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Abstract: A unique, multi-tiered approach was applied to map crop residue cover on the Eastern
Shore of the Chesapeake Bay, United States. Field measurements of crop residue cover were used
to calibrate residue mapping using shortwave infrared (SWIR) indices derived from WorldView-3
imagery for a 12-km× 12-km footprint. The resulting map was then used to calibrate and subsequently
classify crop residue mapping using Landsat imagery at a larger spatial resolution and extent. This
manuscript describes how the method was applied and presents results in the form of crop residue
cover maps, validation statistics, and quantification of conservation tillage implementation in the
agricultural landscape. Overall accuracy for maps derived from Landsat 7 and Landsat 8 were
comparable at roughly 92% (+/− 10%). Tillage class-specific accuracy was also strong and ranged from
75% to 99%. The approach, which employed a 12-band image stack of six tillage spectral indices and
six individual Landsat bands, was shown to be adaptable to variable soil moisture conditions—under
dry conditions (Landsat 7, 14 May 2015) the majority of predictive power was attributed to SWIR
indices, and under wet conditions (Landsat 8, 22 May 2015) single band reflectance values were
more effective at explaining variability in residue cover. Summary statistics of resulting tillage class
occurrence matched closely with conservation tillage implementation totals reported by Maryland
and Delaware to the Chesapeake Bay Program. This hybrid method combining WorldView-3 and
Landsat imagery sources shows promise for monitoring progress in the adoption of conservation
tillage practices and for describing crop residue outcomes associated with a variety of agricultural
management practices.

Keywords: gradient boosting trees; remote sensing; cellulose; WorldView-3; Landsat; SINDRI; SWIR;
crop residue

1. Introduction

Conservation tillage, which can be defined as any form of tillage that minimizes tillage intensity
and maintains crop residue on the soil surface, is a best management practice with well-documented
benefits to agricultural ecosystems. Some of these benefits include reduced runoff and soil erosion,
increased infiltration and aggregate stability, greater soil carbon accumulation, enhanced soil health,
and improved water quality in neighboring water bodies [1–3]. The use of conservation tillage has been

Remote Sens. 2019, 11, 1857; doi:10.3390/rs11161857 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-5383-8064
https://orcid.org/0000-0001-7957-5488
https://orcid.org/0000-0001-5793-2835
http://dx.doi.org/10.3390/rs11161857
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/11/16/1857?type=check_update&version=3


Remote Sens. 2019, 11, 1857 2 of 21

incentivized throughout the United States by the U.S. Department of Agriculture Natural Resources
Conservation Service, and the practice is often adopted to meet conservation requirements for highly
erodible lands [4]. In the Chesapeake Bay watershed, where reductions in agricultural runoff and
erosion can have substantial benefits to the health of the Chesapeake Bay estuary [5], conservation tillage
has been identified as a primary strategy for reducing loss of sediment from farmland. Accordingly,
conservation tillage has been incentivized throughout the Chesapeake Bay watershed. The effects of this
practice, in combination with a broad suite of improvements to agricultural and point-source pollution
management strategies, have had a gradual influence on improving the health of the Chesapeake Bay.
For example, in a 2015 analysis, decreases in long-term trends of nitrogen loads were observed at a
majority of observation stations, while trends toward improved phosphorous and suspended-sediment
loads were reported in a third of observation stations [6]. Chesapeake Bay water clarity and dissolved
oxygen have also improved since 2014, an indicator of gradually improving estuary health that is
partially attributed to increased implementation of agricultural conservation practices, including
conservation tillage [5].

Three tillage intensity classes are of particular interest for monitoring percent crop residue cover
(CRC): conventional or low-residue tillage (0–30% CRC), conservation tillage (30–60% CRC), and
high-residue, minimum soil disturbance tillage management (60–100% CRC) [7,8]. A 2013 survey of
Maryland farmers indicated that in corn, soybean, winter wheat, and barley fields, no-till management
practices were adopted in 71% of fields, conservation tillage in 21.3% of fields, and conventional tillage
in 7.7% of fields [9]. Alongside such surveys, the Maryland Department of Agriculture is interested
in mapping CRC for the entire state. However, covering a large area such as the state of Maryland
using traditional methods, such as line-point transects or roadside surveys, would be time consuming
and costly. Consequently, the use of remote sensing and satellite imagery is a pragmatic method for
monitoring tillage practices statewide. Maps derived from satellite remote sensing would enhance
the accuracy and precision of tillage management statistics and would enable the tracking of tillage
practices over time and space. Landsat imagery provides useful data to support the mapping of CRC
at the landscape scale, due to its moderate spatial resolution of 30 m, large swath width of 185 km, and
no-cost availability.

Remote sensing using Landsat imagery has been previously used in multiple studies with
varying methods to monitor crop residue conditions [3,8,10–13]. A review of methods is provided
in Zheng et al. [14] and in Bégué et al. [15]. Because soils and residues are spectrally similar in the
visible and near infrared, the most successful Landsat-based tillage indices tend to exploit contrasts
between the two broad Landsat shortwave infrared (SWIR) bands, SWIR1: 1550–1750 nm and SWIR2:
2090–2350 nm. Despite their successes, these indices are reliant on the relative differences in reflectance
that occur between crop residue and soils in each Landsat scene, and changes in soil moisture conditions
can have profound effects on how an index performs [10,16,17]. Increasing moisture content reduces
reflectance from the visible to the shortwave infrared and attenuates reflectance features, shifting the
relationship between the two broad Landsat SWIR bands. This can lead to the overestimation of CRC
under wet conditions [17]. The contrasts provided by the broadband Landsat indices are also influenced
by crop residue age and condition, soil brightness, and the presence of green vegetation [10,14], which
can sometimes limit their effectiveness. To be accurate, all methods relying upon the broad contrasts
provided by Landsat reflectance bands require the collection of ground-truth (end-member) data to
calibrate to the particular conditions in a scene [18], particularly with respect to soil moisture conditions.

Hyperspectral indices, such as the Cellulose Absorption Index (CAI), and its narrow-band analog
the Shortwave Infrared Normalized Difference Residue Index (SINDRI), have demonstrated increased
accuracy for measurement of CRC in comparison to Landsat-based indices, because they measure a
narrow SWIR adsorption feature, observed near 2100 nm, that is associated with the cellulose and
lignin content of crop residues [8,19]. Calculation of these indices relies upon the spectral resolution
provided by proximal or airborne hyperspectral instruments [10] or by the WorldView-3 satellite [20].
However, under wet conditions the distinctness of the cellulose–lignin peak becomes muted [21] and
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the narrowband SWIR indices can also exhibit reduced effectiveness unless well-calibrated [10] or
adjusted for moisture conditions [17].

This manuscript describes a unique approach that combined a field sampling campaign,
high-resolution WorldView-3 (WV3) SWIR imagery, and moderate-resolution Landsat imagery to
monitor crop residue conditions over the Eastern Shore of the Chesapeake Bay. Previous research from
Hively et al. [20] demonstrated a strong correlation (R2 = 0.94, RMSE = 7.14) between CRC and the WV3
derived SINDRI index and used this relationship to map CRC on non-vegetated crop fields throughout
the extent of the WV3 imagery footprint. We propose that the well-calibrated map of CRC derived in
Hively et al. [20] can be used to provide a sufficient volume of ground-truth calibration data to train a
Landsat-based Gradient Boosting Tree classifier to map CRC at a large spatial extent, using temporally
adjacent Landsat imagery. Unlike previous research relying on single spectral indices, this research
combines the six Landsat reflectance bands in the visible to SWIR portion of the electromagnetic
spectrum with six derived broadband spectral indices to create a 12-band image stack and employs
gradient boosting trees to derive an optimal CRC map. Using multiple bands and indices enables
the classifier to evaluate which bands perform the best under variable soil moisture conditions and
reduces the impact of rainfall events on classification accuracy.

2. Materials and Methods

2.1. Site Location and Satellite Imagery Acquisition

Field sampling took place on a collaborating farm located in the Choptank River watershed,
Talbot County, MD, United States, on 15 May 2015. WV3 satellite imagery was acquired for this region
a day before field sampling. Clear Landsat imagery was also acquired for the Delmarva Peninsula
and included portions of Maryland, the state of Delaware, southern New Jersey, and southeastern
Pennsylvania (Figure 1) on 14 May 2015 (Landsat 7) and 22 May 2015 (Landsat 8). According to the
U.S. Department of Agriculture Soil Taxonomy classification [22], the primary soil order in this area is
ultisols, typified by the Othello soil series (fine-silty, mixed, active, mesic typic endoaquults) and the
Mattapex soil series (fine-silty, mixed, active, mesic aquic hapludults). Othello soils are poorly drained
with moderately slow permeability and Mattapex soils are moderately well-drained with moderate
permeability. Coastal entisols, organic histosols and alfisols are also present within the study area.

WorldView-3 satellite imagery from 14 May 2015, was obtained and delivered as 8 bands of visible
and near infrared (VIS/NIR) at 2-m spatial resolution and 8 bands of SWIR at 4-m spatial resolution.
The imagery was converted from Digital Number (DN) to top-of-atmosphere radiance and then
atmospherically corrected to surface reflectance values using the MODerate resolution atmospheric
TRAnsmission (MODTRAN) computer code version 5.4. VIS/NIR bands were then resampled to a
4-m spatial resolution and co-registered to the SWIR bands using nearest-neighbor interpolation. The
footprint of this image was 12 km × 12 km. Any clouds were individually masked by hand.

Two predominantly cloud-free Landsat images were also acquired for the Eastern Shore of
the Chesapeake Bay in Worldwide Reference System 2 (WRS-2) path/row 14/33. The first image
was a Landsat 7 Enhanced Thematic Mapper+ (ETM+) scene from 14 May 2015. This scene was
atmospherically corrected to surface reflectance using the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) [23] and downloaded from Earth Explorer (https://earthexplorer.usgs.gov/)
as a Collection-1 Level-2 product (imagery filename: LE07_L1TP_014033_20150514_20160902_01_T1).
An additional Landsat 8 Operational Land Imager (OLI) scene from 22 May 2015 was also acquired
and atmospherically corrected to surface reflectance using the Landsat 8 Surface Reflectance (L8SR)
system [24,25], and was downloaded from Earth Explorer as a Collection-1 Level-2 product (imagery
filename: LC08_L1TP_014033_20150522_20170226_01_T1). Both images were referenced in Universal
Transverse Mercator (UTM) coordinates and clouds were masked out using the 2015 updated version
of Fmask [26].

https://earthexplorer.usgs.gov/
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Figure 1. Study area including the Eastern Shore of Maryland and Delaware. The Landsat footprint 
is outlined in red, and the WorldView-3 image and collaborating farm where the field sampling 
campaign occurred (zoom window) is outlined in white. 
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Figure 1. Study area including the Eastern Shore of Maryland and Delaware. The Landsat footprint is
outlined in red, and the WorldView-3 image and collaborating farm where the field sampling campaign
occurred (zoom window) is outlined in white.

2.2. Soil Moisture Data

Because crop residue conditions were being monitored across two separate dates of Landsat
imagery, it was necessary to measure soil moisture to ensure that differences in output maps could be
understood. Soil-water content has been shown to affect the ability to map CRC [27]. For some tillage
indices, previous research has indicated that dry conditions are optimal for mapping [10]. Conditions
on 14 May were generally dry, as was evidenced by the activation of nine center pivot irrigation units
within the 12-km × 12-km WorldView-3 imagery extent [17]. While the non-irrigated landscape was
generally dry, higher wetness conditions were present in fields receiving irrigation. Between that date
and the 22 May Landsat 8 overpass, one of the largest rainfall events of the spring occurred (cumulative
precipitation amount of 93.6 mm). Observing how this rainfall affected the monitoring of crop residue
conditions was critical to understanding how Landsat surface reflectance bands and derived tillage
indices functioned under differing soil moisture conditions.

Ten on-farm weather stations are situated across the Choptank River basin (http://hrsl.arsusda.
gov/lcb/data.php), one located within the WV3 imagery footprint. Each of these stations measures
precipitation (mm of rainfall) using a 10-cm-diameter tipping bucket rain gauge, and measures electrical
conductance at 10 cm depth to determine soil volumetric moisture content using a Stevens Hydra

http://hrsl.arsusda.gov/lcb/data.php
http://hrsl.arsusda.gov/lcb/data.php
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Probe. Table 1 describes rainfall events and soil moisture conditions derived as the average of the
10 stations.

Table 1. Average estimated rainfall and soil volumetric moisture content from 10 weather stations
situated within the Choptank River basin, May 2015.

Date Rainfall (mm) Soil Moisture (%)

1–9 May <3 10.0
10-May 1.5 9.4
11-May 0.5 8.9

14-May * 0.3 7.9
16-May 7.6 7.6
17-May 6.9 10.5
18-May 42.2 10.0
19-May 21.1 21.1
21-May 15.5 15.8

22-May ** 0.1 21.9

* Landsat 7 and WV3 imagery acquisition; ** Landsat 8 imagery acquisition.

2.3. Field Sampling

Field sampling occurred on a collaborating grain farm on the Eastern Shore of Maryland on
15 May 2015, as described by Hively et. al. [20]. Ten agricultural fields were sampled with various
tillage management ranging from plow tillage (0% residue) to no-till (>84% residue). Vertical
downward-looking photographs were collected from a height of 2 m (sampling approximately 4 m2

of field surface) at >10 locations per field. The 174 resulting photographs were processed by using
Sample Point software (www.samplepoint.org) to categorize percent residue cover. Within each
photograph, cover types beneath 144 randomly placed points were manually characterized into one of
three categories (crop residue, soil, or vegetation) by visual inspection, and these data were used to
derive an estimated percent CRC for each sampling location. These photo-derived CRC data matched
closely to in-field measurements collected using the traditional point-transect method [10].

2.4. Calculation of SINDRI and Transformation to Crop Residue Cover

WorldView-3 surface reflectance imagery collected on 14 March 2015, was used to calculate the
Shortwave Infrared Normalized Difference Residue Index (SINDRI) [19,28] for the image extent:

SINDRI = (SWIR6 − SWIR7)/(SWIR6 + SWIR7) (1)

using the SWIR6 band centered at 2202 nm and the SWIR7 band centered at 2259 nm.
Using the same field sampling dataset described in this study, Hively et al. [20] documented the

effectiveness of nine SWIR indices for mapping crop residue and found that the SINDRI was the most
accurate (highest goodness of fit, lowest residual error; Figure 2). The SINDRI is robust as it targets the
2150 nm cellulose absorption feature that is specific to crop residue [19], enabling effective mapping and
separation from soil. Additionally, this index has been shown to be resistant to soil moisture [10,17],
decomposition stage of crop residue [27], and interference from low levels of green vegetation [20].
Thus, SINDRI was chosen to map crop residue conditions at WV3 extent and spatial resolution.

The WV3 SINDRI raster was transformed to a map of CRC using a second order polynomial
equation derived in Hively et al. [20] based on correlation with field sampling data, with an R2 value
of 0.94 and root mean square error (RMSE) of 7.15. In this WV3 image, saturation of the second
order polynomial occurred around 88% crop residue cover. Thus, any mapped values of 88% are
representative of high crop residue cover values that range from 88–100% CRC.

www.samplepoint.org
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(SINDRI) with in-field measurements of percent residue cover. Figure modified from previous work [20].

2.5. Calculation of Landsat Indices and Creation of an Imagery Stack

A 12-band image stack of Landsat spectral bands and tillage indices was created to monitor crop
residue conditions at Landsat extent and spatial resolution. The stack included six Landsat surface
reflectance bands (Blue, Green, Red, NIR, SWIR1, SWIR2) and six tillage indices derived from those
bands that have previously been shown to be effective at monitoring crop residue conditions (Table 2).
The spectral profiles of the Landsat bands are as follows: Blue (0.45–0.52 µm), Green (0.52–0.60 µm), Red
(0.63–0.69 µm), NIR (0.77–0.90 µm), SWIR1 (1.55–1.75 µm), and SWIR2 (2.09–2.35 µm), corresponding
respectively to Landsat 8 (OLI) bands 2–7 or Landsat 7 (ETM+) bands 1–5, and 7. The indices included
the Normalized Difference Indices 5 and 7 (NDI5 [29], NDI7 [29]), the Normalized Difference Senescent
Vegetation Index (NDSVI [30]), Normalized Difference Tillage Index (NDTI [13]), the Simple Tillage
Index (STI [13]), and the Modified Crop Residue Cover (mCRC) index [1,12].

Table 2. Summary table describing Landsat-derived reflectance indices, their formulas, and
associated references. The spectral profiles of the Landsat bands are as follows: Blue (0.45–0.52 µm),
Green (0.52–0.60 µm), Red (0.63–0.69 µm), NIR (0.77–0.90 µm), SWIR1 (1.55–1.75 µm), and SWIR2
(2.09–2.35 µm). These six bands correspond to Landsat 8 (OLI) bands 2–7 or Landsat 7 ETM+ bands 1–5,
and 7. The indices included the Normalized Difference Indices 5 and 7 (NDI5, NDI7), the Normalized
Difference Senescent Vegetation Index (NDSVI), the Normalized Difference Tillage Index (NDTI), the
Simple Tillage Index (STI), and the Modified Crop Residue Cover (mCRC) index.

Reflectance Index Formula Reference

NDI5 (NIR − SWIR1)/(NIR + SWIR1) McNairn and Protz [29]
NDI7 (NIR − SWIR2)/(NIR + SWIR2) McNairn and Protz [29]

NDSVI (SWIR1 − Red)/(SWIR1 + Red) Qi et al. [30]
NDTI (SWIR1 − SWIR2) / (SWIR1 + SWIR2) Van Deventer et al. [13]

STI (SWIR1)/(SWIR2) Van Deventer et al. [13]
mCRC (SWIR1 − Green)/(SWIR1 + Green) Sullivan et al. [1,12]

Four green vegetation indices were also tested for inclusion in the analysis, including the
Normalized Difference Vegetation Index (NDVI) [31], Optimized Soil-Adjusted Vegetation Index
(OSAVI) [32], Visible Atmospherically Resistant Index (VARI) [33], and the Green Vegetation Index



Remote Sens. 2019, 11, 1857 7 of 21

(VIGreen) [34,35]. However, these indices were shown to be less effective at representing crop residue
cover (accuracy < 50%), added little to no value to the analysis, and were therefore discarded. This
finding is in agreement with previous research indicating that crop residue cover is not well correlated
with any of the green vegetative indices [33].

2.6. Masking Landsat Imagery to Non-Vegetated Croplands

The Landsat 7 and Landsat 8 images were developed as cloud-masked surface reflectance and
were subsequently masked to include only agricultural areas (cropland, grassland, and pasture) using
the 2015 Cropland Data Layer [36] and the 2011 National Land Cover Database [37]. Grassland and
pasture areas were included because it was suspected that agricultural croplands could be easily
misclassified as either of these categories. To limit analysis to crop fields with minimal vegetation,
the images were masked to include only pixels with NDVI values < 0.3. This reduced the spectral
interference of green vegetation, such as emergent corn and soybean crops, and masked out true
grassland and pasture areas, which tend to maintain NDVI > 0.3 throughout the year [38]. The
NDVI [31] was calculated as:

NDVI = (NIR − Red)/(NIR + Red) (2)

In addition to the agricultural lands and NDVI masks, a mask was also applied to remove
water-covered areas using the Dynamic Surface Water Extent product [39]. Any pixel that was
identified as open water during a calendar year was masked out. Finally, pixels falling under the scan
line error were removed from the Landsat 7 scene. The net result was a 12-band raster image for each
Landsat date containing six reflectance bands and six reflectance indices, covering only agricultural
fields with minimal vegetation. These datasets were used for Landsat-based crop residue analysis. In
total, in the Landsat 7 scene, about 74.3% of the surface area was masked out, as compared to 69.5% of
the Landsat 8 scene.

To evaluate the effect of precipitation on soil moisture conditions, a Wetness Index (WI) [17] was
calculated for each of the Landsat scenes:

WI = SWIR1/SWIR2 (3)

2.7. Creating a Calibration Dataset and Training a Classifier

The 4-m resolution map of calculated percent residue cover that was derived from 14 May 2015, WV3
SWIR imagery in Hively et. al [20], covering the 12-km× 12-km footprint of the WV3 acquisition (Figure 3),
was masked to agricultural fields with minimal vegetation using Common Land Unit polygons [40] to
identify agricultural fields and a threshold of NDVI < 0.3 to identify minimally vegetated areas. This
residue map was resampled to 30 m, representing the average percent residue cover values of all 4-m
pixels within each 30 m, and was snapped to Landsat pixel locations to serve as a training dataset for
Landsat analysis. The WV3-derived percent residue cover values were binned into groups of 10% (0–10%,
10–20%, . . . , 80–90%) to reduce computational intensity and improve classification quality.

The 30-m pixels within the resampled WV3 crop residue map were randomly split 50:50 to
define calibration and validation datasets. The Landsat classifiers were trained on the calibration data
and tested on the validation data. A Gradient Boosting Tree (GBT) classifier [41] was employed to
classify each Landsat 12-band image stack into a percent residue cover map. The GBT classifier was
chosen after testing because it was shown to be markedly superior in terms of overall accuracy and
class-specific accuracies when compared to other tested classifiers, which included the Decision Tree
classifier, k-nearest neighbor classifier, and Naive Bayes classifier (results not shown). The GBT, and
each classifier tested, was optimized to parameters that would minimize overfitting, yet produce the
best possible results (Table 3). To optimize, a grid search was used to evaluate performance using
a random subset of the data, while varying the number of boosting algorithm iterations (250, 500,
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750, and 1000), the maximum depth of the tree (4 to 8), and the portion of training data used for each
iteration (25%, 50%, and 75%). Overfitting was avoided by using L2 regularization to penalize the
complexity of the tree. These methods and parameters follow suggested settings that have been found
to produce accurate results while minimizing overfitting of the data [41,42].
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difference index SINDRI (Hively et. al., 2018a) showing calculated percent residue in non-vegetated
areas (normalized difference vegetation index NDVI < 0.3) with National Agriculture Imagery Program
true color imagery in the remaining areas. Inset zoom depicts how crop residue outcomes track with
field-specific management.

Maps of predicted percent crop residue cover were derived for each of the Landsat images
by applying the GBT classifier to the 12-band Landsat image stack using training data from the
WV3-derived calibration dataset. Each of these maps depicts the percentage of crop residue cover
on non-vegetated agricultural fields, at Landsat extent and spatial resolution. The accuracy and
comparison of these products were described using fuzzy confusion matrices. True positive accuracy
was determined using the main diagonal of the confusion matrices, with an accurate match determined
as +/− 10% (exact match plus adjacent 10% crop residue bin).

In addition to mapping crop residue cover using the 12-band stack, each of the individual bands
that contributed to the stack was used as a single input to the same standardized GBT classifier
framework, using only one band at a time for input, and using the optimized coefficients listed in
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Table 3. This enabled comparisons of how much each band contributed to the crop residue classification
and how much soil moisture conditions affected results.

Table 3. Summary table describing the chosen parameters for the Gradient Boosting Tree classifier (GBT).

Parameter Value

Training and validation sample ratio 50:50
Number of boosting algorithm iterations 750

Portion of the training dataset used for each iteration 50%
Maximum depth of tree 8

Regularization parameter 0.01
Maximum training/validation sample size per class unlimited

2.8. Comparison with State Jurisdictional Datasets

Currently, Maryland reports conservation tillage implementation based upon farmer self-reporting
in annual farmland management surveys [43], and Delaware reports conservation tillage
implementation based upon annual springtime driving roadside surveys [44]. These data are reported
to the Chesapeake Bay Program Partnership in December of each year and are incorporated into the
Chesapeake Bay water-quality modeling. For comparison with remote sensing results, the Maryland
reported data for 2015 were obtained from the Chesapeake Assessment Scenario Tool (CAST) [43] and
the Delaware Survey data were obtained from the Delaware Department of Natural Resources and
Environmental Control [44].

3. Results and Discussion

3.1. Landsat 7 Enhanced Thematic Mapper (ETM+) Map of Crop Residue Cover

The 14 May 2015, Landsat 7 map of percent crop residue cover (Figure 4), when compared to the
validation dataset, exhibited an overall accuracy of 93.3% of classifications falling within +/− 10% of
the “true” classification, as described in a fuzzy confusion matrix (Table 4). Class-specific accuracies
for this method were high (ranging from 77.3% to 98.9%), particularly in the lower and higher crop
residue classes. Moderate crop residue conditions occurred less frequently in the calibration dataset,
and as such were somewhat more difficult to map. The lowest class specific accuracy fell within the
20–30% residue class with user’s accuracy (error of commission) at 77.3%. Overall, the method of
training of Landsat GBT classifiers based on WV3 residue maps was quite effective at monitoring crop
residue conditions with minimal misclassification. If comparing an exact match of classes, rather than
+/− 10%, the overall classification accuracy would fall from 93.3% to 67.6%.

Table 4. Confusion matrix showing Landsat 7 predicted crop residue cover compared to validation
data derived from the WorldView-3 imagery classification. Pixels that are described as accurate (+/−

one residue class) are colored red in the confusion matrix. Inaccurate pixels are colored black.

Classified % Residue Cover Producer
Accuracy0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 Totals

R
ef

er
en

ce
%

R
es

id
ue

C
ov

er

0–10 563 143 62 23 9 2 2 1 1 806 87.6%
10–20 159 283 102 20 5 3 0 0 1 573 94.9%
20–30 42 100 285 85 6 3 2 0 1 524 89.7%
30–40 26 17 53 148 43 16 4 1 0 308 79.2%
40–50 8 8 27 66 196 76 23 10 6 420 80.5%
50–60 3 6 15 20 90 200 72 16 5 427 84.8%
60–70 3 0 7 21 52 125 438 228 22 896 88.3%
70–80 4 5 14 3 20 48 304 1279 367 2044 95.4%
80–90 0 1 5 1 2 4 24 391 2928 3356 98.9%

Totals 808 563 570 387 423 477 869 1926 3331 9354
User accuracy 89.4% 93.4% 77.2% 77.3% 77.8% 84.1% 93.7% 98.5% 98.9% Overall 93.3%
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Figure 4. Landsat 7 (ETM+) map of calculated percent crop residue cover on non-vegetated agricultural
fields, overlaid on natural-color Landsat 7 imagery. Striping results from missing data due to Landsat 7
scan line corrector errors.

3.2. Landsat 8 Operational Land Imager (OLI) Map of Crop Residue Cover

The 22 May 2015, Landsat 8 map of crop residue cover (Figure 5) had similar accuracies to the
Landsat 7 map and exhibited an overall accuracy of 92.1% for classifications falling within +/− 10% of
the “true” classification, as described in a fuzzy confusion matrix (Table 5). Class-specific accuracies for
this method were once again strongest in the lower and higher crop residue areas (maximum 97.6%),
and moderate crop residue conditions were again slightly more difficult to map. The lowest class
specific accuracy fell within the 30–40% residue user’s accuracy (error of omission) at 75.4%. Similar to
Landsat 7, the Landsat 8 residue map was effective at monitoring crop residue conditions with minimal
misclassification. If comparing an exact match of classes, rather than +/− 10%, the overall classification
accuracy would fall from 92.1% to 62.6%.

Table 5. Confusion matrix showing Landsat 8 predicted crop residue cover compared to validation
data derived from WorldView-3 imagery classification. Pixels that are described as accurate (+/− one
residue class) are colored red in the confusion matrix. Inaccurate pixels are colored black.

Classified % Residue Cover Producer
Accuracy0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80 80–90 Totals

R
ef

er
en

ce
%

R
es

id
ue

C
ov

er

0–10 566 205 51 23 10 6 6 3 3 873 88.3%
10–20 196 443 190 49 7 3 2 4 16 910 91.1%
20–30 52 109 233 109 26 13 5 5 5 557 81.0%
30–40 31 54 145 207 120 16 10 7 10 600 78.7%
40–50 17 5 31 88 264 109 48 12 8 582 79.2%
50–60 5 3 11 29 97 187 125 36 9 502 81.5%
60–70 3 4 8 24 66 183 524 308 72 1192 85.2%
70–80 1 3 5 7 31 61 414 1745 701 2968 96.4%
80–90 0 1 1 0 3 10 92 706 3915 4728 97.7%

Totals 871 827 675 536 624 588 1226 2826 4739 12,912
User accuracy 87.5% 91.5% 84.1% 75.4% 77.1% 81.5% 86.7% 97.6% 97.4% Overall: 92.1%
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Figure 5. Landsat 8 (OLI) map of calculated percent crop residue cover on non-vegetated agricultural
fields, overlaid on natural-color Landsat 8 imagery.

Accuracies for both the Landsat 7 and Landsat 8 residue maps were high, attributable to the
unique calibration process of using WV3 SINDRI classifications as training data. By coupling limited
in-field measurements with WV3 SINDRI index analysis, a substantial and accurate CRC map can be
created that subsequently enables mapping of CRC on a broader scale. A much more intensive and
costly field sampling campaign would be required to achieve similar results without such a calibration.

3.3. Comparison of Moisture Conditions between Landsat 7 and Landsat 8 Imagery Dates

Although both Landsat-derived maps of crop residue cover exhibited high overall accuracies
relative to the WV3 SINDRI crop residue classification, how the maps achieved these accuracies
(described below in Section 3.4) was quite different. The differences apparently resulted from changes
in soil moisture conditions between 14 May (Landsat 7, following a period of dry weather) and 22 May
(Landsat 8, following a week of rainfall). To characterize the moisture differences, the Landsat-derived
wetness index (WI) was calculated for agricultural areas with minimal vegetation, across each of the
images, for those pixels that were not covered by the Landsat 7 scan line correction error (n = 1,454,162).
Results (Figure 6a,b) showed a significantly wetter landscape in the Landsat 8 image (mean WI =

1.30, standard deviation = 0.07) than in the Landsat 7 image (peak center = 1.12, mean WI = 1.24,
standard deviation = 0.14), following 9.4 cm of rainfall that occurred between 14 May and May 22
(Table 1). When similar histograms were compiled limiting the spatial extent to the WV3 footprint
where field calibration data were derived, similar results were observed (Figure 6c,d). The bimodal
histogram observed for Landsat 7 (Figure 6a,c) may reflect the effect of center pivot irrigation, which
was observed to be in progress on nine fields within the area of field sampling [10], with the majority
of pixels falling under naturally dry conditions (peak center = 1.12) and a secondary peak of wetter
pixels (irrigated fields) occurring with less frequency. Without applying a method for correcting for
moisture content prior to calculation of indices (such a method has now been developed by Quemada
et al. [17]), the presence of irrigated fields might be expected to degrade the accuracy of the classifier,
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unless the training data themselves are accurately mapped on a representative sampling of irrigated
fields, which was not the case.
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Figure 6. Comparison of Wetness Index values for Landsat 7 imagery (drier conditions) and Landsat
8 imagery (wetter conditions) at (a,b) the full extent of the Landsat footprint and (c,d) the limited
extent of the Worldview-3 footprint, depicting the effect of rainfall on soil wetness (9.4 cm precipitation
recorded between 14 May and 22 May).

3.4. Contribution of Each Band and Index Relative to the Effects of Soil Moisture

When each band of the 12-band imagery stack was used as a single input to the GBT classifier, with
analysis performed for one band at a time, the predictive accuracies associated with each reflectance
band or tillage index varied greatly between the imagery dates, likely as a result of change in soil
moisture conditions (Table 6). Under dry conditions (14 May, Landsat 7), traditional tillage indices,
such as the STI and NDTI, exhibited high overall accuracies in predicting crop residue cover. However,
under wet conditions (22 May, Landsat 8), these same indices performed poorly, while single reflectance
bands, such as SWIR1 or SWIR2, performed strongly (Table 6). The mCRC index, and to a lesser extent,
the NDSVI index, performed well in both dry and wet conditions, due to the inclusion of a visible
band, which we hypothesize stabilized the indices response to changes in moisture conditions. Overall,



Remote Sens. 2019, 11, 1857 13 of 21

none of the 12 individual bands (maximum accuracy 83.7% and 80.7% for Landsat 7 and Landsat 8,
respectively) provided as accurate predictions as the combined 12-band stack (accuracy of 93.3% and
92.1% for Landsat 7 and Landsat 8, respectively).

Table 6. Model prediction accuracies derived from mapping crop residue cover using single reflectance
bands or single spectral indices from either the Landsat 7 or Landsat 8 imagery 12-band stack as input
to a standardized Gradient Boosting Tree (GBT) classifier.

14 May Landsat 7 22 May Landsat 8

Band Dry Conditions Wet Conditions

Overall 93.3% 92.1%
Blue 71.2% 70.4%

Green 74.5% 66.4%
Red 71.4% 68.5%
NIR 63.4% 71.5%

SWIR1 61.6% 80.7%
SWIR2 68.6% 80.0%
NDI5 69.8% 76.1%
NDI7 60.7% 70.3%

NDSVI 77.9% 73.3%
NDTI 83.7% 58.9%

STI 83.7% 58.7%
mCRC 80.0% 76.4%

Under wet conditions, soil reflectance in the NIR and SWIR has been shown to decrease more
than crop residue reflectance [10], creating an increased contrast between soil and crop residue. Within
a given spectral interval (i.e., single band) this enhanced contrast between soil and residue becomes
useful for separating the two classes in an image based upon variation in single band reflectance
values. Under wet conditions, in low residue areas, the soil lowers the mean spectral response in the
NIR and SWIR wavelengths. In higher residue areas, the soil remains covered by the crop residue,
thus increasing the mean spectral response in the SWIR wavelengths relative to soil. This provides a
contrast that is effective at distinguishing levels of residue cover and explains the increased accuracy of
these bands under wet conditions (Table 6). In the visible bands, moisture tends to darken soils and
residue more equivalently, unless the residue is quite fresh [10], explaining the somewhat reduced
accuracy associated with the Blue, Green, and Red bands under wet conditions (Table 6).

The impact of moisture on residue characterization becomes more complex when attempting
to leverage spectral differences (i.e., multi-band indices) for residue characterization. Under dry
conditions the adsorption characteristics of crop residue can be distinguished from soil, and CRC can
be accurately mapped using well-calibrated broadband spectral indices, such as NDTI and NDSVI [10].
However, under wet conditions the differences between Landsat SWIR bands become less pronounced,
and these indices become less effective [17,18]. This is because the presence of moisture can both lower
reflectance across the SWIR spectrum by a constant value and also have spectrally varying influence on
reflectance (moisture absorption features) of both soil and residue, which may dry or wet at a different
rate. Both issues were described in Quemada et al. [17], where a moisture correction needed to be
applied to NDTI to produce reasonable percent residue assessments under high moisture conditions.
Due to the spectral impact of moisture on residue assessment, it is unsurprising that NDTI had a
significantly lower accuracy for the higher moisture Landsat 8 image.

For the Landsat pixels located on non-vegetated agricultural fields within the WorldView-3
footprint, spectral response for each of the 12 bands was calculated and summarized within binned
percent residue categories (Figure 7). The results depict how soil moisture conditions affect the ability
to map crop residue using: (a) the NDTI (accurate under dry conditions), (b) the SWIR2 band (accurate
under wet conditions), and (c) the mCRC index (accurate under wet and dry conditions). While the
standard deviations of spectral responses were lower for NDTI under wet conditions (Landsat 8), the
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slope of these responses was almost flat and NDTI was approximately constant, leading to an inability
to discern between low and high residue areas (Figure 7a). Under dry conditions (Landsat 7), standard
deviations of spectral responses increased slightly, but the slope of the responses also increased, thus
increasing the ability of the index to map CRC. In both wet and dry conditions, for the SWIR2 band
a distinct change of slope was evident, allowing for separability of percent CRC classes (Figure 7b).
However, the standard deviations of each spectral response for each bin were much larger under dry
conditions (Landsat 7), thus decreasing the band’s effectiveness. Under wet conditions (Landsat 8)
the standard deviations were much lower, enabling effective separability of CRC classes. Finally, the
mCRC classifier (Figure 7c) was effective under both wet and dry conditions. Overall, the 12-band GBT
method was more effective than individual bands, under both wet and dry conditions, because the
GBT classifier naturally chose the most effective variables while ignoring the least effective. Combining
multiple indices and bands enabled the classifier to analyze multiple variables, providing resilience to
moisture conditions and improving classification accuracy.

3.5. Comparison of Landsat 7 and Landsat 8 Maps

The Landsat 8 map was subtracted from the Landsat 7 map to see how much overall agreement
differed across the products. Overall agreement for these maps was 69.3% (+/− 10%). Traditionally,
when differencing maps, the result of the comparison is compounding misclassification error that leads
to a lower overall agreement. Expected overall accuracy for change products or agreement during a
comparison of maps typically can be calculated by multiplying the two products’ overall accuracies
together [45,46]. For example, under ideal conditions we would expect our two maps with potential
accuracies of 92% and 93% to have a maximal agreement of around 85.6%. However, the actual overall
accuracy of these products is probably somewhat lower due to several complicating factors.

Multiple issues may contribute to the amount of disagreement between these maps. First, it is
possible that data loss from the Landsat 7 scan line error could skew results, although the effect of
the scan line error can be assumed to be random, and therefore is likely unbiased. Second, cloud
masking may have been ineffective in some areas, and cirrus clouds that remained unmasked could
interfere with the CRC classification. Third, rainfall across such a large region is variable. Although
we have accurate results within our 12-km × 12-km calibration and validation site (WV3 imagery
extent), and we expect rainfall amounts to be generally similar across the study area, outliers of wet
and dry locations occur that cannot be accounted for during calibration, due to variability in rainfall
distribution and to the presence of active irrigation. Fourth, the springtime is an active period for
farm management. Although planting of summer crops was largely completed by 14 May fields
were being irrigated, and a diversity of management practices were underway. Thus, changes in
management practices, such as more tillage and planting, that occurred over the course of the 8 days
between Landsat imagery acquisitions could possibly produce significant differences between the
14 May and 22 May residue maps. Additionally, if fields were being irrigated in one Landsat image but
not the other, the classification data for those fields would not be expected to match, due to unknown
and probably spatially varying moisture conditions, as can be seen in Figure 6a,c. This points to the
need for further research to develop a moisture correction prior to CRC prediction. Finally, although
atmospheric correction practices are fairly standardized across the Landsat 7 and Landsat 8 satellites,
they still rely on slightly different algorithms and these differences could lead to further disagreement
between the maps.
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Figure 7. The mean spectral differences related to soil moisture for (a) normalized difference tillage
index NDTI, (b) shortwave infrared reflectance band 2 SWIR2 (2.09–2.35 µm), and (c) modified crop
residue cover index mCRC. Mean spectral responses are depicted as points; error bars depict one
standard deviation from the mean.
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3.6. Descriptive Statistics

Based upon the maps derived from the Landsat imagery, calculated percent CRC can be stratified
by crop type using the National Cropland Data Layer [36]. Consequently, this information can be used
to inform implementation and adaptive management of farm conservation practices that promote
sustainability. Tables 7 and 8 provide an example of the tracking of conservation tillage practices on corn
and soybean fields within the Eastern Shore of Maryland, and for the entire state of Delaware, based
on Landsat-derived crop residue maps. These data demonstrate that tillage management practices in
fields with NDVI < 0.3, as measured by crop residue outcome, were similar for each state. Crop residue
maps derived from Landsat 7 and Landsat 8 produced similar statistical estimates of the percentage of
tillage practices occurring for each type of crop, with conventional tillage occupying 31.3% (Landsat 7)
and 31.0% (Landsat 8) of fields with minimal vegetation in Maryland (Table 7), and 28.3% (Landsat 7)
and 30.9% (Landsat 8) of fields with minimal vegetation in Delaware (Table 8). A bimodal distribution
was evident, with most fields falling either into conventional tillage management (0–30% residue) or
high residue (no-till) tillage management (60–100% residue).

Table 7. Stratification of tillage practices based on mapped percent crop residue cover classes for corn
and soybean fields with minimal green vegetation, derived from Landsat 7 or Landsat 8, across the
Eastern Shore of Maryland, in comparison with Chesapeake Assessment Scenario Tool (CAST) statistics
reporting Maryland 2015 conservation tillage implementation to the Chesapeake Bay Program.

Corn Soybean Overall CAST

Residue Class Ha % Ha % Ha % %

Landsat 7, 14 May

0–30 53,609 34.3 19,165 25.2 72,774 31.3 21.5
30–60 33,479 21.4 10,280 13.5 43,759 18.8 18.1
60–100 69,083 44.2 46,742 61.4 115,825 49.8 60.4

>30 102,562 65.7 57,022 74.8 159,584 68.7 78.5
Total 156,171 100.0 76,187 100.0 232,358 100.0 100.0

Landsat 8, 22 May

0–30 60,136 34.4 32,022 26.1 92,158 31.0 21.5
30–60 31,140 17.8 15,127 12.3 46,267 15.6 18.1
60–100 83,413 47.8 75,563 61.6 158,976 53.5 60.4

>30 114,553 65.6 90,690 73.9 205,243 69.0 78.5
Total 174,689 100.0 122,712 100.0 297,401 100.0 100.0

The Maryland CAST jurisdictional dataset showed that out of 268,000 hectares of cropland on
Maryland’s Eastern Shore, 60.4% were reported as managed using high residue tillage (>60% residue
cover), 18.1% using standard conservation tillage (30% to 60% cover), and 21.5% using low residue
tillage (<30% cover). Generally, the agreement between the Maryland CAST dataset and the satellite
mapping results was high (absolute difference of 0.7% to 10.6% according to tillage class). The main
discrepancy was a disagreement in the amount of conventional tillage practices and high residue
management practices (Table 7). The CAST data, which depend upon farmer self-reporting of tillage
management practices, may be over-estimating the occurrence of high-residue management by 7% to
10% and under-estimating conventional tillage by 9.5%. Conversely, the satellite-derived map data
may be doing the opposite.

For Delaware, an estimated total of 9750 hectares were sampled in the Delaware roadside survey.
From this total, 60.5% were reported as managed using high residue tillage (>60% residue cover), 8.1%
using standard conservation tillage (30% to 60% cover), and 31.4% using low residue tillage (<30%
cover). The Landsat-derived statistics were a close match for the 0–30% class (0.5%–3.1% difference),
exhibited a larger discrepancy in the 30–60% class (7.7% to 13.3% higher), and correspondingly lower in
the 60–100% class. It is possible that the accuracy of the roadside survey was poor for the conservation
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tillage class (30–60% residue cover) due to the obtuse view angle from the roadside. When conservation
tillage and high residue management practices are grouped into a > 30% CRC class, the roadside
survey estimates agree well with the remote sensing estimates.

Table 8. Stratification of tillage practices based on mapped percent crop residue cover classes for corn
and soybean fields with minimal green vegetation, derived from Landsat 7 or Landsat 8, across the state
of Delaware, in comparison with Delaware 2015 roadside survey statistics (DNREC, 2016) reporting
conservation tillage implementation to the Chesapeake Bay Program.

Corn Soybean Overall Survey

Residue Class Ha % Ha % Ha % %

Landsat 7, 14 May

0–30 47,169 28.3 21,107 28.6 68,276 28.3 31.4
30–60 39,787 23.8 11,820 16.0 51,607 21.4 8.1
60–100 79,947 47.9 41,015 55.5 120,962 50.2 60.5

>30 119,734 71.7 52,835 71.5 172,569 71.7 68.6
Total 166,903 100.0 73,942 100.0 240,845 100.0 100

Landsat 8, 22 May

0–30 45,526 33.4 27,058 27.6 72,584 30.9 31.4
30–60 24,556 18.0 12,601 12.8 37,157 15.8 8.1
60–100 66,364 48.6 58,520 59.6 124,884 53.2 60.5

>30 90,920 66.6 71,121 72.4 162,041 69.1 68.6
Total 136,446 100.0 98,179 100.0 234,625 100.0 100

The Delaware Roadside Survey also provided spatially explicit classification of crop residue cover,
and satellite residue maps could be directly compared to field boundaries included in the roadside
survey to detect the level of agreement in the form of confusion matrices (Table 9).

Table 9. Confusion matrix of (a) Landsat 7 and (b) Landsat 8 crop residue cover map compared to the
Delaware Roadside Survey. Units are 30-m pixel counts.

(a) Delaware Roadside Survey

0–30% 30–60% 60–100% Totals Precision

Landsat 7

0–30% 10,902 1512 1045 13,459 81.0%
30–60% 5669 1766 3067 10,502 16.8%
60–100% 4713 3002 17,917 25,632 69.9%

Totals 21284 6280 22,029 49,593
Recall 51.2% 28.1% 81.3% Overall: 61.7%

(b) Delaware Roadside Survey

0–30% 30–60% 60–100% Totals Precision

Landsat 8

0–30% 12,645 1998 2765 17,408 72.6%
30–60% 4097 1898 2394 8389 22.6%
60–100% 3641 2991 20,601 27,233 75.6%

Totals 20,383 6887 25,760 53,030
Recall 62.0% 27.6% 80.0% Overall: 66.3%

When comparing the spatially explicit results, the overall agreement for the Landsat-derived maps
and the roadside survey was 61.7% and 66.3% for Landsat 7 and Landsat 8, respectively. Precision
and recall estimates were fair for both low and high residue classes but were poor for the moderate
residue class. Roadside surveys are subjective, and as such can vary considerably in accuracy [8,27,35].
Such surveys can generally classify fields into a category, but not all fields have a homogenous amount
of residue. Thus, parts of fields may be easily misclassified. Fields with a moderate amount of crop
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residue are likely the most difficult to visually approximate from the roadside and may be more easily
biased toward high residue management. Consequently, the remote-sensing methods described in this
study may be more sensitive to moderate residue fields, and thus be able to map them with higher
accuracy and more consistently than the roadside survey method.

We should note the remote-sensing analysis also had the highest errors in the moderate residue
classes. Along the data processing chain, transforming field residue cover measurements to WV3
residue cover to Landsat residue cover, the largest uncertainties and potential for the largest error
propagation existed within the 30–60% residue class. In the calibration curve relating field photo
residue cover to WV3 SINDRI value (Figure 2), the overall RMSE in percent residue cover was 7.154%,
however, the absolute values of the residuals contributing to this overall RMSE were much higher
in the 30–60% residue range. This likely means that errors and uncertainties were highest in the
30–60% residue class in the Landsat 7 and Landsat 8 residue maps. We did not attempt to perform a
statistical assessment of error propagation in this analysis; however, this is an important consideration
for future work.

Overall, the potential for error in percent residue cover assessment seems to be highest at the
moderate residue classes for both the roadside surveys and remote-sensing analysis. For this reason,
some lack of agreement between these approaches is not surprising.

4. Conclusions

This research described a unique method that combined a small field sampling campaign,
WorldView-3 (WV3) shortwave infrared (SWIR) imagery analysis, and Landsat imagery analysis to
monitor crop residue conditions on the Eastern Shore of the Chesapeake Bay. Crop residue cover was
successfully mapped for the entire Eastern Shore at Landsat extent and spatial resolution, with overall
accuracies ranging from 92.1–93.3% (+/− 10%) using a Gradient Boosting Tree (GBT) classifier applied
to a 12-band image stack of six Landsat-derived tillage indices along with reflectance values for six
individual Landsat bands from the visible through the SWIR. Results were compared for two Landsat
images, acquired under differing soil moisture conditions.

Overall, the GBT classifier using 12 bands (accuracy of 92.1% to 93.3%) performed better than
any of the 12 bands in isolation (accuracy of 58.7% to 83.7%). The 12-band GBT classifier worked
equally well for both Landsat scenes, representing different moisture conditions. However, the relative
effectiveness of individual bands varied between the two Landsat scenes, which we attribute to
differences in soil moisture conditions. Under dry conditions (Landsat 7) the standard broadband SWIR
difference indices NDTI, STI, and mCRC (accuracy of 80.0% to 83.7%) outperformed the individual
reflectance bands (accuracy of 61.6% to 74.5%), accurately detecting spectral differences in residue and
soil between 1600 nm and 2200 nm. Under wet conditions (Landsat 8) this was reversed, with the
individual reflectance bands (accuracy of 66.4% to 80.7%) outperforming the tillage indices (accuracy of
58.7% to 76.4%), likely due to the increased contrast between residue and soil under moist conditions
being captured by the reflectance measurements within each individual SWIR band. The mCRC
index alone performed relatively well under both wet and dry conditions (accuracy of 76.4% and
80.0%, respectively). When compared to the WV3 SINDRI-derived CRC map, and when compared to
tillage survey data from Maryland and Delaware, the GBT classification accuracy was greatest for the
low-residue tillage class (CRC < 30%) and for the high residue tillage class (CRC > 60%), and was least
accurate for the 30–60% CRC conservation tillage category.

The 12-band GBT classifier, trained on WV-3 SWIR CRC map output, provided an accurate map of
CRC at a regional scale and displayed resilience to changing moisture conditions. Further development
of moisture calibration techniques that use wetness index information derived from each satellite
image to adjust pixel reflectance for variable moisture conditions may further improve the accuracy
of this CRC mapping method. Accurate and resilient techniques that use satellite remote sensing to
map crop residue cover at the landscape scale can help to inform the implementation and adaptive
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management of conservation tillage practices, assisting farmers to reduce nutrient and sediment loss
from farmland, and reducing the impact of agriculture on the aquatic environment.
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