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Text S1 Procedure of PLSR 

The procedure of PLSR analysis is introduced here.  
For convenience, we assume that the dependent variables matrix is  

𝑋௡×௠ = ൭

𝑥ଵଵ ⋯ 𝑥ଵ௠

⋮ ⋱ ⋮
𝑥௡ଵ ⋯ 𝑥௡௠

൱ = (𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௠) 

with (𝑥ଵ, 𝑥ଶ, ⋯ , 𝑥௠) as the dependent variables, m is the number of variables, and n is the length of 
each dependent variable. And the independent variables matrix is 

𝑌௡×௣ = ൭

𝑦ଵଵ ⋯ 𝑦ଵ௣

⋮ ⋱ ⋮
𝑦௡ଵ ⋯ 𝑦௡௣

൱ = (𝑦ଵ, 𝑦ଶ, ⋯ , 𝑦௣) 

with (𝑦ଵ, 𝑦ଵ, ⋯ , 𝑦௣)  as the independent variables. 𝑋௡×௠   and  𝑌௡×௣  are normalized as 𝐴௡×௠ =

(𝑎ଵ, 𝑎ଶ, ⋯ , 𝑎௠)  and  𝐵௡×௣ = (𝑏ଵ, 𝑏ଶ, ⋯ , 𝑏௣)  by subtracting the mean values and dividing the standard 
deviation values.  

Then, the first component of 𝑋௡×௠  and  𝑌௡×௣ is extracted and noted as 𝑢ଵ  and  𝑣ଵ, respectively. They 
have the following linear combinations  

𝑢ଵ = 𝛼ଵଵ𝑥ଵ + 𝛼ଵଶ𝑥ଶ + ⋯ + 𝛼ଵ௠𝑥௠ = 𝜌(ଵ)்𝑋 (1) 

and 

𝑣ଵ = 𝛽ଵଵ𝑦ଵ + 𝛽ଵଶ𝑦ଶ + ⋯ 𝛽ଵ௣𝑦௣ = 𝛾(ଵ)்𝑌     (2) 

It is requested that  
(1) 𝑢ଵ and 𝑣ଵshould extract much various information from 𝑋௡×௠  and  𝑌௡×௣ as soon as possible that is 

𝑉𝑎𝑟(𝑢ଵ) → 𝑚𝑎𝑥 and 𝑉𝑎𝑟(𝑣ଵ) → 𝑚𝑎𝑥; 
(2) The correlation coefficient (Corr) between 𝑢ଵ and 𝑣ଵ should be maximum which is  

𝐶𝑜𝑟𝑟(𝑢ଵ, 𝑣ଵ) → 𝑚𝑎𝑥. 

From the normalized matrixes 𝐴௡×௠ and  𝐵௡×௣, the score vectors of 𝑢ଵ and 𝑣ଵ have the following forms: 
𝑢ଵෞ = 𝐴𝜌(ଵ)  and 𝑣ଵෞ = 𝐵𝛾(ଵ). 

The above two conditions are equivalent to the covariance between 𝑢ଵ and 𝑣ଵ satisfying  
𝐶𝑜𝑣(𝑢ଵ, 𝑣ଵ) → 𝑚𝑎𝑥, 

which converts a conditional extreme value problem as 
𝑚𝑎𝑥(𝑢ଵෞ ∙ 𝑣ଵෞ) = ൫𝐴𝜌(ଵ) ∙ 𝐵𝛾(ଵ)൯ = 𝜌(ଵ)்𝐴் ∙ 𝐵𝛾(ଵ) 

𝑠. 𝑡. ൝
𝜌(ଵ)்𝜌(ଵ) = ฮ𝜌(ଵ)ฮ

ଶ
= 1,

𝛾(ଵ)்𝛾(ଵ) = ฮ𝛾(ଵ)ฮ
ଶ

= 1.
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Using the Lagrangian algorithm, 𝜌(ଵ) is the corresponding eigenvector of the maximum eigenvalue of 
the matrix  𝐴்𝐵𝐵்𝐴 and 𝛾(ଵ) is the corresponding eigenvector of the maximum eigenvalue of the matrix  
𝐵்𝐴𝐴்𝐵.  And now, the equations (1) and (2) are computed.  

According to the principal component analysis method, 𝑋  and 𝑌  can be regressed on 𝑢ଵ . The 
regression model is  

ቊ
𝐴 = 𝑢ଵෞ𝜎(ଵ)் + 𝐴ଵ,

𝐵 = 𝑢ଵෞ𝜏(ଵ)் + 𝐵ଵ,
                  (3) 

where 𝐴ଵ  and 𝐵ଵ  are the residual matrixes, and 𝜎(ଵ)  and 𝜏(ଵ)  are the regression coefficients with the 
following form: 

⎩
⎪
⎨

⎪
⎧𝜎(ଵ) =

𝐴்𝑢ଵෞ

‖𝑢ଵෞ‖ଶ
,

𝜏(ଵ) =
𝐵்𝑢ଵෞ

‖𝑢ଵෞ‖ଶ
.

                        (4) 

Repeating the above process by treating 𝐴ଵ as 𝐴 and 𝐵ଵ as 𝐵, we have  

ቊ
𝐴ଵ = 𝑢ଶෞ𝜎(ଶ)் + 𝐴ଶ,

𝐵ଵ = 𝑢ଶෞ𝜏(ଶ)் + 𝐵ଶ,
              (5) 

where  

⎩
⎪
⎨

⎪
⎧𝜎(ଶ) =

𝐴ଵ
்𝑢ଶෞ

‖𝑢ଶෞ‖ଶ
,

𝜏(ଶ) =
𝐵ଵ

்𝑢ଶෞ

‖𝑢ଶෞ‖ଶ
.

                             (6) 

Repeating this process 𝑟  times, 𝑟  is the rank of 𝐴  with 𝑟 ≤ min (𝑛 − 1, 𝑚) . Then, there exist 𝑟 
components   𝑢ଵ, 𝑢ଶ, ⋯ 𝑢௥ such that  

ቊ
𝐴 = 𝑢ଵෞ𝜎(ଵ)் + 𝑢ଶෞ𝜎(ଶ)் + ⋯ + 𝑢௥ෞ𝜎(௥)் + 𝐴௥,

𝐵 = 𝑢ଵෞ𝜏(ଵ)் + 𝑢ଶෞ𝜏(ଶ)் + ⋯ +𝑢௥ෞ𝜏(௥)் + 𝐵௥.
                    (7) 

In the end, based on the relationships of the above variables, the PLSR equation is obtained as 

𝑌 = 𝑋𝐶 + 𝐹,                        (8) 

where 𝐶 and 𝐹 can be computed. The above processes are the major computing steps of PLSR in [1]. 
In this study, the monthly GWSA is the matrix 𝑌, and the other five monthly hydroclimate variables (P, T, 
E, SM and SWE) are the dependent variables matrix 𝑋. We aim to develop PLSR models to estimate GWSA 
for Xinjiang and the five sub-regions, which are also used to reveal the major influencing variables of the 
changes in groundwater. Moreover, the differences of the major influencing variables in the five sub-
regions are also discussed to understand the hydro-climatic mechanisms of groundwater changes in the 
study area.  
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Text S2 Discussion on the accuracy of the derivation of GWSA based on GRACE 

The method used in this study to derive GWSA based on GRACE has be evaluated by in-situ 
observations from monitoring well stations in various data-rich regions across the world, demonstrating 
the reliability of the method [2]. However, the groundwater level observations are extremely limited in 
the study area, making a direct comparison of the estimated GWSA against groundwater observations 
difficult [3-5]. To the performance of the derivation method of GWSA in the study area, we here discuss 
the accuracy of each hydrological components used in this method, including P, T, E, TWSA, SM, and 
SWE (Table 1).  

Accuracy of P and T 

The P and T datasets used in this study are the gridded observations at the spatial resolution of 
0.5°×0.5° from the China Meteorological Administration (http://data.cma.cn/site/index.html). These two 
gridded datasets were developed by interpolating observations from 2,472 meteorological stations over 
China based on the Thin Plate Spline (TPS) interpolation method. Strict quality control and generalized 
cross-validation test have been conducted for the datasets. The datasets can reasonably describe the 
spatiotemporal characteristics of precipitation and temperature and in Northwest China [6]. 

Accuracy of E, SM, and SWE   

The dataset of E applied in this study is the Global Land Evaporation Amsterdam Model V3.1a 
(https://www.gleam.eu/). The GLEAM was developed based on a set of algorithms that separately 
estimate different components of terrestrial ET based on satellite observations, including transpiration, 
interception loss, bare-soil ET, snow sublimation and open-water ET [7]. Against the in-situ 
measurements, the GLEAM V3 dataset shows high accuracy with a correlation coefficient value larger 
than 0.8 [7].  

The SM dataset we used is GLDAS Noah 2.1 (https://search.earthdata.nasa.gov/). The SM of 
GLDAS Noah 2.1 has been widely used in many previous studies in the field of hydrology [5,8,9]. The 
accuracy of Noah 2.1 SM data has been evaluated against the in-situ and remotely sensed observations 
over China and the globe [9,10]. Previous studies have shown that GLDAS Noah SM is in agreement 
with the observations in China, although there are no observed stations of SM in Xinjiang [9].  

Due to the lake of the in-situ observations, the accuracy of SWE obtained from GLDAS Noah 2.1 is 
not evaluated in this study. However, the SWE data of GLDAS Noah 2.1 has been used in detecting the 
groundwater changes over other regions [2,5,11].  

Although we do not have observed SM and SWE, we further conduct an uncertainty analysis among 
various SM and SWE outputs based on [12] in the revised manuscript. SM and SWE from five GLDAS 
models, namely CLM, Mosaic, VIC, GLDAS 1 Noah 2.7 (hereafter Noah 2.7) and GLDAS 2.1 Noah 3.3 
(hereafter Noah 3.3) are used to calculate the standard deviations (STDs) of the trends from the five 
GLDAS models as trend uncertainties. The trend uncertainties reflect discrepancies of the slopes 
estimated from the five models.  

The spatial distributions of the SM linear trends of the five GLDAS models are provided in Figure 
S3. Mosaic, VIC, Noah 2.7, and Noah 3.3 have positive linear trends over the same regions (Figures S3B-
S3E), except the CLM model (Figure S3A). The spatial distributions of the multi-model average of the 
trends and the STDs of the five GLDAS models are displayed in Figure S4. Most of the STDs are smaller 
than 1 mm/month which indicates the uncertainties of SM from different GLDAS models are small 
(Figure S4B).  
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For SWE, CLM, Mosaic, VIC, and Noah 2.7 have similar spatial distributions of the linear trends 
(Figures S5B-S5E). Although there are some differences between the above four models and Noah 3.3, 
the linear trend values of the five models are very small, and most of them are insignificant (Figure S5). 
The STDs of the linear trends of the five models are smaller than 0.25 mm/month over most parts of 
Xinjiang (Figure S6). 

Accuracy of TWSA and GWSA 

The TWSA of GRACE data has been used to detect the water storage changes over Xinjiang 
successfully [3,4], and the GWSA data based on GRACE and GLDAS has been widely employed to 
detect the groundwater change in north China [5,13] and India [11]. Therefore, we have high confidence 
in employing this method to evaluate groundwater variations in Xinjiang. 

To further evaluate the robustness of the results, we conduct an uncertainty analysis of GWSA 
derived from different GLDAS models: CLM, Mosaic, VIC, Noah 2.7, and Noah 3.3. To avoid the 
impacts of choice of GRACE data on GWSA, we use monthly EM-GRACE to estimate GWSA in the 
uncertainty analysis.  

The spatial distributions of the GWSA from the five models are provided in Figure S7. All models 
indicate negative trends of the GWSA in JGB, and positive trends in the east KLM (Figure S7). 
Compared to CLM and Noah 2.7, the spatial distributions of Mosaic and VIC have better agreement with 
Noah 3.3 with negative linear trends over the southern part of Xinjiang (Figure S7). Figure S8 shows the 
mean trends and the STDs of the GWSA linear trends based on the five GLDAS models and EM-
GRACE. The mean trends also show the negative linear trends across Xinjiang except the positive linear 
trends over KLM. These results indicate the groundwater depletion in a majority of our study area (Figure 
S8A). The mountainous areas have large STDs, which shows the larger uncertainties in mountainous 
areas than plain areas caused by the complex hydrological process (Figure S8B).   

Here we also try to validate the GRACE-based GWSA based on very limited amount of observed data 
available, including annual regional-average observed groundwater recharge (OBS-GWR) and annual total 
water use in Xinjiang during 2003-2015 from the Xinjiang Water Resources Bulletin 
(http://www.xjslt.gov.cn/zwgk/slgb/index.html), as well as observed groundwater depth (GWD) of the 
monitoring well station (41.79N°, 81.62E°) in Kaidu-Konqi River basin during 2004-2010 from the 
Department of Water Resources of Xinjiang Uygur Autonomous Region (http://www.xjslt.gov.cn). Figure 
S9 shows a basin-scale comparison between the EM-GWSA and the observed GWD in the Kaidu-Kongqi 
basin in 2004-2009. The EM-GWSA data is extracted from the grid cell where the wells are located. There 
exists a perfect match between EM-GWSA and GWD with a CC value of 0.96 (𝑅ଶ = 0.91, 𝑝 < 0.01). 
These comparisons with observations confirm that GRACE-based GWSA can reasonably capture the 
groundwater variations. GWSA is jointly affected by groundwater recharge, water withdrawal, and other 
factors. Figure S4A shows that the temporal variation of regional-average EM-GWSA resembles that of 
the groundwater recharge across Xinjiang in 2003-2015. In general, EM-GWSA decreases as groundwater 
recharge gets lower from 2003-2009, showing that EM-GWSA can reflect the decreases in groundwater 
recharge although the CC is only 0.25 because groundwater variations are also jointly affected by other 
factors. As shown in Figure S10B, the EM-GWSA is negatively correlated (CC=-0.85) with the total water 
use in Xinjiang during 2003-2015 (𝑅ଶ = 0.73, 𝑝 < 0.01), showing the importance of water withdrawal in 
groundwater changes. From 2003-2010, the total water use increased from 49.44 billion m3 to 53.51 billion 
m3 accompanied with the decrease of the GWSA from 9.65mm (15.44 billion m3) to -25.25mm (-40.4 
billion m3) over the whole Xinjiang. After a small decrease of the total water use in 2011 (i.e. 52.35 billion 
m3), the averaged total water use jumped to 58.43 billion m3 between 2012 and 2015. A persistent decrease 
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in GWSA is detected in that period except an increase in 2014. Although the validation is not 
comprehensive given the constraints of data availability, it suggests the temporal variations of EM-GWSA 
match with the changes in measured groundwater depth as well as the affecting factors, i.e. groundwater 
recharge and total water use. 
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Figure S1. Spatial distributions of the linear trends (mm/month) of the JJA GWSA during 2003-
2016. The cross signs denote the trends are significant at the 95% significance level.  
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Figure S2. Same as Figure S1 but for annual GWSA. 
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Figure S3: Spatial distribution of linear trends of monthly SM derived from CLM, Mosaic, VIC, Noah 2.7 
and Noah 3.3 over Xinjiang during 2003-2016. The cross signs denote the trends are significant at the 95% 
significance level. 
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Figure S4: The multimodel average of the linear trends of monthly SM derived from CLM, Mosaic, VIC, 
Noah 2.7 and Noah 3.3 over Xinjiang during 2003-2016 (A), and the corresponding STD (standard 
deviation) indicating the uncertainty of SM (B).  
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Figure S5: Spatial distribution of linear trends of monthly SWE derived from CLM, Mosaic, VIC, Noah 
2.7 and Noah 3.3 over Xinjiang during 2003-2016. The cross signs denote the trends are significant at the 
95% significance level. 
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Figure S6: The multimodel average of the linear trends of monthly SWE derived from CLM, Mosaic, 
VIC, Noah 2.7 and Noah 3.3 over Xinjiang during 2003-2016 (A), and the corresponding STD (standard 
deviation) indicating the uncertainty of SM (B).  
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Figure S7: Spatial distribution of linear trends of monthly GWSA derived from CLM, Mosaic, VIC, Noah 
2.7 and Noah 3.3 over Xinjiang during 2003-2016. The monthly EM-TWSA is used here. The cross signs 
denote the trends are significant at the 95% significance level. 
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Figure S8: The multimodel average of the linear trends of monthly GWSA derived from CLM, Mosaic, 
VIC, Noah 2.7 and Noah 3.3 over Xinjiang during 2003-2016 (A), and the corresponding STD (standard 
deviation) indicating the uncertainty of GWSA (B). The monthly TWSA data is from EM-TWSA. 
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Figure S9. Comparison between observed groundwater depth (GWD) and EM-GWSA in Kaidu-Konqi 
River basin during 2004-2010.  
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Figure S10. Comparisons between observed groundwater recharge (OBS-GWR) and EM-GWSA (A), and 
between total water use and EM-GWSA (B) in Xinjiang during 2003-2015. 
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Table S1. Linear trends of climate variables at monthly, seasonal and annual scales during 1961-2016.  ** 
denotes the trend is significant at the 95% or 99% significance level. ± values are the 5% and 95% 
confidence intervals. 

Dataset Timescale 2003-2016 1980-2016 1961-2016 
T (℃/month 
for monthly 

data, 
℃/a for 

annual and 
seasonal 

data) 

Monthly 0.005 0.004 0.002 
MAM 0.051 0.053**±0.026 0.025**±0.014 

JJA 0.046 0.043**±0.013 0.026**±0.007 
SON -0.022 0.040**±0.022 0.032**±0.012 
DJF 0 0.008 0.03**±0.018 

Annual 0.022 0.038**±0.013 0.029**±0.007 

                                                                                                                             
P 

(mm/month 
for monthly 

data, 
mm/a for 

annual and 
seasonal 

data) 

Monthly 0.018 0.007 0.006**±0.004 
MAM 0.08 0.16 0.13*±0.10 

JJA 1.48 0.49*±0.37 0.40**±0.18 
SON 0.77 0.20**±0.18 0.16**±0.09 
DJF 0.04 0.18**±0.11 0.12**±0.05 

Annual 2.30 1.01**±0.58 0.81**±0.28 

E (unite 
same as P) 

Monthly 0.009 0.004 - 
MAM 0.13 0.12 - 

JJA 1.15 0.39**±0.28 - 
SON 0.31 0.08 - 
DJF -0.02 0.004 - 

Annual 1.55 0.60**±0.42 - 
SM (unite 
same as P) 

Monthly 0.15**±0.02 - - 
MAM 1.43**±0.86 - - 

JJA 1.86**±1.22 - - 
SON 2.26**±1.35 - - 
DJF 1.39**±1.87 - - 

Annual 1.82**±0.93 - - 
SWE (unite 
same as P) 

Monthly -0.01 - - 
MAM -0.1 - - 

JJA 0.01 - - 
SON 0.05 - - 

DJF -0.04 - - 
Annual -0.01 - - 
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Table S2. Change rates of TWSA derived from GRACE at different time scales (mm/month for monthly 
scale, mm/a for seasonal and annual scales) during 2003-2016.  ** denotes the trend is significant at the 
95% or 99% significance level. ± values are the 5% and 95% confidence intervals. 

Timescale CSR GFZ JPL EM 
Monthly -0.21**±0.07 -0.17**±0.07 -0.16**±0.08 -0.18**±0.07 

MAM -2.31**±1.48 -2.96**±1.74 -2.68*±2.44 -2.20*±1.76 
JJA -1.43**±1.94 -3.26**±1.57 -1.26 -1.35 
SON -2.64*±2.13 -4.94**±2.01 -1.37 -2.21*±1.87 
DJF -3.96**±2.40 -3.61**±2.04 -2.45 -2.89*±2.29 

Annual -2.33**±1.61 -3.70**±1.14 -1.74 -1.99*±1.60 
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