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Abstract: The reliability of remote sensing (RS) image classification is crucial for applying RS image
classification results. However, it has received minimal attention, especially the uncertainty of features
extracted from RS images. The uncertainty of image features constantly accumulates, propagates,
and ultimately affects the reliability and accuracy of image classification results. Thus, research on
the quantitative modeling and measurement of the feature uncertainty of RS images is very necessary.
To make up for the lack of research on quantitative modeling and measurement of uncertainty of
image features, this study first investigates and summarizes the appearance characteristics of the
feature uncertainty of RS images in geospatial and feature space domains based on the source and
formation mechanisms of feature uncertainty. Then, a modeling and measurement approach for
the uncertainty of image features is proposed on the basis of these characteristics. In this approach,
a new Local Adaptive Multi-Feature Weighting Method based on Information Entropy and the
Local Distribution Density of Points is proposed to model and measure the feature uncertainty of
an image in the geospatial and feature space domains. In addition, a feature uncertainty index is
also constructed to comprehensively describe and quantify the feature uncertainty, which can also be
used to refine the classification map to improve its accuracy. Finally, we propose two effectiveness
verification schemes in two perspectives, namely, statistical analysis and image classification, to
verify the validity of the proposed approach. Experimental results on two real RS images confirm the
validity of the proposed approach. Our study on the feature uncertainty of images may contribute to
the development of uncertainty control methods or reliable classification schemes for RS images.

Keywords: remote sensing images; image analysis; image features; uncertainty; quantitative
description; modeling; feature uncertainty; reliability; image classification

1. Introduction

With the continuous development of space-to-earth observation technology, increasingly different
types of remote sensing (RS) imagery have been developed, and the spatial and temporal resolutions
of RS imagery have increased. Accordingly, many types of image classification methods have been
proposed. These methods include maximum likelihood classification [1], support vector machine
(SVM) [2,3], random forest [4], rotation forest [5], object-oriented image classification methods [6–10],
and deep learning-based classification methods [11,12]. However, the results of image classification
still cannot achieve 100% accuracy or a sufficiently convincing level of accuracy and sufficient reliability
despite significant progress in the field of RS image classification. Thus, RS image classification remains
a problem that must be solved [13].
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Uncertainty propagation theory [14,15] states that uncertainties are present in every stage of RS
image classification. These uncertainties constantly propagate and accumulate during classification
and ultimately affect the accuracy and reliability of the classification results. To achieve further
breakthroughs in the field of image classification, we must systematically investigate the uncertainties
in image classification [16,17] because they are the root cause of the reduction in the reliability of image
classification results. Furthermore, these uncertainties inevitably cause errors in classification results
and significantly limit the improvement of the accuracy and reliability of current image classification.

At present, numerous studies have been conducted on RS image classification, but studies on
the reliability or uncertainty of RS image classification have received relatively minimal attention.
Wilson and Granlund [18] proposed that uncertainty is a fundamental result in signal processing,
and its impact must be considered throughout the entire image processing pipeline. Carmel [19]
introduced an aggregation-based uncertainty control method for RS data. Li and Zhang [20] presented
a Markov chain geostatistical framework for land cover classification. This model can provide an
uncertainty assessment of the classified data. Gillmann et al. [21] proposed that the main source
of data uncertainty was the data acquisition process itself, and additional uncertainty would be
introduced during data processing. Gillmann et al. [22] also proposed an uncertainty-aware image
pre-processing paradigm, which considered the input image’s uncertainty and propagated it through
the entire pipeline. Giacco et al. [23] demonstrated the importance of uncertainty measurement in fusing
several classifiers by analyzing the uncertainty in multispectral image classification using SVMs and
self-organizing maps. Hughes and Hase [15] presented a practical guide for uncertainty/error analysis
of measurements. This guideline describes some rules for uncertainty propagation. Feizizadeh [24]
developed an approach for accuracy assessment and spatial uncertainty analysis in object-based
image classification. This approach integrates fuzzy synthetic evaluation and the Dempster–Shafer
theory. Gillmann et al. [25] considered the uncertainty of image segmentation and presented a flexible
multiclass segmentation method, which fuses a fuzzy and a hierarchical segmentation approach
to obtain an efficient segmentation result. Moreover, the uncertainty of the segmentation result
was visualized. Shi et al. [26] designed a validation scheme for the reliability evaluation of results
and processes of land cover classification to evaluate the reliability of land cover products. However,
most existing studies on the uncertainty/reliability of RS image classification have focused on evaluating
the reliability/uncertainty of classification results or improving the reliability of classification results
by controlling uncertainty. The uncertainties in each stage of image classification have been rarely
investigated and quantitatively described.

The uncertainty in image classification limits the reliability and accuracy of image classification
results. To overcome this limitation, we must first understand the characteristics of the uncertainty
in image classification and quantitatively measure and model it accordingly. Subsequently, we can
control or constrain the uncertainty to reduce its negative impact on the image classification results
and thus improve the reliability and accuracy of image classification. Feature extraction is a crucial
stage of image classification, and the features constructed by feature extraction are the basis and
premise of image classification [27–30]. Therefore, the uncertainties in image classification, especially
the uncertainty of features extracted from RS images, must be quantitatively described and modeled.

However, as mentioned previously, to date, few relevant studies or methods have been proposed to
model and measure the uncertainty of features of RS images in existing studies on uncertainty. To make
up for this deficiency, this study focuses on quantitatively modeling and measuring the uncertainty
of image features and proposes an effective modeling and measurement approach. Moreover, this
study is expected to provide a basis for studying the accumulation and propagation mechanisms
of uncertainty in RS image classification and guidance for studying RS image uncertainty control
methods, which will contribute to improving the accuracy and reliability of RS image classification.
Note that the feature uncertainty here mainly refers to classification uncertainty/confusion caused by
mutual interference and confusion between features of different classes in the image due to adjacency
effects, intra-class differences, and inter-class similarities, etc. The uncertainties caused by other factors,
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such as the accuracy of radiation correction, the representativeness of the selected samples, and the
robustness of the classification algorithm, are not investigated in this study.

To achieve the modeling and quantification of the uncertainty of image features, the characteristics
of feature uncertainty are first systematically investigated and summarized in this study from the
perspectives of geospatial and feature space domains. The formation of the topic on the classification
uncertainty of image features is one of the innovations of this study. Then, to make up for the lack of
research on quantitative modeling and measurement of uncertainty of features extracted from RS images,
this study proposes a modeling and measurement approach for quantifying uncertainty of image
features. In this approach, a Local Adaptive Multi-Feature Weighting Method based on Information
Entropy is proposed to model and measure the feature uncertainty of the image in the geospatial
domain; and the Local Distribution Density of Points (LDDP) is proposed to model and measure the
feature uncertainty in the feature space domain. In addition, a new feature uncertainty index is also
constructed to comprehensively describe and quantify the feature uncertainty. The constructed feature
uncertainty modeling approach (including the proposed index FUI) is one of the main contributions
of this study. Finally, to verify the validity of the proposed approach, two different verification
schemes are also proposed from two perspectives, namely, statistical analysis and image classification.
These perspectives can prove the validity of the proposed approach and its practical value in image
classification. Moreover, the proposed verification schemes will be useful for the validation of
uncertainty quantification results of other stages of image classification in the future. It should be noted
that this paper is different from our previous work [31], which proposes an uncertainty descriptor to
quantify the effect of image quality itself on image classification results.

The remaining parts of this paper are organized as follows. Section 2 conducts a characteristic
analysis of the feature uncertainty of RS images based on geospatial and feature space domains.
Section 3 presents an approach for modeling and quantifying the feature uncertainties analyzed in
Section 2 and constructs a feature uncertainty index (FUI). Section 4 designs two validity verification
schemes for the proposed modeling and measurement approach. After that, Section 5 describes the
experimental results and analysis on two test RS images and discusses the sensitivity of the parameters
in the proposed approach. Finally, Section 6 draws the conclusions of this paper.

2. Characteristic Analysis of Feature Uncertainty

A crucial step before classifying an RS image X is to extract a series of features from an image (such
as spectral and texture features). This process is the basis for image classification. Let the total dimension
of the features extracted from image X be n. Evidently, due to the effects of image noise, mixed pixels,
and the phenomenon wherein the same objects have different spectra or the different objects have the
same spectra, the extracted n-dimensional features for different pixels in the image typically contain
different degrees of uncertainty. The various degrees of uncertainty cause inevitable classification
confusion among different categories of pixels when performing image classification. This uncertainty
of features makes different pixels have distinct distribution or appearance characteristics in the
image. Next, the distribution or appearance characteristics of pixels with different degrees of feature
uncertainty are analyzed in detail from the perspectives of geospatial and feature space domains.

2.1. From the Perspective of the Geospatial Domain

From the perspective of the geospatial domain, RS images are composed of many different ground
objects, such as trees, houses, and water bodies. For the objects in an RS image, the spatial distribution
of their internal pixels is usually as illustrated in Figure 1 [32]. Specifically, mixed pixels with different
mixing levels (e.g., pixels in part C in Figure 1) tend to appear at the boundary of various objects in
the image. Moreover, since the pixels that are close to the boundary of the object (e.g., the pixels in
Figure 1B) are usually affected by the spectral reflection of the other types of adjacent objects, whose
features typically have different degrees of change, thus resulting in a certain difference between the
features of these pixels and the features of the object to which these pixels belong. The closer the pixels
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are to the boundary, the more they are affected and the greater this difference is. Therefore, these
mixed pixels and the pixels close to the boundary of the object tend to have significant differences from
the surrounding neighborhood pixels. Moreover, they tend to have high classification uncertainty
and are easily misclassified in an image classification task because they are mixed with the features
of other categories in different proportions. However, the object’s central pixels (e.g., pixels in part
A in Figure 1), which are far from object’s boundary, are hardly affected by the spectral reflection of
other adjacent objects. Thus, their features tend to be relatively pure and consistent. In other words,
they are less different from the surrounding neighborhood pixels. During image classification, these
pixels tend to have low uncertainty and are easily classified correctly. For random noises in the image
(e.g., the pixels in Figure 1D), their features are random and frequently have significant differences
with the surrounding neighborhood pixels. Thus, they have very high uncertainty and are very easily
misclassified in image classification. From the abovementioned analysis, we can conclude that the
pixels with high uncertainty, such as noises, mixed pixels at the boundary of the object, and pixels
close to the boundary of the object, have a common characteristic in that their features are generally
different from those of their surrounding neighborhood pixels in the geospatial domain. Conversely,
for pixels with low uncertainty, such as central pixels far from the boundary of the object, the difference
between their features and the features of their surrounding neighborhood pixels is very small in the
geospatial domain. On this basis, we can quantitatively measure and model the uncertainty of the
features of different pixels in the geospatial domain.
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Figure 1. Spatial distribution of the different types of pixels in the image objects. (The difference in
pixel color represents the difference between the features of the pixels.).

As shown in Figure 2, from the perspective of the geospatial domain, the n-dimensional features
extracted from image X can be constructed into a “feature cube”, which is formed by stacking the
n-dimensional features of the image layer by layer. The n-layer features in this cube can be viewed
as the description and expression of information from various ground objects in the same geospatial
range from n different aspects. Evidently, various feature layers have certain differences in their ability
to record and express information of ground objects, so their degree of uncertainty is also different.
Thus, the differences between the uncertainties contained in various feature layers must be considered
when modeling and measuring the uncertainty of features in the geospatial domain (that is, different
features should be treated distinctly).
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2.2. From the Perspective of the Feature Space Domain

As shown in Figure 2, from the perspective of the feature space domain, an image X with
n-dimensional features can be regarded as a set of feature points in an n-dimensional coordinate
system, which is also called a feature space. Every feature point in the n-dimensional coordinate
system corresponds to one pixel in the image. In an ideal case, the feature points in the feature space
should be densely clustered near several cluster centers (that is, the corresponding feature centers
of various categories), and the number of cluster centers is the number of categories in the image.
However, in reality, the distribution of feature points in the feature space naturally has different degrees
of uncertainty due to many uncertain factors, such as image noises, mixed pixels, and intra-class
differences. Figure 3a demonstrates a feature space that corresponds to a real RS image. As shown
in Figure 3a, pixels with high uncertainty, such as mixed pixels, are frequently distributed at the
boundaries of several clusters, which is why they are easily misclassified during image classification.
For pixels with low uncertainty, such as pure pixels, they tend to gather closely near the cluster centers
in the feature space. Moreover, during image classification, the lower the uncertainty of the features
of the pixels is, the closer the feature points corresponding to these pixels are to the cluster center
in the feature space, and vice versa. According to the intensity of the distribution of feature points
in the feature space, we can find that the lower the uncertainty of the feature points is, the closer
they are to the cluster center, and the higher the density of feature points distributed around them is.
Otherwise, the higher the uncertainty of the feature points is, the closer they are to the boundary of
the clusters, and the lower the density of feature points distributed around them is. Thus, based on
the relationship between the feature uncertainty of the pixels and the intensity of the distribution of
feature points around their corresponding feature points in the feature space, the feature uncertainty
of the pixels can be quantified and modeled from the perspective of the feature space. That is, the
distribution intensity of the feature points is used in the feature space domain. In particular, the denser
the distribution of feature points in the feature space is, the lower their uncertainty is. Furthermore,
the sparse distribution of feature points denotes their high uncertainty.
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3. Approach for Modeling and Measurement of Feature Uncertainty

Feature uncertainty is derived from the confusion of features between different classes of pixels
caused by mixed pixels, noises, and the phenomenon where the same objects have different spectra
or different objects have the same spectra, which will result in confusion between the categories of
these pixels in image classification. In Section 2, we have analyzed the appearance the characteristics
of feature uncertainty from the geospatial and feature space domains. Therefore, we can construct
the corresponding quantitative models to measure the feature uncertainty of an image according to
these characteristics. Correspondingly, in this section, we first measure and model the uncertainty
of features from the perspective of geospatial and feature space domains and then combine them to
form a feature uncertainty index to describe the uncertainty of image features more accurately and
effectively. The specific approach is presented as follows.

3.1. Geospatial Domain

According to the characteristics of feature uncertainty analyzed in Section 2, from the perspective
of the geospatial domain, pixels with a high feature uncertainty tend to have significant differences
in features from other adjacent neighboring pixels (such as mixed pixels, noises, and the pixels close
to the object boundary), whereas pixels with low feature uncertainty tend to have fewer difference
in features from other pixels adjacent to them. Thus, the uncertainty of pixel features is high when
the difference between features of this pixel and its neighborhood pixels is large, and vice versa.
On this basis, we can quantitatively describe and measure the feature uncertainty of pixels in the
geospatial domain. In addition, as analyzed in Section 2, various features have certain differences in
the ability to record and express ground information. Thus, the difference between the uncertainties
contained in the different features must be considered when measuring the uncertainty of image
features. To this end, a Local Adaptive Multi-Feature Weighting Method based on Information Entropy
is proposed to measure the feature uncertainty of the image in the geospatial domain when we use the
multi-dimensional features of the image to describe and model its feature uncertainty comprehensively.
The proposed method uses the information entropy in the neighborhood of the target pixel as the
weight and calculates the weighted summation of the uncertainties of different features to obtain the
comprehensive feature uncertainty of the pixel in the geospatial domain. The specific implementation
process is presented as follows.
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3.1.1. Uncertainty of the Single-Dimension Feature in the Geospatial Domain

We first calculate the feature uncertainty of the image in each dimension feature. Let Pi j be
a pixel in image X. In the n-th-dimensional feature of the image, the K*K neighborhood centered
on Pi j is represented by On

pij (including the central pixel Pi j) and n = 1, 2, · · · · · · , N, where N is the
total dimension of the extracted features from image X. Figure 4 depicts an example of the K*K
neighborhood On

pij of pixel Pi j (K = 5). Pixel Pxy is the pixel of the x-th row and the y-th column in
the K*K neighborhood On

pij. In addition, the n-th-dimensional features of pixel Pi j and pixel Pxy are
represented by f n

pij and f n
pxy, respectively.
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pij of pixel Pi j (K = 5).

As mentioned previously, the feature uncertainty of a pixel is high in the geospatial domain when
the difference between its features and the features of its surrounding neighborhood pixels is large.
Thus, feature uncertainty Un

pij of pixel Pi j in the n-th-dimensional feature can be calculated using
Equation (1):

Un
pij =

∑
∀pxy∈On

pij

wpxy·

∣∣∣∣ f n
pxy − f n

pij

∣∣∣∣
K2 − 1

, (1)

where wpxy represents the weight of the influence of pixel Pxy on target pixel Pi j, which is determined
by the distance from pixel Pxy to pixel Pi j. According to the first law of geography [33,34], the weight
is high when the distance is small, and vice versa. The calculation method of wpxy is expressed in
Equation (2):

wpxy =

1
Dxy

K∑
x=1

K∑
y=1

1
Dxy

, (2)

Dxy =

√(
x−

K + 1
2

)2
+

(
y−

K + 1
2

)2
+ 1x, y ∈ (1, 2, 3 . . . . . .K), (3)

where x and y correspond to the row and column numbers of pixel Pxy in the K*K neighborhood On
pij

of pixel Pi j, and Dxy represents the distance from pixel Pxy to the central pixel Pi j. The last "+1" term in
Equation (3) is used to prevent the case of Dxy = 0. When the pixel Pxy overlaps with the central pixel
Pi j(that is, x = K+1

2 and y = K+1
2 ),Dxy = 0, which is not conducive to the calculation of weights (wpxy).

3.1.2. Weights of Different Features

As analyzed in Section 2, various features have certain differences in their ability to record and
express ground information, and their degree of uncertainty is also different. Thus, various features
must be given different weights when measuring the feature uncertainty of an image.
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This study presents a Local Adaptive Multi-Feature Weighting Method based on Information
Entropy to describe the feature uncertainty of an image in the geospatial domain. The proposed
method uses the information entropy in the local neighborhood of the target pixel as the weight to
combine the uncertainty of different features through the weighted summation method. Shannon’s
information entropy theory [35] states that the higher the entropy is, the more information contained
in the local neighborhood, thereby indicating that the complexity of the neighborhood is higher. Thus,
the corresponding weight should be greater. In each dimension feature, the weight and entropy of each
pixel is automatically determined on the basis of the difference in the pixels’ features within the local
neighborhood of the pixel. That is, the proposed method adaptively determines the weight of each
pixel in different feature dimensions. Moreover, the weight of the feature uncertainty of different pixels
in the same dimension feature is different, which can more accurately describe the spatial heterogeneity
of the feature uncertainty of the image. The calculation method of the weight for every pixel in each
dimension feature is described as follows.

According to the information entropy theory [35], in the n-th-dimensional feature, the information
entropy of the local K*K neighborhood On

pij of pixel Pi j (that is, the weight of the uncertainty of the
nth-dimensional feature of pixel Pi j) is calculated using Equation (4):

En
pij = −

∑
∀pxy∈On

pij

ppxy log2 ppxy, (4)

ppxy =

∣∣∣∣∣∣∣∣ f n
pxy −

1
K2 ·

∑
∀pxy∈On

pij

f n
pxy

∣∣∣∣∣∣∣∣
∑

∀pxy∈On
pij

∣∣∣∣∣∣∣∣ f n
pxy −

1
K2 ·

∑
∀pxy∈On

pij

f n
pxy

∣∣∣∣∣∣∣∣
, (5)

where pixel Pxy is the pixel of the x-th row and the y-th column in the K*K neighborhood On
pij of pixel

Pi j in the n-th-dimensional feature.

3.1.3. Integrating Uncertainties of Different Features to Measure the Comprehensive Feature
Uncertainty in the Geospatial Domain

Based on the calculated uncertainty of each dimension feature of the pixel and its weight, we use
the weighted summation method to combine the uncertainties of different features for obtaining the
comprehensive feature uncertainty of every pixel in the geospatial domain. For pixel Pi j in image X
with n-dimensional features, its comprehensive feature uncertainty in the geospatial domain can be
calculated using Equation (6):

Upij =
N∑

n=1

Un
pij·E

n
pij, (6)

Finally, after normalizing the feature uncertainty of all pixels in the image by using Equation (7), a
normalized measurement index of the feature uncertainty of the entire image in the geospatial domain
can be obtained and is referred to as GeoSpatial Uncertainty (GSU):

GSU =
U −min(U)

max(U) −min(U)
, (7)

where U represents the feature uncertainty of all pixels in the geospatial domain before normalization,
U =

{
Upij

∣∣∣∀Pi j ∈ X
}
, and max(U) and min(U) represent the maximum and minimum values of

U, correspondingly.
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3.2. Feature Space Domain

According to the analysis presented in Section 2, ideally, different categories of pixels in an image
will form several very dense cluster centers in the feature space. However, due to the influence of many
uncertainty factors, such as inter-class similarities, mixed pixels, and noise, not all feature points are
very densely distributed in the feature space. Moreover, the feature points with low feature uncertainty
are frequently distributed near the cluster centers, and the lower the uncertainty of the feature points,
the greater the distribution density of the feature points around them. By contrast, the feature points
with high feature uncertainty tend to be discrete in the feature space, and the higher the uncertainty of
the feature points, the smaller the distribution density of the feature points around them.

Thus, we can quantify and model the feature uncertainty of pixels in the feature space domain
based on the distribution law of the feature points with different degrees of feature uncertainty in the
feature space.

Here, we propose the Local Distribution Density of Points (LDDP) to measure the intensity of
the distribution of feature points in the feature space and use it to represent the feature uncertainty
of pixels in the feature space domain. In this study, as shown in Figure 3b, the LDDP (Φi) of the i-th
feature point P in the feature space (corresponding to the i-th pixel P in the image) is defined as the
average of the distances between the m feature points closest to P and point P in the feature space.
LDDP is calculated using Equation (8):

Φi =
1
m

m∑
j=1

di j, (8)

where di j represents the Euclidean distance from the j-th feature point closest to the current feature
point P to point P, j = 1, 2, . . . m; di j can be calculated using Equation (9) [36]:

di j =

√√√ N∑
n=1

(
f n
i − f n

j

)2
, (9)

where f n
i and f n

j represent the n-th feature of the current i-th pixel P and its j-th nearest pixel in
the feature space, correspondingly, n = 1, 2, · · · · · · , N, where N is the total dimension of features of
the image.

The LDDP of all pixels in the feature space can be obtained by traversing each pixel in the image
(that is, each feature point in the feature space). As previously mentioned, the difference in the LDDP
between different pixels reflects the variation in feature uncertainty between different pixels in the
feature space domain. Thus, we can normalize the LDDPs of all pixels in the entire image by using
Equation (10) and use the normalized LDDP to measure the feature uncertainty of the pixels (feature
points) in the feature space domain, referred to as the Feature Space Uncertainty (FSU):

FSU =
Φ −min(Φ)

max(Φ) −min(Φ)
, (10)

where Φ represents the LDDP of all pixels in the image, and the max(Φ) and min(Φ) represent the
maximum and minimum values of the LDDP of all pixels, respectively.

3.3. Feature Uncertainty Index Integrated Geospatial and Feature Space Domains

GeoSpatial Uncertainty (GSU) and Feature Space Uncertainty (FSU) describe the feature uncertainty
of an image from two different domains. Generally, the feature uncertainty of an image can be more
effectively and comprehensively described and measured by reasonably integrating the two domains.
Thus, this study integrates GSU and FSU to obtain a new Feature Uncertainty Index (FUI) to
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comprehensively describe and quantify the feature uncertainty of an image. FUI is calculated using
Equation (11):

FUI = (1− λ)·GSU + λ·FSU, (11)

where the non-negative constant λ is the adjustment coefficient and is used to adjust the weights of the
geospatial and feature space domains.

4. Validation Schemes

To verify the validity of the proposed feature uncertainty modeling approach (that is,
the constructed index FUI), this study improves the verification strategy in the literature [31] and tests
the effectiveness of the approach from two aspects: (i) Statistical analysis: Statistical analysis of the
correlation between classification error rate and feature uncertainty (which is measured by FUI) in
the image classification results. In theory, the higher the feature uncertainty of the pixels, the more
likely they are to be misclassified during image classification [14]. Thus, in the classification results,
the classification error rate and feature uncertainty should have a significantly positive correlation.
In actual statistics and correlation analysis of the experimental results, if a significant positive correlation
does exist between the classification error rate and feature uncertainty, then the proposed feature
uncertainty modeling approach is indeed effective. Moreover, the stronger this positive correlation is,
the more effective the proposed approach is. (ii) Analysis of the effect on image classification: The
FUI constructed by the proposed approach is applied to the image classification process to improve
the accuracy of the classification results. If the accuracy of the image classification results is indeed
improved by using the FUI in the classification process, then the proposed feature uncertainty modeling
approach is indeed effective and valuable [14]. The flowcharts of the two verification schemes are
exhibited in Figure 5. Next, the two verification schemes are specifically described below.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 24 
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Distance and Reliability-based Spatial Filtering; SF, Spatial Filtering; FCM, Final Classification Map.

4.1. Scheme I: Statistical Analysis

As mentioned above, the higher the feature uncertainty of the pixels in an image, the more likely
the pixels are to be misclassified. Thus, in the classification map, the classification error rate is higher
in pixels with higher feature uncertainty. In the statistical analysis of the classification results, if this
positive correlation does exist between the FUI and classification error, then the proposed approach is
effective. The stronger this positive correlation is, the more effective the proposed approach is.
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To describe this relationship quantitatively, this study uses the Pearson correlation coefficient to
measure the correlation between feature uncertainty measured using the FUI and classification error
rate quantitatively. The specific process is expressed as follows.

(1) Selecting an appropriate method for image classification:
The statistical analysis in the experiments is based on the image classification results. Thus, it is

necessary to select appropriate classification methods to classify the image for subsequent statistical
analysis. SVM is a machine learning algorithm based on statistical learning theory. It has evolved
into a well-developed and widely used classical classification method in image classification [2,3,37].
Therefore, the SVM classification algorithm is used in this study for image classification.

Notably, to facilitate the verification of the second scheme, an SVM soft classification method
is used to classify the image here, and the soft classification results are hardened on the basis of the
principle of maximum membership to obtain the final classification results [38]. That is, each pixel is
classified into the category that corresponds to its maximum membership. The soft classification results
and hardened classification map are used in the second scheme. Moreover, SVM soft classification
is implemented by using the open-source LibSVM tool [39]. Additional details on the SVM soft
classification can be found in the literature [39,40].

(2) Determining the range of valid values for the FUI:
Some abnormally large or small values are inevitable in the calculated FUI due to the influence

of the image noise. In subsequent statistical analyses, a division of the different levels of feature
uncertainty and related statistics will be performed. If these abnormal values are not excluded, they
will affect the accuracy and reliability of the results of subsequent statistical analyses. Thus, we must
determine an effective and reliable range of values for the FUI. In the present study, the range of valid
values for the FUI is determined on the basis of its valid maximum and minimum values.

According to the 3δ theory in statistics [41], we determine that the valid maximum and minimum
values of FUI are valuemax and valuemin, respectively, and their expressions are presented in Equation
(12):

valuemin = µ− 3δ
valuemax = µ+ 3δ

, (12)

where µ and δ are the mean and standard deviation of the FUI of all pixels in the entire
image, correspondingly.

Thus, in the image, only pixels with feature uncertainties in the range [valuemin, valuemax] are
included in subsequent statistical analysis. According to statistical theory [41], [valuemin, valuemax] has
a confidence interval of 99.74%. In particular, in terms of the FUI, the pixels in [valuemin, valuemax]

contain 99.74% of the information of the entire image.
(3) Division of uncertainty levels:
All the pixels in the interval [valuemin, valuemax] are divided into N levels with an equal interval of

uncertainty based on the degree of feature uncertainty, and the range of uncertainty that corresponds
to the n-th level is expressed as follows:[

valuemin + (n− 1) ∗
valuemax − valuemin

N
, valuemin + n ∗

valuemax − valuemin

N

]
, (13)

where n = 1, 2, · · · · · · , N, and N represents the total number of the divided uncertainty levels.
(4) Calculation of classification error rates for each feature uncertainty level:
The number of misclassified pixels in each level of uncertainty is first counted from the classification

maps. Then, the overall classification error rate δn of each level is calculated using Equation (14):

δn =
numn

NUMn
, (14)
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where δn is the overall classification error rate of the n-th level, numn is the total number of misclassified
pixels within the n-th level, and NUMn is the total number of pixels within the n-th level.

(5) Correlation analysis between classification error rates and feature uncertainty levels:
The correlation coefficient R between the classification error rates and feature uncertainty levels is

calculated in accordance with the definition of the Pearson correlation coefficient [42]. The calculation
method is expressed as follows:

R =

∑N
n=1

(
δn − δ

)
(n− n)√∑N

n=1

(
δn − δ

)2
√∑N

n=1(n− n)2
, (15)

where δ and n represent the average values of δn and n, respectively; n = 1, 2· · · · · ·N; and N is the total
number of the divided uncertainty levels.

According to the statistical meaning of Pearson correlation coefficient [42], the larger the absolute
value of coefficient R between feature uncertainty levels and classification error rates is, the stronger the
correlation between them. Furthermore, they are positively correlated when the coefficient R’s value
is positive, and vice versa. Evidently, the stronger the correlation is, the more effective the proposed
feature uncertainty modeling approach.

4.2. Scheme II: Analysis of the Effect on Image Classification

In addition to demonstrating the validity of the proposed approach from the perspective of
statistical analysis, this study also analyzes the effect of the FUI constructed by using this approach on
the reliability and accuracy of the classification results to further confirm the validity and practical
value of the proposed approach. Specifically, the calculated FUI is applied to image classification.
Theoretically, the reliability of the image classification results can be improved by controlling or
constraining the image’s feature uncertainty, which is quantified using the proposed FUI during image
classification [14]. Then, the accuracy of the classification results will naturally increase when their
reliability is improved. Furthermore, in the experimental results, if the accuracy of classification results
is indeed improved by using the proposed FUI, it means that the proposed FUI does play a role, which
can prove that the proposed feature uncertainty modeling approach is effective. This verification
scheme is subsequently presented in detail.

As stated in the literature [31], the post-processing of image classification is also an important
part of the image classification task. Reasonable post-classification methods can effectively improve
the preliminary classification maps and enhance the performance and reliability of classification [43,44].
On this basis, the present study applies the FUI calculated by the proposed approach to the post-processing
of image classification to improve the accuracy of image classification results.

For the traditional post-processing of image classification, a common method is to refine the
initial classification results through spatial filtering (SF) [45], which utilizes the spatial information of
an image to maintain the spatial consistency of the image classification map based on the first law
of geography [33,34]. For an image soft classification task, after performing SF on each layer from
the image initial soft classification results (taking 3 × 3 spatial filtering as an example), the new soft
classification results of pixel P (i, j) in the image can be presented by using Equation (16):

ρP,c =
9∑

n=1

wn ∗ ρn,c, (16)

where ρP,c denotes the probability that pixel P belongs to the c-th category after SF; c = 1, 2 · · ·C; and C
is the total number of categories predefined for image classification. wn and ρn,c, respectively, represent
the weight of the n-th pixel in the eight-neighborhood Op and its probability that it belongs to the c-th
category in the initial soft classification results.
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For traditional SF, the weight wn of different pixels in the neighborhood of pixel P (i, j) is determined
on the basis of its spatial distance to the target pixel P. The weight wn of different pixels can be calculated
using Equation (17):

wn =
1

dn
9∑

n=1

1
dn

dn =

√
(m− i)2 + (n− j)2 + 1

, (17)

where wn and dn represent the weight of the n-th pixel (m,n) in the neighborhood Op of pixel P and its
distance to pixel P, correspondingly. The variables (i, j) and (m, n) represent the map coordinates (row,
column) of pixel P and the n-th pixel from the neighborhood Op in the entire image, respectively.

To verify the validity of the proposed approach, we use the calculated FUI to improve the
traditional SF method and propose a new Distance and Reliability-based Spatial Filtering (DR_SF)
method, which adds uncertainty constraints to the traditional SF to enhance the reliability and accuracy
of the filtered results. Specifically, the uncertainty constraint (or reliability) is added to the weight wn

of the traditional SF to adjust the weight of the neighboring pixels appropriately. The new adjusted
weight is w∗n, which is calculated using Equation (18).

w∗n = wn+Rn
2

Rn = 1− FUIn
, (18)

where FUIn, Rn, and w∗n correspond to the feature uncertainty index, reliability, and new adjusted
weight of the n-th pixel in the neighborhood Op. There is an inverse relationship between Rn and FUIn

and their range of values is [0,1].
The specific implementation process of Scheme II is presented as follows:
(1) We first use the SVM soft classification algorithm to initially classify the RS image, and the

results of the preliminary soft classification are obtained. As previously mentioned, the soft classification
results from Scheme I are directly used for subsequent verification.

(2) Then, we use the traditional SF and DR_SF to filter and refine each layer of the initial image
soft classification results, respectively.

(3) Finally, the new soft classification results are hardened according to the principle of maximum
membership [38], and the final classification maps (FCMs) are obtained. Among these FCMs, the FCM
obtained through traditional SF is denoted as FCM_SF, and the FCM obtained through DR_SF is
recorded as FCM_DR_SF.

Subsequently, the classification accuracies of FCM_SF and FCM_DR_SF are compared and
analyzed. If the classification accuracy is higher in FCM_DR_SF than in FCM_SF, it shows that the
improved DR_SF filtering method is effective, which further proves the validity of the proposed feature
uncertainty modeling approach.

5. Experimental Results and Discussion

5.1. Experimental Data and Settings

To verify the validity and robustness of the proposed feature uncertainty modeling approach,
we perform validation experiments on two real RS images (Vaihingen and Potsdam images) by using the
two previously designed verification schemes. These images are obtained from the RS image semantic
segmentation datasets published by the International Society for Photogrammetry and Remote Sensing
(ISPRS) [46]. The ISPRS also provides the corresponding ground truth reference images derived from
manual visual interpretation. Obviously, there are some inevitable errors in the determination of the
boundary of the object during visual interpretation. Also, pixels with high uncertainty tend to gather
near the object boundary. Therefore, to minimize the influence of the ground truths’ errors caused by
the inaccurate object boundary on the statistical analysis of the uncertainty (FUI) and final accuracy
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assessment, the test images used in the experiments are upscaled images (whose spatial resolution
is slightly reduced) obtained by pixel aggregation of the original image. Furthermore, the image
classification accuracy is evaluated at a sub-pixel scale [31]. The details of the two images and their
related experimental parameters are presented as follows.

Vaihingen and Potsdam images are obtained from different airborne image datasets published
by the ISPRS for 2D semantic labeling. They consist of three bands (namely, red, green, and blue
bands), with a resolution of 9 cm and 5 cm. The original Vaihingen image, Potsdam image, and their
corresponding ground truth reference images are illustrated in Figure 6. In actual experiments, the
original Vaihingen image is resampled by pixel aggregation from 805 × 620 pixels to 161 × 124 pixels
to minimize the influence of the ground truth errors caused by inaccurate visual interpretation on the
statistical analysis of the uncertainty (FUI) and final accuracy assessment, and the resampled image
has a resolution of 45 cm. The original Potsdam image’s size is 770 × 1500 pixels and is resampled
to 154 × 300 pixels during the experiment. The resampled Potsdam image’s resolution is 25 cm.
In addition, there are four main categories in the Vaihingen image: impervious surface, buildings,
low vegetation, and trees. The Potsdam image mainly includes three types of categories, namely,
impervious surfaces, buildings, and low vegetation.Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 24 
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Figure 6. Experimental data: (a) false color original Vaihingen image; (b) ground truth reference
for Vaihingen image; (c) true color original Potsdam image; and (d) ground truth reference for
Potsdam image.

During verification, the image features used in image classification are similar to those used in the
modeling and calculation of feature uncertainty (including GSU, FSU, and FUI). These features include
spectral and texture features. The spectral features include all the spectral bands of the experimental
images. The texture features include features (such as mean, variance, and entropy) extracted from
each band of the experimental images by using the Grey Level Co-occurrence Matrix. In addition,
the kernel size used to extract texture features is 3 × 3.
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In the experiments, three key parameters must be set. These parameters are neighborhood window
size K when calculating the GSU, the number m of adjacent feature points when calculating the FSU,
and the adjustment coefficient λ, which is used to adjust the weights of the geospatial and feature
space domains when calculating the final FUI. In the experiments on the two images, the settings of the
three parameters are summarized in Table 1. Evidently, the setting of the three parameters may affect
the measurement of feature uncertainty. The discussion of these parameters is presented in detail in
the last section.

Table 1. Experimental parameter settings.

Data Set K m λ

Vaihingen 5 15 0.2
Potsdam 3 15 0.1

5.2. Results and Analysis

The GSUs and FSUs of the Vaihingen and Potsdam images are first calculated on the basis of
the methods described in Section 3. Then, the GSUs and FSUs are integrated to obtain the final FUIs.
The GSUs, FSUs, and FUIs of the two images are depicted in Figure 7.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 24 
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The images need to be classified before the statistical analysis. The classic SVM algorithm is used
in this study. The classification results of the two images are demonstrated in Figure 8a,d.
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According to the designed Scheme I, we divide the obtained FUI map into 10 levels with equal
uncertainty intervals. Then, in the classification maps exhibited in Figure 8a,d, the classification error
rate of each level is calculated, and, finally, scatterplot fitting and a Pearson correlation analysis are
performed between the uncertainty levels and classification error rates. The scatterplots and fitted
curves are displayed in Figure 9. The correlation coefficients and fitted curve equations are listed in
Table 2.
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Figure 9. Scatterplots and fitted curves of the levels of uncertainty and classification error rates:
(a) Vaihingen and (b) Potsdam images. (x-axis: levels of uncertainty, y-axis: classification error rates).

Table 2. Fitted curve equations and correlation coefficients.

Datasets. Equations of the Fitted Curves Correlation Coefficient R R2

Vaihingen y = 0.0348x + 0.0578 0.9867 0.9735
Potsdam y = 0.0297x − 0.0365 0.9818 0.9640
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As can be seen from Figure 9 and Table 2, the fitting degree of the curves in the scatterplots is very
high, and the levels of uncertainty and classification error rates show a significant positive correlation.
That is, the higher the level of uncertainty is, the higher the classification error rate is. Moreover,
their positive correlation is very strong. In particular, the correlation coefficient R is greater than 0.98
(Vaihingen: 0.9867 and Potsdam: 0.9818). Thus, from a statistical perspective, the proposed feature
uncertainty modeling approach is evidently effective, and its ability to indicate classification errors is
very strong.

Based on the Scheme II designed previously, we use SF and DR_SF to refine each layer of the
initial image soft classification results and then harden the new soft classification results according to
the principle of maximum membership to obtain the final classification maps (FCMs), as illustrated in
Figure 8b,c,e,f. As previously mentioned, the FCM obtained through the traditional SF is denoted as
FCM_SF, and the FCM obtained through the DR_SF is recorded as FCM_DR_SF. Similarly, the initial
soft classification results are also hardened to obtain the original classification map (OCM), as depicted
in Figure 8a,d. Finally, we use the Overall Accuracy (OA) and Kappa Coefficient (KC) to evaluate and
compare the classification accuracy of the OCM, FCM_SF, and FCM_DR_SF. The results of the accuracy
evaluation of OCM, FCM_SF, and FCM_DR_SF are summarized in Table 3.

Table 3. Accuracy evaluation results: OCM represents the original classification map. FCM_SF and
FCM_ DR_SF correspond to the final classification maps (FCMs) obtained by using SF and DR_SF. OA,
overall accuracy; KC, Kappa coefficient.

Classification maps
OA KC

Vaihingen Potsdam Vaihingen Potsdam

OCM 79.0422% 93.0883% 0.7144 0.8883
FCM_SF 80.5993% 93.7199% 0.7352 0.9014

FCM_ DR_SF 80.8998% 93.9886% 0.7392 0.9024

In Table 3, the accuracies are higher in FCM_SF and FCM_DR_SF than in OCM, regardless of
OA or KC, thereby indicating that the accuracy of the classification results is significantly improved
after filtering. Moreover, the classification accuracy after filtering is higher through the DR_SF than
through the traditional SF (in Table 3, the accuracy is higher in FCM_DR_SF than in FCM_SF), thereby
indicating that the improved DR_SF method is effective. Evidently, the only difference between the
DR_SF and traditional SF is that DR_SF filtering uses the FUI obtained by the proposed uncertainty
modeling approach to constrain or control the feature uncertainty of the images. Now, the improved
DR_SF method is confirmed to be effective, thereby indicating that the proposed feature uncertainty
modeling approach is indeed effective and valuable and can be used for image classification to improve
the accuracy of classification results.

5.3. Discussion of Parameter Sensitivity

The experimental results presented in Section 5.2 confirm the validity of the proposed feature
uncertainty modeling approach. To promote the application of the proposed approach in practice,
the parameter sensitivity of the approach is discussed as follows.

The proposed approach mainly involves three parameters, namely, the neighborhood window
size K when calculating the GSU, the number m of adjacent feature points when calculating the FSU,
and the adjustment coefficient λ when calculating the FUI. In the discussion, we use a control variable
method [47] to analyze the sensitivity between the three parameters and the measurement accuracy of
feature uncertainty in accordance with the designed verification scheme I. Moreover, the correlation
coefficient R between the feature uncertainty levels and classification error rates is used to represent
the measurement accuracy of feature uncertainty. Specifically, the sensitivity between a parameter and
measurement accuracy is analyzed by fixing the value of the two other parameters of the proposed
approach. The details of the discussion are presented as follows.
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(1) To adjust coefficient λ, we fix the values of K and m (K = 5, m = 15 for Vaihingen; and K = 5,
m = 15 for Potsdam) and let the value of λ vary from 0 to 1 at intervals of 0.1. The relationship between
parameter λ and the square of correlation coefficient R (R2) for each dataset is depicted in Figure 10.
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Figure 10. Relationship between parameter λ and the square of correlation coefficient (R2).

As shown in Figure 10, the variation of R2 with λ (from small to large) shows a downward trend
as a whole, and the downward trend becomes more evident when λ is greater than 0.5. In addition,
R2 obtains the maximum value when the value of λ is 0.1–0.2. This condition indicates that the value
of λ should not be too large. Especially when λ is greater than 0.5, the measurement accuracy of the
proposed uncertainty modeling approach may be significantly reduced. Thus, we recommend that the
default value of λ be 0.1–0.2. It should be noted that there are two abnormal points in Figure 10 (0.7 for
Vaihingen and 0.9 for Potsdam), which may be caused by abnormal values in the FUI. In Scheme I,
we use the 3δ rule [41] to exclude some abnormal values, but there is no guarantee that all abnormal
values will be eliminated. Abnormal values may cause inaccuracies in a valid range [valuemin, valuemax],
thereby causing anomalies in R2.

(2) For the neighborhood window size K, we fix the values of λ and m (λ = 0.2, m = 15 for
Vaihingen; and λ = 0.1, m = 15 for Potsdam), and let the value of K vary from 3 to 11 at intervals of 2.
The relationship between parameter K and R2 for each dataset is displayed in Table 4.

Table 4. Relationship between parameter K and the square of correlation coefficient (R2).

K 3 5 7 9 11

R2 Vaihingen 0.8473 0.9735 0.9418 0.9353 0.9466
Potsdam 0.964 0.9513 0.9201 0.9295 0.9235

In Table 4, the change in R2 with K (from small to large) is relatively stable with a small fluctuation,
thus indicating that parameter K slightly affects the measurement accuracy of the approach. It should
be noted that when the value of K changes, the valid statistical range [valuemin, valuemax] determined
by the 3δ rule is not completely the same, which affects the division of uncertainty levels. Therefore,
it is acceptable that the R2 obtained by statistical analysis exhibits a nonlinear change with a small
fluctuation, while the R2 of the Vaihingen and Potsdam images reaches a maximum at K = 5 and K = 3,
respectively, which may be related to the local spatial autocorrelation of the images. According to the
first law of geography [33], RS images often show a high correlation in small local neighborhoods. We
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recommend the default value of K to be approximately 5 for the sake of the accuracy and efficiency of
image processing.

(3) For the number m of adjacent feature points, we fix the values of λ and K (λ = 0.2, K = 5 for
Vaihingen; and λ = 0.1, K = 5 for Potsdam) and let the value of m vary from 5 to 25 at intervals of 5.
The relationship between parameter m and R2 for each dataset is presented in Table 5.

Table 5. Relationship between parameter m and the square of correlation coefficient (R2).

m 5 10 15 20 25

R2 Vaihingen 0.9773 0.9909 0.9735 0.9773 0.9665
Potsdam 0.9396 0.9498 0.9513 0.9493 0.943

Table 5 shows that, like the parameter K, the change in R2 with m (from small to large) is also
relatively stable overall, thereby indicating that parameter m also slightly influences the measurement
accuracy of the proposed approach. Similarly, the nonlinear change with a small fluctuation of R2 may
be caused by a change in the valid statistical range [valuemin, valuemax]. We recommend the default
value of m to be approximately 10–15 because in a large number of experiments on the two images,
R2 can obtain the corresponding maximum value when the values of m are 10 and 15, which may be
related to the spatial autocorrelation of images.

Notably, no experiments have been conducted on larger values of K and m because too large a K
and m are generally not considered in practical applications.

6. Conclusions

To make up for the lack of research on the quantitative modeling and measurement of the
uncertainty of features extracted from RS images, this study proposes a modeling and measurement
approach for the uncertainty of image features. Specifically, on the basis of the source and formation
mechanism of the feature uncertainty of RS images, the appearance characteristics of feature
uncertaintyies are first investigated and summarized in this study from the perspectives of geospatial
and feature space domains. The formation of the topic on the classification uncertainty of image
features is one of the main innovations of this study. Then, in accordance with these characteristics,
a new local adaptive multi-feature weighting method based on information entropy and the local
distribution density of points is proposed to quantitatively describe and model the feature uncertainties
of images in the geospatial and feature space domains, respectively. Moreover, two uncertainty
measurement indices, namely, GeoSpatial Uncertainty (GSU) and Feature Space Uncertainty (FSU) are
proposed accordingly in these two domains. After that, the proposed approach effectively integrates
GSU and FSU to obtain a new Feature Uncertainty Index (FUI) to comprehensively quantify the feature
uncertainty of images. The proposed feature uncertainty modeling approach (include the proposed
index FUI) is one of the main contributions of this study.

In addition, to verify the validity of the proposed feature uncertainty modeling approach, two
different effectiveness verification schemes are also designed from two perspectives, namely, statistical
analysis and image classification. The former analyzes the correlation between the error rates of image
classification and the levels of feature uncertainty, which can confirm the validity of the proposed
approach and the ability of the calculated FUI to indicate classification errors. The latter proposes an
FUI-based uncertainty control method (the DR_SF) to improve the accuracy of image classification
results. This improvement can further prove the validity of the proposed approach and its practical
value in image classification. In the future, the proposed two verification schemes will also be useful for
the validation of uncertainty modeling and quantification results of other stages of image classification,
such as the uncertainty quantification of image segmentation.

Finally, the experimental results on two open and real RS images from the ISPRS confirm the
validity and practical value of the proposed approach. The ideal parameter setting of the approach is
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also supported by discussing the sensitivity of the parameters in the approach, which will be beneficial
to the practical application of the proposed approach.

The proposed feature uncertainty modeling approach is effective and practical. According to
the results of statistical analysis experiments, the FUI calculated by the proposed approach has a
favorable indication ability for image classification errors. This ability may contribute to the prediction
of the spatial distribution of image classification errors and the spatial evaluation of the accuracy of
classification results. The results of the classification verification experiment show that the proposed
approach can accurately measure the uncertainty of image features, and the measurement results can
be used to control the uncertainty in image classification for improving the reliability and overall
accuracy of the classification results. These findings may have guiding significance for research on
reliable image classification schemes or uncertainty control methods for image classification.

The main limitation of our proposed approach is that some assumptions on the spatial distribution
of pixels in the image object may not be fully satisfied when the spatial resolution of the image
is very low (such as MODIS images with a spatial resolution of 250~1000 meters or other images
with lower spatial resolution), which could possibly lead to a decline in the validity of the approach.
Moreover, the spatial resolution of the images used in the experiments is high, and the applicability
of the proposed approach to low-resolution images should be tested and verified further. Therefore,
in future research, we will continue to use images with different types of low, medium, and high
spatial resolutions to further test and analyze the validity, applicability, and robustness of the proposed
approach and optimize it accordingly.

In the future, we will also further investigate and design more effective uncertainty control
methods or strategies based on the proposed model to improve the reliability and accuracy of the
image classification results. Furthermore, the propagation laws of uncertainty at different stages of
image classification, and the mechanisms behind the influence of these laws on the classification results,
will also be thoroughly studied.
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