2. The conceptual diagram of the pseudoinvariant near-infrared threshold (PINT) method. DN
and SR stand for digital number and surface reflectance, respectively.

2.2. Methods

We propose a pseudoinvariant near-infrared threshold (PINT) method that can convert the digital
numbers of NAIP imagery into surface reflectance based on PIV pixels identified from Landsat imagery
(Figure 2). It assumes that a linear relationship exists between digital numbers from a 1 m NAIP
image and surface reflectance from a 30 m Landsat image for overlapping areas, if the two images are
acquired simultaneously and the atmospheric condition is homogenous within the scene. The Landsat
surface reflectance image is considered as a proxy of actual ground-level reflectance measurements for
PIV pixels, which follows a strategy that has been used for the correction and validation of satellite
images with different resolutions [36,37]. Landsat has been used as a reference radiometer against
which many other satellite payloads have their performance gauged against. The overall uncertainty
of Landsat Tier-1 surface reflectance product is on the order of 6–10% around the world, depending on
spectral channel, underlying atmospheric conditions and radiometric calibration characteristics [16,38].
The correlation between Landsat and MODIS surface reflectance products is high and the bias is mostly
around 1% to 5% with the largest difference in the blue band [38].

The procedure of PINT is centered on the identification of PIV pixels that can best define the linear
transformation between surface reflectance and digital numbers, consisting of several steps, as shown
in Figure 3. First, when the targeted NAIP image and the coincident Landsat image are determined,
a ten year collection of Landsat TM and ETM+ images at this location is rigorously filtered. Images
with cloud cover >50% in the scene were discarded. For the rest of the collection, pixels detected as
clouds or shadows were masked out on each image. In the pixel quality band, the value of a pixel
indicates the levels of confidence that a cloud and/or shadow condition exists at this pixel. Pixels
with high cloud or shadow confidence were identified and masked out. Then, areas within 90 m
(i.e., three Landsat pixels) of the edge of the targeted NAIP image were excluded to avoid the influence
of boundary pixels. The temporal standard deviation of the near-infrared band at the pixel level is
calculated over the ten years of Landsat images.

By specifying a percentile of the temporal standard deviation image for thresholding, pixels that
have sufficiently low variations are identified as potential PIV pixels. Because the NIR band tends
to have greater variations than the visible bands (Figure S1), it is easier and more robust to identify
PIV pixels from the NIR band when all bands have the same radiometric resolution. The locations
of tentative PIV pixels are aggregated into a mask that is applied to the coincident pair of NAIP and
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Landsat images. The NAIP image is upscaled to the 30 m spatial resolution of the Landsat reference
image in advance. Homogeneity of the upscaled pixels is discussed in the results. For each of the three
bands (i.e., red, green, and NIR), digital number and surface reflectance are extracted at locations of
PIV pixels from the NAIP and Landsat images, respectively, and linear regression is performed after
the removal of outliers. The mean value of the coefficient of determination (R2) of three bands is taken
as the measure of regression performance. Through iteratively testing thresholds starting from 0.01st
percentile with an increment of 0.01% until the 5th percentile, the threshold with the highest mean R2 is
determined as the best threshold. Given that an NAIP image covers an area of approximately 53 km2

on average or the equivalence of about 60,000 pixels at the 30 m resolution, the increment of 0.01%
is equivalent to the addition of 6 pixels, which is considered to be an appropriate scale for common
invariant features. The linear transformation models associated with the best threshold are applied
to the bands of upscaled 30 m NAIP for validation and eventually the original 1 m NAIP image for
high-resolution mapping applications. To validate the performance of PINT, NDVI is calculated using
the 30 m NAIP surface reflectance and compared to NDVI generated from Landsat surface reflectance.
Evaluation metrics consist of R2, Nash–Sutcliffe efficiency (NSE), mean absolute error (MAE), and root
mean square error (RMSE).Remote Sens. 2019, 11, x FOR PEER REVIEW 6 of 18 
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Figure 3. The flowchart of the proposed pseudoinvariant near-infrared threshold (PINT) method.

This method is different from previous studies in several aspects. First, the identification of PIV
pixels only requires the temporally variation of the NIR band, eliminating the need to inspect the
pixels across all bands for the consistency of spectral brightness. The PIV pixels identified in the
NIR region are assumed to be spectrally invariant in visible bands as well. The noise components of
some multispectral bands may have larger amplitude than the signal components of other bands [21].
For Landsat TM and ETM+ sensors, the visible bands record less variation and are more affected
by residual clouds and snow, in comparison to the infrared bands [39]. Second, the number of PIV
pixels varies based on the optimal threshold of each image, in contrast to the use of a fixed empirical
threshold for all images [37,40]. The adaptive scheme of PINT could alleviate the disturbance of
nonlinearity of the spectral variance and enhance the spectral diversity of PIV features (i.e., pixels are
well spread other than concentrated in a small range of brightness), all amendable to the robustness of
the linear regression.

3. Results

3.1. Results from Primary Sites

Site 1 (Figure 4) demonstrates a mixture of urban areas and forest. Highways, buildings, and
waterbodies show low temporal variance in the near-infrared band. The five PIV pixels (0.01st
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percentile) consisted of three pixels located in a lake and two pixels in developed areas (Figure 4b).
The performance of linear regression decreased dramatically with more PIV pixels, before it was
improved when more than 0.8% pixels were included (Figure 4d). NDVI based on the NAIP surface
reflectance matched well with the Landsat reference data (Figure 4g), in contrast to the apparent
underestimation for NDVI derived from NAIP digital numbers (Figure 4i). The difference is also
visually evident as shown in Figure 4e,f,h. While capturing the pattern of NDVI from the Landsat
reference image, the corrected NAIP image clearly provides more details about the heterogeneity of
vegetation cover and impervious surfaces with the 1 m spatial resolution.Remote Sens. 2019, 11, x FOR PEER REVIEW 8 of 18 
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Figure 4. Application of PINT at site 1. Plots (a)–(d) demonstrate the identification of pseudoinvariant
(PIV) pixels: plot (a) shows the 1 m false-color National Agriculture Imagery Program (NAIP) image
(near-infrared (NIR), red and green bands) before radiometric correction; plot (b) shows pseudoinvariant
features (white squares) identified from the 10 year NIR standard deviation of Landsat TM and ETM+

images; plot (c) demonstrates the identification of the best threshold (0.01st percentile); and plot
(d) shows the linear regressions of Landsat surface reflectance and NAIP digital numbers based on
pseudoinvariant pixels. Plots (e)–(i) show the validation of the normalized difference vegetation index
(NDVI) values: plot (e) shows 30 m Landsat NDVI as the reference; plots (f) and (h) show 1 m NAIP
NDVI before and after correction, respectively; and plots (g) and (i) show the agreement with Landsat
reference before and after correction, respectively. The solid line is the 1:1 line, indicating a perfect
match between NAIP and Landsat NDVI values, and the dashed lines represent the upper and lower
10% error bounds.
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Site 2 (Figure 5) is dominated by a mixture of croplands and medium development. A total of
14 PIV pixels with the threshold of 0.03rd percentile were identified within a small lake and near
the edge of a ranch. The corrected NAIP image results in elevated NDVI values and an improved
agreement with the Landsat reference with RMSE and MAE reduced by over 85%.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 18 
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(near-infrared (NIR), red and green bands) before radiometric correction; plot (b) shows pseudoinvariant
features (white squares) identified from the 10 year NIR standard deviation of Landsat TM and ETM+

images; plot (c) demonstrates the identification of the best threshold (0.01st percentile); and plot
(d) shows the linear regressions of Landsat surface reflectance and NAIP digital numbers based on
pseudoinvariant pixels. Plots (e)–(i) show the validation of the normalized difference vegetation index
(NDVI) values: plot (e) shows 30 m Landsat NDVI as the reference; plots (f) and (h) show 1 m NAIP
NDVI before and after correction, respectively; and plots (g) and (i) show the agreement with Landsat
reference before and after correction, respectively. The solid line is the 1:1 line, indicating a perfect
match between NAIP and Landsat NDVI values, and the dashed lines represent the upper and lower
10% error bounds.

Site 3 (Figure 6) has a dense forest cover. The best linear transformation was achieved using the
0.33rd percentile threshold with 168 PIV pixels. These pixels spread over the scene and indicated the
spectral stability of small waterbodies and dense vegetation patches. In contrast to the low percentile



Remote Sens. 2019, 11, 1931 9 of 17

threshold of 0.01st percentile in sites 1 and 2 (Figures 4d and 5d), more pixels were needed to construct
the linear regression at site 3. This indicates that the pixels associated with very low NIR thresholds
at this site may not be spectrally invariant as their values suggest. The quality of cloud and shadow
detection in image preprocessing could be a reason for errors in the quantification of temporal NIR
variance at this site. Nevertheless, the incorporation of a sufficient number of PIV pixels ensured the
improved agreement with Landsat-derived NDVI in terms of RMSE, NSE, and MAE (Figure 5g,i).Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 18 
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Figure 6. Application of PINT at site 3. Plots (a)–(d) demonstrate the identification of pseudoinvariant
(PIV) pixels: plot (a) shows the 1 m false-color National Agriculture Imagery Program (NAIP) image
(near-infrared (NIR), red and green bands) before radiometric correction; plot (b) shows pseudoinvariant
features (white squares) identified from the 10 year NIR standard deviation of Landsat TM and ETM+

images; plot (c) demonstrates the identification of the best threshold (0.01st percentile); and plot
(d) shows the linear regressions of Landsat surface reflectance and NAIP digital numbers based on
pseudoinvariant pixels. Plots (e)–(i) show the validation of the normalized difference vegetation index
(NDVI) values: plot (e) shows 30 m Landsat NDVI as the reference; plots (f) and (h) show 1 m NAIP
NDVI before and after correction, respectively; and plots (g) and (i) show the agreement with Landsat
reference before and after correction, respectively. The solid line is the 1:1 line, indicating a perfect
match between NAIP and Landsat NDVI values, and the dashed lines represent the upper and lower
10% error bounds.
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At site 4 (Figure 7) in a coastal environment, six PIV pixels were identified in marshes and a ship
channel to construct the linear transformation. No PIV pixels were identified in the tidal flats which
had high NIR variations due to the irregularly wind-driven inundation, while marshes were less
flooded due to their higher elevation. Raising the percentile threshold resulted in gradually decreasing
R2, but the performance tended to be stabilizing after more than 2% of pixels were used. The corrected
NDVI yielded a slightly lower R2, but RMSE, NSE, and MAE were improved significantly.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 18 
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thresholds for 150 sites nationwide. The average threshold was the 0.69th percentile, or 0.025 in terms 
of the actual value of the temporal standard deviation of the NIR band. This suggests that 
approximately 300 pixels on average are needed to define the linear relationship between surface 
reflectance and digital numbers. The 0.01st percentile (five pixels) was identified as the threshold for 
35 sites and the 0.02nd percentile (ten pixels) for 23 sites. On the other hand, the thresholds were above 
the 4.5th percentile (i.e., >2250 pixels) for ten sites. The range of thresholds determined in this study 
was comparable to the threshold of 0.020–0.027 recommended for MODIS time series [37,40]. 
Regarding the regression lines, the average slope and intercept were 0.0017 and 0.017 for the NIR 

Figure 7. Application of PINT at site 4. Plots (a)–(d) demonstrate the identification of pseudoinvariant
(PIV) pixels: plot (a) shows the 1 m false-color National Agriculture Imagery Program (NAIP) image
(near-infrared (NIR), red and green bands) before radiometric correction; plot (b) shows pseudoinvariant
features (white squares) identified from the 10 year NIR standard deviation of Landsat TM and ETM+

images; plot (c) demonstrates the identification of the best threshold (0.01st percentile); and plot
(d) shows the linear regressions of Landsat surface reflectance and NAIP digital numbers based on
pseudoinvariant pixels. Plots (e)–(i) show the validation of the normalized difference vegetation index
(NDVI) values: plot (e) shows 30 m Landsat NDVI as the reference; plots (f) and (h) show 1 m NAIP
NDVI before and after correction, respectively; and plots (g) and (i) show the agreement with Landsat
reference before and after correction, respectively. The solid line is the 1:1 line, indicating a perfect
match between NAIP and Landsat NDVI values, and the dashed lines represent the upper and lower
10% error bounds.

Overall, using NAIP digital numbers appeared to generate underestimated NDVI values across
the four primary sites. The PINT method was effective in retrieving surface reflectance and improving
the quality of NAIP-derived NDVI data.
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3.2. Results of Nationwide Validation

Figure 8 summarizes the best NIR thresholds and the regression lines that defined these thresholds
for 150 sites nationwide. The average threshold was the 0.69th percentile, or 0.025 in terms of the
actual value of the temporal standard deviation of the NIR band. This suggests that approximately
300 pixels on average are needed to define the linear relationship between surface reflectance and
digital numbers. The 0.01st percentile (five pixels) was identified as the threshold for 35 sites and
the 0.02nd percentile (ten pixels) for 23 sites. On the other hand, the thresholds were above the 4.5th
percentile (i.e., >2250 pixels) for ten sites. The range of thresholds determined in this study was
comparable to the threshold of 0.020–0.027 recommended for MODIS time series [37,40]. Regarding the
regression lines, the average slope and intercept were 0.0017 and 0.017 for the NIR band, respectively,
and 0.00092 and −0.013 for the red band, respectively. For both bands, the slope was positively skewed,
while the intercept was negatively skewed.
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identified near-infrared thresholds. Plots (c) and (d) show slopes and intercepts of linear regression
models for the near-infrared band. Plots (e) and (f) show slopes and intercepts of linear regression
models for the red band.

Validation results for 150 sites nationwide show substantial improvement in the NDVI agreement
against the Landsat NDVI reference (Figure 9). The values of RMSE were reduced from 0.37 ± 0.14 to
0.08 ± 0.07. The values of MAE were reduced from 0.91 ± 0.64 to 0.18 ± 0.52. The values of R2 were
stable: 0.70 ± 0.19 before the correction and 0.71 ± 0.20 after the correction. The values of NSE was
reduced from −41.71 ± 107.68 to −0.65 ± 10.39. The negative mean value of NSE reflects the sensitivity
of this measure to extreme values. Detailed measures of all 150 sites are provided in Supplementary
Information (Tables S1 and S2).
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3.3. Land Cover of PIV Pixels

PIV pixels are taken as approximations of features with spectral properties that do not change
significantly over time [15]. Land cover has been used as a key characteristic for the identification and
description of PIV pixels. The results of this study provide a comprehensive viewpoint to examine
the link between land cover and PIV pixels. On the basis of the 2011 National Land Cover Database
(NCLD), Figure 10 shows the average land use conditions for the 150 NAIP images and the PIV pixels
identified in them, with a comparison to the land cover of the contiguous United States. The sixteen
NCLD land cover classes were grouped into the following six general categories: water, developed,
barren land, forest, grassland, and cropland. As the NAIP images were selected using a stratified
sampling approach, the pattern of their land cover effectively represented the national land cover
pattern in 2011. The grassland category consisted of various types of shrublands, grasslands, and
herbaceous wetlands. It was the dominant land cover category across the NAIP images (43%) and
the identified PIV pixels (44%). Forest accounted for 26% in the NAIP images, but only 20% of the
PIV pixels. Similarly, cropland accounted for 23% in the images, but merely 8% of the PIV pixels.
This indicates that the phenological variations of forest and crop species are more detectable than
that of natural herbaceous plants in the Landsat NIR band. Water and developed areas together
contributed to 27% of the PIV pixels, a more influential role as compared to the small fractions of
scenes (7% for both) occupied by them. This is consistent with the common uses of various man-made
structures and clear deep waterbodies as PIV features in previous studies [21,41,42]. Nevertheless, the
results of this study show that on the average over 70% PIV pixels were derived from vegetated areas.
PIV pixels might be identified in some vegetation areas where the fractional vegetation coverage is low
and phenological changes are less significant as compared with fully-vegetated areas (Figure S2 in
Supplementary Materials). This suggests that PIV-based relative radiometric correction approaches
are suitable for a variety of regions and are not limited to urban areas. Comparisons between the 1 m
NDVI images and the 30 m reference Landsat images at the primary sites (Figures 4–7) also indicate
that a PIV pixel may not be occupied by a homogenous land cover. This provides evidence to support
the finding by Padró et al. (2017) [37] that a PIV feature can be spectrally heterogeneous while it is
radiometrically stable, i.e., its global reflectance does not change over time even if there are different
land covers inside the area.
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4. Discussion

The calculation of temporal variation of NIR reflectance is a critical component of the PINT
method. A key parameter of this procedure is the number of satellite images to be included in the
calculation. How many years of images are sufficient for identifying PIV pixels? Will using more
images improve the identification of PIV pixels? Thanks to the multidecadal Landsat legacy, we were
able to examine the effect of the quantity of Landsat images on the performance of PINT over different
durations ranging from two years to 30 years before the acquisition of the NAIP image. The responses
of the NIR threshold and the metrics of NDVI validation were examined at the four primary sites
(Figure 11).
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mean square error, and mean absolute error, respectively.

At these sites, longer durations led to the inclusion of more Landsat images. The changes in the
number of images appeared to follow a piecewise linear pattern with a reduced slope for durations
longer than 12–15 years, suggesting a reduced availability of Landsat images prior to 1999–2001,
as Landsat 7 was launched in 1999. Changes in the NIR threshold, however, were less consistent
across the sites. Sites 2 and 4 had stable thresholds over different durations, while sites 1 and 3
had fluctuations in the ranges of 0.5th percentile and 1.5th percentile, respectively. The response of
correction performance was reflected in the pattern of different measures. The stability of the NIR
threshold was not linked to the stability of the measures. For example, site 2 had both the most stable
threshold and the most variable measures among the four sites. The measure of NSE appeared to be
more sensitive to the number of images than other measures. Overall, the use of ten years of Landsat
images was sufficient for converting digital numbers into surface reflectance and incorporating a longer
time series from the same sensor did not substantially improve the correction of NDVI in this study.
This duration of Landsat time series was consistent with the value recommended for the identification
of PIV features using MODIS time series [40] and could be considered as a reasonable configuration
for the implementation of PINT for other regions.

The integration of data from multiple sensors on different satellites should enhance the robustness
of the identification of NIR threshold and facilitate the comparison of PINT to existing relative
correction approaches. However, the spectral differences among the sensors of interest should be taken
into consideration. For example, incorporating additional images from the Landsat 8 Operational
Land Imager (OLI) sensor could considerably increase the temporal resolution of time series, but the
OLI bands are spectrally narrower than the corresponding TM and ETM+ bands, especially in the
near-infrared region, which could result in NDVI differences of about 5% [43,44]. Incorporating images
from the Sentinel-2A Multispectral Instrument (MSI) sensor is expected have the same problem, as MSI
and OLI bands are very spectrally similar except in the thermal infrared region.

The development and validation of PINT in this study was particularly facilitated by the use
of the Google Earth Engine. Traditionally, NAIP images are downloaded as county-scale mosaics
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through the Agriculture Farm Service of the United States Department of Agriculture (USDA). Only
the data of the most recent year are available on an ArcGIS server. The collection of NAIP data
for a large region or a long period is often a very time-consuming procedure. Through hosting the
entire NAIP legacy in cloud storage, the Google Earth Engine provides a highly-efficient means to
improve not only the accessibility of this unique dataset, but also its processing and analysis. The free
and open access of NAIP data through the Google Earth Engine could result in landmark changes
in the utilization of NAIP data and its integration with other remotely sensed data, an information
breakthrough comparable to the initiation of Landsat data release in 2008. In addition, through the
Google Earth Engine, the proposed method takes advantage of the archives of Landsat 5 and 7 and
identifies PIV features based on hundreds of images that fully address the temporally spectral variation
of ground features. This eliminates the previous efforts to calibrate to specific laboratory or field
spectra, because the 30 m PIV pixels are stable combinations of a variety of materials instead of the
pure presence of a single material.

There are several potential sources of uncertainty that could be the directions for future work.
First, the spectral mismatch between Landsat sensors and NAIP cameras will affect the conversion of
digital numbers to surface reflection, as the visible and NIR bands of Landsat sensors are different from
that of NAIP cameras in many aspects, e.g., bandwidth and radiometric resolution. Secondly, various
cameras have been used for the NAIP program since 2004. The Farm Service Agency of USDA does
not specify camera and sensor requirements for the image collections and different states might use
different contractors to conduct their flights [1]. Although the entire NAIP archive is available on the
Google Earth Engine, there is a lack of information about the usage of different cameras, their spectral
responses, and particularly how linear they are. Third, the proposed method tends to interpolate
and extrapolate the DN-reflectance relationships from PIV pixels to the rest of the scene, which could
consist of areas that may have different atmospheric conditions and have different solar angles and
perhaps viewing angles, although the swath of NAIP images is smaller than that of Landsat images.
Each of these sources could result in a few percentages of uncertainty and their cumulative effect needs
a systematic understanding

5. Conclusions

This study developed a new relative radiometric correction method to retrieve 1 m surface
reflectance from NAIP imagery. The advantage of this method lies in the adaptive identification of
pseudoinvariant pixels from a time series of Landsat images that can fully characterize the temporally
spectral variations of land surface. The identified PIV pixels allow for an effective conversion of NAIP
digital numbers to surface reflectance, as demonstrated through the results from 150 sites across the
United States. The corrected NAIP imagery could benefit many agricultural, hydrological, and urban
studies that rely on this data to quantify land surface patterns and dynamics. As the NAIP program is
continuing to generate new images across the country, the advantages of its high spatial resolution,
national coverage, long time series, and regular revisits will make it an increasingly crucial data source
for a variety of research and management applications. The proposed PINT method could enhance the
preprocessing of NAIP imagery and improve the utilization of often overlooked valuable data.

As this method is based on Landsat imagery that has global coverage, it could benefit the
preprocessing of high-resolution aerial imagery programs in other countries. This potential is
particularly supported by the easy implementation of PINT via the Google Earth Engine that enables
the access and analysis of aerial and satellite imagery across large spatial and temporal scales. On the
other hand, PINT could be adapted to handle the rapid growing data from unmanned aircraft systems
(UAS). A typical UAS flight at 120 m altitude can generate a mosaic image that covers an area of
0.50 km2, which is equivalent to the total area of about 550 pixels on a Landsat image. A UAS image
could contain PIV pixels that are identifiable from Landsat or other medium-resolution satellite images.
This could help address the increasing awareness of and need for UAS-derived ultrahigh-resolution
surface reflectance data for various applications.
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