
remote sensing  

Article

Optimal Timing Assessment for Crop Separation
Using Multispectral Unmanned Aerial Vehicle (UAV)
Data and Textural Features

Jonas E. Böhler *, Michael E. Schaepman and Mathias Kneubühler

Department of Geography, Remote Sensing Laboratories (RSL), University of Zürich, Winterthurerstrasse 190,
8057 Zürich, Switzerland
* Correspondence: jonas.boehler@geo.uzh.ch; Tel.: +41-446-355-249

Received: 17 May 2019; Accepted: 27 July 2019; Published: 30 July 2019
����������
�������

Abstract: The separation of crop types is essential for many agricultural applications, particularly when
within-season information is required. Generally, remote sensing may provide timely information
with varying accuracy over the growing season, but in small structured agricultural areas, a very
high spatial resolution may be needed that exceeds current satellite capabilities. This paper presents
an experiment using spectral and textural features of NIR-red-green-blue (NIR-RGB) bands data
sets acquired with an unmanned aerial vehicle (UAV). The study area is located in the Swiss
Plateau, which has highly fragmented and small structured agricultural fields. The observations took
place between May 5 and September 29, 2015 over 11 days. The analyses are based on a random
forest (RF) approach, predicting crop separation metrics of all analyzed crops. Three temporal
windows of observations based on accumulated growing degree days ( AGDD) were identified:
an early temporal window (515–1232 AGDD, 5 May–17 June 2015) with an average accuracy (AA)
of 70–75%; a mid-season window (1362–2016 AGDD, 25 June–22 July 2015) with an AA of around
80%; and a late window (2626–3238 AGDD, 21 August–29 September 2015) with an AA of <65%.
Therefore, crop separation is most promising in the mid-season window, and an additional NIR band
increases the accuracy significantly. However, discrimination of winter crops is most effective in the
early window, adding further observational requirements to the first window.

Keywords: crop type separation; temporal window; small structured agricultural area; uncalibrated
consumer-grade camera; unmanned aerial vehicle (UAV); very high resolution (VHR); random
forest (RF) classifier; spectral and textural features

1. Introduction

Crop type separation is a crucial requirement for the planning [1], short-term monitoring [2],
management [3], high-throughput phenotyping [4–6], and climate change modeling [7] of agricultural
areas. Many of these tasks need up-to-date information, in particular before the end of the growing
season. These tasks require spatially explicit land cover maps. Nevertheless, this kind of information
is usually reported by farmers only after the season and mostly at administrative units [8]. Even when
the reporting for subsidies takes place in a geographic information system, as is the case in Switzerland,
the data are only entered after the season or even in the following year [9]. Therefore, a more up-to-date
assessment of crop status needs a different data collection source.

Remote sensing has proven its potential to deliver such information even before the end of
season [10]. Land cover crop maps are often based on satellite data because these platforms provide
data sets multiple times per month and are suitable for both single-date or multitemporal classification
tasks [11,12]. Moreover, several studies have demonstrated the ability to carry out early stage crop
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mapping [1,2,13,14]. However, due to fixed orbits and thus fixed observation dates, clouds can limit
the amount of usable data. Furthermore, freely available data from Landsat or Sentinel satellites have
coarse spatial resolution and therefore capture a high amount of mixed pixel information, especially
in small structured farmlands. Hence, data sets of higher spatial resolution are necessary to acquire
spectrally pure pixels that are needed in algorithm training [10,15,16]. To date, data sets gained with
spaceborne sensors at an appropriate spatial resolution are still expensive and rare.

Unmanned aerial vehicles (UAVs) deliver spatially very high resolution (VHR) data sets and
a 3D point-cloud with a spatial resolution of only a few centimeters [17]. UAV data creates new
opportunities in agriculture [18–20], e.g., assessment of plant health status [21], water stress [22],
management techniques [23], erosion of soils [24], and detection of individual plants [25], among
many others. The advantages of VHR data sets compared to common satellite data sets have also
been analyzed, e.g., for vegetation indices (VI) [26,27]. Further, UAVs have the ability to acquire
data in a very flexible manner, e.g., by considering changing weather conditions, and they are cheap
to operate compared to other carrier systems [17]. However, less sophisticated sensors are usually
mounted on UAVs, containing broader spectral bands that are difficult to spectrally and radiometrically
calibrate [28]. Consumer-grade cameras provide red, green and blue (RGB) wavelength bands, but they
can be modified in a way to be able to acquire a near-infrared (NIR) band as well [29]. Therefore,
a NIR-RGB mosaic can be built using combined data from these two camera types.

In Switzerland, farmland is often structured in small plots [30], and therefore VHR data sets
are required to accurately discriminate different crops. To acquire VHR data sets for multiple dates,
consumer-grade cameras with RGB and NIR-GB bands were mounted on a UAV. Uncalibrated data
sets were used in this study to investigate the potential of a straightforward, user-friendly, and low-cost
data acquisition and processing methodology for crop separation over a growing season. Due to
the sensors’ limited spectral properties, the incorporation of additional information content through
textural features is a promising option to improve the accuracy of crop separation [31,32].

Using approaches, in which all available remotely sensed data sets are jointly processed for
crop classification purposes, the accuracy of crop separation has been found to increase [1,11,12,14].
In very fragmented agricultural systems, with very small fields, inhomogeneous cropping cycles and
stringent crop rotation schemes, such as on the Swiss Plateau, sawing and harvesting dates of crops are
subject to large temporal variations and arbitrarily changing patterns of bare vs. vegetated land cover.
These properties are resulting in a decrease of the overall accuracy of crop separation by more than
20% (data not shown) on the Swiss Plateau when using a stacked approach.

Since crops show a changing spectral response due to the evolution of their phenological stage
over the growing season, we hypothesize that crops can be separated with varying accuracy at different
observation dates over the season. Hence, the aims of this study are to (i) determine an optimal
temporal window during the growing season to separate all present crop types from each other,
including textural features of an uncalibrated NIR-RGB data set, (ii) evaluate the potential of an
additional NIR band compared to a standard RGB configuration, and (iii) assess the potential to
discriminate a single crop type from all others on different observation dates.

2. Materials and Methods

2.1. Study Area

The study area is located on the Swiss Plateau (47.312◦N, 8.733◦E, Figure 1) and is subject to a
warm temperate humid climate [33]. Crop and grasslands mainly dominate the area. The crop types
include winter and summer crops. Winter crops are cereals (winter barley, spelt, and winter wheat),
rapeseed, and grassland (permanent and temporary, including clover), whereas the summer crops
taken into account in this study are maize and sugar beet. For maize, rapeseed, sugar beet, and winter
wheat (which represents the cereal crop type), the phenological stage of a single reference field was
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recorded according to the Biologische Bundesanstalt, Bundessortenamt und Chemische Industrie
(BBCH) scale for all 11 observation dates between 5 May 5 and 29 September 2015 (Table 1) [34].

Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 15 

 

Industrie (BBCH) scale for all 11 observation dates between 5 May 5 and 29 September 2015 (Table 1) 

[34]. 

 

Figure 1. Mosaic of the study area near Mönchaltorf in the canton of Zurich (red dot and grey 

shaded area in the overview map of Switzerland, bottom left), acquired over 1362 accumulated 

growing degree days (AGDD, i.e., 25 June 2015) with a consumer-grade RGB camera mounted on a 

UAV, superimposed by the ground reference data from the same date. 

Table 1. Observation dates, corresponding accumulated growing degree days (AGDD) and 

phenological stage (represented as BBCH) of a single reference field per crop type. Cereals are 

represented by phenological stage of winter wheat. 

Observation Date AGDD 
Phenological Stage (BBCH) 

Rapeseed Maize Sugar Beet Cereals 

5 May 2015 515 65 - 15 29 

12 May 2015 635 67 14 17 29 

28 May 2015 848 71 16 19 55 

4 June 2015 989 79 17 19 69 

17 June 2015 1232 80 17 31 73 

25 June 2016 1362 80 33 39 75 

3 July 2015 1556 87 38 39 77 

10 July 2015 1723 89 60 39 87 

22 July 2015 2016 - 65 39 - 

21 August 2015 2626 - 73 39 - 

29 September 2015 3238 - - 39 - 

The total number of fields for a specific crop varied between observation dates; some grassland 

fields were transformed first into bare soil fields before being sown as summer crop fields (i.e., sugar 

beet or maize). Other fields were harvested on a certain date and changed therefore to bare soil, or 

were sown with grass again. Fields with crop residuals were still treated as the previously harvested 

crop (e.g., cereals after harvesting and before they were cleared as bare soil in preparation for the 

Bare soil

Grassland

Cereals

Sugar beet

Maize

Rapeseed0 0.5 1 k m

Figure 1. Mosaic of the study area near Mönchaltorf in the canton of Zurich (red dot and grey shaded
area in the overview map of Switzerland, bottom left), acquired over 1362 accumulated growing degree
days ( AGDD, i.e., 25 June 2015) with a consumer-grade RGB camera mounted on a UAV, superimposed
by the ground reference data from the same date.

Table 1. Observation dates, corresponding accumulated growing degree days ( AGDD) and phenological
stage (represented as BBCH) of a single reference field per crop type. Cereals are represented by
phenological stage of winter wheat.

Observation Date AGDD
Phenological Stage (BBCH)

Rapeseed Maize Sugar Beet Cereals

5 May 2015 515 65 - 15 29
12 May 2015 635 67 14 17 29
28 May 2015 848 71 16 19 55
4 June 2015 989 79 17 19 69

17 June 2015 1232 80 17 31 73
25 June 2016 1362 80 33 39 75
3 July 2015 1556 87 38 39 77
10 July 2015 1723 89 60 39 87
22 July 2015 2016 - 65 39 -

21 August 2015 2626 - 73 39 -
29 September 2015 3238 - - 39 -

The total number of fields for a specific crop varied between observation dates; some grassland
fields were transformed first into bare soil fields before being sown as summer crop fields (i.e., sugar
beet or maize). Other fields were harvested on a certain date and changed therefore to bare soil, or were
sown with grass again. Fields with crop residuals were still treated as the previously harvested crop
(e.g., cereals after harvesting and before they were cleared as bare soil in preparation for the planting
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of a next crop). Consequently, there were no bare soil fields present on May 5, July 3, and July 10.
Nevertheless, the total number of fields remained the same over the entire study period.

The agricultural area is structured into small fields ranging from 0.03 to 7.4 ha with an average
size of 1.3 ha. The length of a single field varies between 140 m and 200 m and the width between 23 m
and 180 m. The total area and number of fields for each class is given in Table 2 for 25 June 2015.

Table 2. Crop types and their size characteristics. The total area and number of fields are given for the
extent on 25 June 2015 (1362 AGDD) where now bare soil fields were present.

Crop Type Total Area [ha] Number of Fields
Spacing

Within-Row [cm] Row [cm]

Rapeseed 7.6 6 10 30
Maize 26.9 20 14–16 75

Sugar beet 14.1 7 16 50
Cereals 29.5 19 5 14–15

Grassland 24.1 25 - -

2.2. Data

The image data sets were acquired with an eBee-UAV (Sensefly, Cheseaux-Lausanne, Switzerland)
under sunny conditions and two consumer-grade cameras (Canon IXUS 125HS) that record
NIR-GB and RGB bands. Image acquisition was performed with the software eMotion2 (Sensefly,
Cheseaux-Lausanne, Switzerland), in which the flight altitude was set to 150 m above ground with
a lateral overlap of 60% and a longitudinal overlap of 75%, resulting in a spatial resolution of 5 cm
(nominal cruise speed 11–25 m/s). Subsequently, an ortho-photomosaic was generated for each
observation date with Pix4Dmapper Pro (version 4.2.27, Pix4D S.A., Prilly, Switzerland), combining
the NIR band of the one camera and the RGB bands of the other. The data set collected on June 25 was
georeferenced on the basis of five ground control points (GCP) measured with a differential GPS device
(dGPS), and the other data sets were subsequently georeferenced to this data set. Finally, these data sets
were resampled to a spatial resolution of 0.5 m, a spatial resolution most suitable for discrimination of
the present crops [32].

2.3. Methodology

In order to decouple the observation date from the phenological stage of the different investigated
crops, a growing degree days (GDD) metric was used. GDD was calculated based on temperature data
of the closest weather station (Zurich Fluntern, <20 km, Source: Swiss Federal Office of Meteorology
and Climatology) with a base temperature TB of 5.5 ◦C, the minimal growing temperature for the
majority of the crops in the study area [35].

GDD was calculated for an individual day (d) based on the method of [35]

GDDd =

{
TMd − TB, i f TB ≤ TM

0, else
(1)

with TMd being the mean temperature at day d. For each observation date the accumulated GDD
( AGDD) was calculated as

AGDD =
n∑

d=1

GDDd (2)

with n being the number of days between March 1 and the particular observation date (Table 1).
To incorporate contextual information, two types of features were generated for all spectral bands,

i.e., first-order statistics (mean, standard deviation, range, and entropy), and mathematical morphology
(dilatation/erosion, opening/closing, opening/closing top hat, opening/closing by reconstruction,
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and opening/closing by reconstruction top hat). To extract rotation invariant features, a disc-shaped
structuring element (SE) was applied with diameters of 3 and 5 pixels [36].

For each observation date, two band settings were built, one with all four bands (NIR-RGB) and
one with the RGB bands only, each with the spatial features of the two SE sizes. The data set was
subdivided class-wise into six splits and all 15 possible permutations for the selection of two splits
for testing were built. Of the remaining four splits per class, two were used for training and two for
validation in the classification model building. For the subsequent crop separation, a random forest
(RF) algorithm was used [37] since it has been successfully applied in previous studies [38].

In order to determine the best parameters for the RF model, i.e., the number of trees, the results of
models with 20 grid points for the number of trees distributed logarithmically between 10 and 1000
were evaluated. Finally, the number of trees was chosen in a way that the loss of accuracy was less
than 0.1% compared to the maximum accuracy of the curve fitted to the grid points [32]. The minimal
leaf size in the TreeBagger function was set to three, and for the other parameters the default settings
from the MATLAB implementation were chosen [39]. The final model was applied to the test data split.
A detailed description of the method can be found in [32].

The assessments of the accuracy metrics are based on the average accuracy (AA) and the user
accuracy (UA) in order to focus on the needs of potential users. The values are retrieved from
the confusion matrix of the classification results of the test data splits and averaged over all 15
folds. In addition, the results for overall accuracy (OA), Kappa coefficient, producer accuracy (PA),
and average reliability (AR) are presented in the Appendix A (Table A1).

The entire workflow from feature calculation to crop separation and accuracy assessment for the
data set of a single observation date was applied to all 11 data sets. In order to evaluate the differences
in crop discrimination accuracy between the different observation dates and settings, the accuracy
measurements of the single data sets were tested for significance (p < 0.05) against each other using the
Wilcoxon signed rank test. A temporal window during the growing season to separate all crop types
from each other was defined on subjective visual impression of the AA at the available observation
dates (cf. Figure 2).
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Figure 2. Average accuracy (AA) for all observation dates, represented as accumulated growing degree
days ( AGDD), for the NIR-RGB setting in blue and the RGB setting in red. The three temporal windows
are indicated.

3. Results

The accuracy results (i.e., AA and UA) can be found in Table 3 for the two band settings
(i.e., NIR-RGB and RGB, including spatial features of the two SE sizes). The OA, Kappa, and AR metrics
are reported in Table A1 in the Appendix A, as well as the p-values of the significance tests (Wilcoxon
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signed rank test) between the observation dates for each of the two band settings (Tables A2 and A3),
and between the NIR-RGB and RGB settings (Table A4).

Table 3. Average accuracy (AA) and user accuracy (UA) for all settings and observation dates.

Setting
Observation

Date ( AGDD) AA (%)
UA (%)

Rapeseed Maize Sugar Beet Cereal Grassland Bare Soil

NIR-RGB 515 74.0 91.8 39.4 86.7 87.5 56.5 -
NIR-RGB 635 72.5 95.5 54.3 54.4 84.2 89.0 51.1
NIR-RGB 848 73.8 86.1 39.4 72.5 89.7 86.9 64.7
NIR-RGB 989 69.6 75.6 52.0 63.5 87.2 82.6 51.6
NIR-RGB 1232 71.3 77.1 67.0 59.8 78.4 89.9 49.5
NIR-RGB 1362 80.4 87.2 75.0 71.3 85.7 86.0 69.9
NIR-RGB 1556 82.0 69.9 91.0 68.8 86.5 89.7 -
NIR-RGB 1723 78.4 50.3 93.3 62.7 89.3 90.5 -
NIR-RGB 2016 79.0 37.4 93.6 76.0 94.9 94.3 68.7
NIR-RGB 2626 61.4 18.4 94.9 65.6 51.3 91.3 33.9
NIR-RGB 3238 64.1 52.2 91.9 72.3 7.4 98.1 42.4

RGB 515 76.9 97.9 43.0 88.1 88.1 60.0 -
RGB 635 70.6 95.6 49.0 49.3 82.2 85.9 53.2
RGB 848 70.7 80.5 38.0 71.1 87.4 82.4 60.7
RGB 989 69.4 74.1 51.6 60.8 87.0 80.7 56.7
RGB 1232 66.3 68.2 64.9 50.5 77.7 83.3 46.7
RGB 1362 76.8 79.0 69.1 72.8 82.8 80.9 67.1
RGB 1556 78.3 69.2 89.6 62.3 85.4 80.1 -
RGB 1723 77.5 50.6 91.4 60.9 89.6 89.0 -
RGB 2016 74.8 30.0 91.8 71.3 90.9 91.9 64.5
RGB 2626 57.6 11.0 93.8 60.3 51.6 91.9 29.6
RGB 3238 62.0 52.2 90.1 65.1 7.3 97.9 43.7

3.1. Temporal Windows during the Growing Season

Based on the AA metric, three temporal windows during the growing season were identified,
i.e., an early temporal window from 515 to 1232 AGDD, a mid-season temporal window from 1362
to 2016 AGDD, and a late temporal window from 2626 to 3238 AGDD (Figure 2). The mid-season
window shows the highest crop separation potential with an average AA value of 79.9% over the four
observation dates for the NIR-RGB setting and an average AA value of 76.9% for the RGB setting.
At 1556 AGDD, the maximum AA values of 82.0% and 78.3% are reached for the NIR-RGB setting and
for the RGB setting, respectively (Table 3).

The five observations in the early temporal window until 1232 AGDD contain slightly lower AA
values. The average AA values in this time frame are 7.7% lower for the NIR-RGB setting compared to
the mid-season temporal window and, correspondingly, 14.2% lower for the RGB setting. The lowest
AA values are found in the late temporal window at 62.7% and 59.8% for the NIR-RGB and RGB
settings, respectively.

For the NIR-RGB setting, the AA values within a given temporal window are fairly stable but vary
significantly between the three temporal windows (Table A2). In contrast, the AA values for the RGB
setting are significantly less stable within both the early and late temporal windows. The AA value
for the observation at 515 AGDD is not significantly different from the AA values of the mid-season,
and the AA value for 1232 AGDD is not significantly different from the AA value at 3238 AGDD
(Table A3).

In the early temporal window, the accuracy of the crop discrimination slightly decreases over time
by 4.4% for the NIR-RGB setting (Table 3). The highest performance is achieved at 515 AGDD with an
AA of 74.0%. The lowest performance is achieved at 989 AGDD with an AA of 69.6%. In case of the
RGB setting, the AA values decrease by over 10% between the highest AA of 76.9% at 515 AGDD and
the lowest AA of 66.3% at 1232 AGDD.

Regarding the NIR-RGB setting within the early temporal window, only the AA value at 848 AGDD
is significantly different from the one at 1232 AGDD (Table A2). For the RGB setting, the AA value for
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the observation at 515 AGDD is significantly higher than all other AA values in the early temporal
window, whereas the AA value of the observation at 1232 AGDD is significantly lower than the AA
values at 515, 635, and 848 AGDD (Table A3).

In the mid-season temporal window, the highest AA values are achieved at 1556 AGDD with
82.0% in case of the NIR-RGB setting and 78.3% in case of the RGB setting (Table 3). The lowest AA
values are at 1723 AGDD with 78.4% in case of the NIR-RGB setting and at 2016 AGDD with 74.8% in
case of the RGB setting. There are no significant differences between the AA values, except for the
highest AA at 1556 AGDD that is significantly higher than the AA values at 1723 and 2016 AGDD
for the NIR-RGB setting (Table A2). For the RGB setting, the AA value at 2016 AGDD is significantly
lower than the AA values at 1556 and 1723 AGDD (Table A3). All other AA values in this temporal
window are not significantly different from each other.

In the late temporal window, the AA values for both band settings are lower than the AA values
in the other temporal windows (Table 3), and there is no significant difference between the AA value at
2626 and 3238 AGDD in the case of the NIR-RGB setting (Table A2). As for the RGB setting, the AA
value at 3238 AGDD is significantly higher (by as much as 4.4%) than the AA value at 2626 AGDD
(Table A3).

3.2. Band Settings

Considering the two investigated band settings, only minor differences in the temporal evolution
of the respective AA values are found over the growing season. In the early temporal window,
a minimum AA value of 69.9% is reached at 989 AGDD for the NIR-RGB setting, and a minimum
AA value of 66.3% at 1232 AGDD in case of the RGB setting. For both settings, the AA values
increase significantly between 1232 and 1362 AGDD when they reach the mid-season temporal window.
They then fall to low values of 2626 AGDD. Overall, the additional NIR band leads to significantly
better results for crop separation in terms of AA values for all observation dates at a significance level
of p < 0.05, except for the observations at 515 and 989 AGDD (Table A4).

3.3. Discrimination of Individual Crop Types

The temporal assessment of the ability to separate a single crop from the others is very similar for
both band settings (Figure 3). Rapeseed can be distinguished best in early season with a UA of over
90% until 635 AGDD. Afterwards, the UA remains above 70% until 1556 AGDD, when it decreases to a
minimum of less than 20% at 2626 AGDD. On the contrary, maize can easily be discriminated after
1556 AGDD, with the UA increasing from under 75% to over 90%.
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Figure 3. User accuracy (UA) and producer accuracy (PA) of the single crop types for all observation
dates, represented as accumulated growing degree days ( AGDD) for the NIR-RGB setting (left) and
the RGB setting (right). Different scales for UA and PA apply for the two settings and individual crops.

The discrimination of sugar beet is most effective at 515 AGDD with a UA of more than 85%.
At 635 AGDD, its discrimination is most difficult with a UA of less than 55%. From 848 AGDD onwards,
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the UA lies between 60% and 76% except for in the case of the RGB setting, when the UA is 50.5% at
1232 AGDD.

Cereals can be distinguished with a UA between 78% and 90% from the beginning of the
analyzed AGDD until 1723 AGDD. At 2016 AGDD, the UA is highest with 94.9% for the NIR-RGB
setting and 91% for the RGB setting. At 2626 AGDD, the UA is around 51%, and for the last observation
date it drops to 7%.

The UA of grassland is under 60% at 515 AGDD, but increases to a range of 80% to 94% from
635 AGDD onwards. On the final observation date, the UA is highest at 98%.

Bare soil can best be discriminated at 1362 and 2016 AGDD with UA values between 65% and
70%. Earlier, the UA is around 55%; it is only higher at 848 AGDD, reaching 65% for the NIR-RGB
setting and 61% for the RGB setting. The UA is under 50% for the last two observation dates.

4. Discussion

4.1. Temporal Windows During the Growing Season

The phenological stage of crops is essential to discriminate them from each other in remote sensing
data analysis. When considering all of the crops in the study area, the accuracy of crop separation
is highest in the mid-season temporal window between 1362 and 2016 AGDD but accuracy reaches
a maximum at 1556 AGDD. This is in line with other studies that report best accuracies for crop
separation with data sets acquired in July [2,40,41]. At this time of the growing season, the winter
crops are in a senescence stage and the summer crops in their most productive stage.

In the early temporal window, at the beginning of the growing season, maize and sugar beet are
gradually sown in. Since their seedlings are difficult to distinguish [40] and can thus be mixed up
with pixels from bare soil fields, the AA values are lower than in the subsequent mid-season temporal
window. The slight decrease in AA values in the early temporal window is not of statistical significance.

Apart from a few exceptions, crop separation accuracies within a temporal window are not
significantly different from the other observations in the same temporal window. This holds true for the
two tested band settings and their textural features of the UAV data sets. Consequently, any observation
of crops within a given temporal window will yield a similar, not significantly different AA.

4.2. Band Settings

An additional NIR band leads to significantly higher crop separation accuracies for most of the
observation dates, as reported in several other studies [42–44]. Only at 515 AGDD does the AA value
of the RGB setting become higher than in the case of the NIR-RGB setting. Since this difference is not
significant, crop separation accuracy with an additional NIR band is generally higher, or at least equal
to an RGB setting.

In land use/land cover classifications that are based on textural features, the applied SE sizes play
a crucial role [32]. Differing spectral signatures resulting from the interplay of plant material and soil
background largely define textural information in agricultural fields. Consequently, when the crop
canopy is closed, the spectral, rather than the textural, properties gain in importance [45] and therefore,
an additional NIR band can lead to an improvement in crop separation [43].

4.3. Discrimination of Individual Crop Types

With regard to the separation of individual crop species, their own respective phenological stages
are crucial. Rapeseed, for example, produces yellow flowers up to 635 AGDD and can therefore be
distinguished from all other crops with high precision, as it is the only investigated crop with this
specific color. The discrimination of cereals in general, being the other winter crops in the study area,
is best straight after harvesting at 2016 AGDD when the signal is dominated by the crop residuals and
bare soil, and summer crops (i.e., sugar beet and maize) are in their most productive stage.
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The differences between individual summer crops get more pronounced with phenological
development; therefore, the UA values of maize and sugar beet increase with generally
increasing AGDDs. As reported by [46], the UA of maize increases by over 50% between the
first discrimination, when maize fields are freshly sown in at 515 AGDD, and before harvesting at
2626 AGDD, when all other fields are either bare soil or covered by green grassland or sugar beet.

Sugar beet is the first sown summer crop in the study area and can be accurately separated at
515 AGDD, as the spectral signal is dominated by bare soil and therefore is distinguishable from the
other present crops (i.e., winter crops or grassland). At the following observation date (i.e., 635 AGDD),
differentiation between maize, sugar beet and bare soil fields becomes more difficult, since the spectral
signal of all three classes at this phenological stage is dominated by the signal of bare soil and
indistinguishable seedlings [40].

Overall, the UA value of grassland is highest after 3238 AGDD, since late in the season it is the
only crop well distinguishable from bare soil, maize (appearing brown in its final phenological stages),
and sugar beet. In addition, grassland covers most of the area in late season so, consequently, the OA
is also high (Table A1). Nevertheless, the AA metric, which gives equal weight to the UA values of
all present crop types, is low because the other crops can no longer be distinguished accurately from
each other.

Finally, bare soil can most accurately be separated from crops when their plant materials cover a
large part of the area and therefore dominate the measured signal. It is particularly difficult to distinguish
fields under preparation (e.g., plowed) from fields containing small seedlings. The discrimination of
cereals shortly after harvesting is successful since the textural appearance of crop residuals and bare
soil is different. Therefore, discrimination of bare soil is most successful at 1362 and 2016 AGGD.

4.4. Limitations and Outlook

Crop types present in an agricultural area influence the resulting separation accuracy. The more
diverse they are in terms of morphology and physiology, the more accurately they can be discriminated.
Consequently, it is more challenging to separate between different winter crops or between different
summer crops than to differentiate winter crops from summer crops. In particular, further separation
of crops that have been combined into one class in this study (e.g., cereals like winter wheat, spelt
and winter barley) remains to be investigated. Moreover, the optimal temporal windows analyzed
here may vary depending on the specific crop types present in an agricultural area, and the behavior
between the windows must be further examined.

As shown in a range of other studies, multitemporal data sets improve the accuracies of crop
classification tasks [41,47]. Therefore, it would be interesting to investigate the potential of combining
data from different acquisition dates to find the most promising temporal combinations for crop
separation. Due to the fact that observations with optical sensors are subject to limitations (e.g., cloudy
conditions), combined analysis of data acquired in the early and mid-season temporal windows could
be promising.

5. Conclusions

This paper presents a methodology to separate agricultural crops based on data sets acquired
with uncalibrated consumer-grade cameras mounted on a UAV over the course of 11 observation dates
between 5 May 2015 (515 AGDD) and 29 September 2015 (3238 AGDD). The obtained four bands data
sets, consisting of a NIR, red, green, and blue band, were extended with textural features to differentiate
cereals, grassland, maize, rapeseed and sugar beet, and, if present, bare soil, based on an RF approach.

Three temporal windows across the growing season were identified where the accuracies of crop
separation between the observation dates were not significantly different. The first temporal window
ranged from 515 AGDD (May 5) to 1232 AGDD (June 17), with an AA for separation between 70%
and 75%. A mid-season temporal window between 1362 AGDD (June 25) and 2016 AGDD (July 22)
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proved to be the most optimal for crop separation with AA values around 80%. Observations after
2626 AGDD (August 21) fell into the third group with an AA of under 65%.

An additional NIR band leads to significantly higher separation results compared to a pure RGB
setting, thanks to an extended capability to spectrally discriminate the plant materials of the various
crops. The accuracy of the separation of single crops varies over the course of the observed period.
Winter crops can be discriminated from summer crops more accurately in the early season, whereas
the accuracy of single summer crop separation from other summer crops is highest during their most
productive phenological stage in the mid-season temporal window.

Overall, this paper concludes that crop separation based on uncalibrated NIR-RGB data sets in
a highly fragmented and small structured agricultural area like the Swiss Plateau is most accurate
between 1362 AGDD and 2016 AGDD over the investigated period.
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Appendix A

Table A1. Overall accuracy (OA), Kappa coefficient, average accuracy (AA), and average reliability
(AR) for both settings and all observation dates.

Setting Observation Date ( AGDD) OA Kappa AA AR

NIR-RGB 515 77.3 0.691 74.0 74.6
NIR-RGB 635 78.1 0.708 72.5 73.5
NIR-RGB 848 77.9 0.719 73.8 74.8
NIR-RGB 989 73.0 0.662 69.6 71.1
NIR-RGB 1232 73.0 0.663 71.3 74.7
NIR-RGB 1362 80.2 0.752 80.4 82.4
NIR-RGB 1556 84.2 0.795 82.0 84.9
NIR-RGB 1723 82.2 0.770 78.4 81.2
NIR-RGB 2016 85.8 0.819 79.0 87.3
NIR-RGB 2626 75.1 0.671 61.4 71.6
NIR-RGB 3238 85.8 0.766 64.1 85.5

RGB 515 78.8 0.713 76.9 77.5
RGB 635 75.7 0.676 70.6 71.2
RGB 848 74.3 0.674 70.7 72.1
RGB 989 72.5 0.656 69.4 71.0
RGB 1232 68.4 0.607 66.3 70.3
RGB 1362 76.5 0.707 76.8 79.2
RGB 1556 80.0 0.741 78.3 81.6
RGB 1723 81.1 0.756 77.5 80.1
RGB 2016 81.7 0.767 74.8 83.1
RGB 2626 72.4 0.637 57.6 67.7
RGB 3238 83.9 0.738 62.0 84.8



Remote Sens. 2019, 11, 1780 12 of 15

Table A2. p-values of significance test (p < 0.05) for all observation dates of the NIR-RGB setting.
Not significant differences are marked in bold. The green color depicts the three temporal windows
(i.e., early, medium and late) over the growing season.

AGDD 515 635 848 989 1232 1362 1556 1723 2016 2626 3238
515 0.107 0.934 0.169 0.107 0.005 0.001 0.018 0.030 0.000 0.002
635 0.107 0.489 0.421 0.421 0.000 0.000 0.001 0.002 0.000 0.002
848 0.934 0.489 0.073 0.041 0.000 0.000 0.005 0.000 0.000 0.000
989 0.169 0.421 0.073 0.489 0.000 0.000 0.001 0.000 0.000 0.035

1232 0.107 0.421 0.041 0.489 0.000 0.000 0.000 0.000 0.000 0.001
1362 0.005 0.000 0.000 0.000 0.000 0.095 0.121 0.151 0.000 0.000
1556 0.001 0.000 0.000 0.000 0.000 0.095 0.001 0.002 0.000 0.000
1723 0.018 0.001 0.005 0.001 0.000 0.121 0.001 0.639 0.000 0.000
2016 0.030 0.002 0.000 0.000 0.000 0.151 0.002 0.639 0.000 0.000
2626 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.151
3238 0.002 0.002 0.000 0.035 0.001 0.000 0.000 0.000 0.000 0.151

Table A3. p-values of significance test (p < 0.05) for all observation dates of the RGB setting.
Not significant differences are marked in bold. The green color depicts the three temporal windows
(i.e., early, medium and late) over the growing season.

AGDD 515 635 848 989 1232 1362 1556 1723 2016 2626 3238
515 0.003 0.003 0.001 0.001 0.934 0.359 0.762 0.330 0.000 0.000
635 0.003 0.934 0.847 0.048 0.004 0.000 0.000 0.035 0.000 0.002
848 0.003 0.934 0.359 0.004 0.001 0.000 0.000 0.002 0.000 0.000
989 0.001 0.847 0.359 0.151 0.003 0.000 0.000 0.008 0.000 0.001

1232 0.001 0.048 0.004 0.151 0.000 0.000 0.000 0.000 0.000 0.083
1362 0.934 0.004 0.001 0.003 0.000 0.389 1.000 0.229 0.000 0.000
1556 0.359 0.000 0.000 0.000 0.000 0.389 0.454 0.000 0.000 0.000
1723 0.762 0.000 0.000 0.000 0.000 1.000 0.454 0.035 0.000 0.000
2016 0.330 0.035 0.002 0.008 0.000 0.229 0.000 0.035 0.000 0.000
2626 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008
3238 0.000 0.002 0.000 0.001 0.083 0.000 0.000 0.000 0.000 0.008

Table A4. p-values of the significance test (p < 0.05) for the difference between the NIR-RGB and
RGB setting for overall accuracy (OA), Kappa, average accuracy (AA), and average reliability (AR).
Not significant differences are marked in bold.

AGDD OA kappa AA AR

515 0.229 0.208 0.135 0.083
635 0.012 0.012 0.010 0.008
848 0.001 0.001 0.001 0.003
989 0.599 0.599 0.599 0.599
1232 0.000 0.000 0.000 0.000
1362 0.001 0.001 0.001 0.001
1556 0.000 0.000 0.000 0.000
1723 0.001 0.001 0.003 0.000
2016 0.000 0.000 0.000 0.000
2626 0.035 0.064 0.005 0.007
3238 0.000 0.000 0.000 0.012
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