
remote sensing  

Article

Evaluation of Bayesian Multimodel Estimation in
Surface Incident Shortwave Radiation Simulation
over High Latitude Areas

Weiyu Zhang 1,2, Xiaotong Zhang 1,2,*, Wenhong Li 3 , Ning Hou 1,2, Yu Wei 1,2, Kun Jia 1,2 ,
Yunjun Yao 1,2 and Jie Cheng 1,2

1 State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University,
Beijing 100875, China

2 Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing,
Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

3 Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
* Correspondence: xtngzhang@bnu.edu.cn; Tel.: +86-10-5880-7712

Received: 13 June 2019; Accepted: 26 July 2019; Published: 29 July 2019
����������
�������

Abstract: Surface incident shortwave radiation (SSR) is crucial for understanding the Earth’s climate
change issues. Simulations from general circulation models (GCMs) are one of the most practical
ways to produce long-term global SSR products. Although previous studies have comprehensively
assessed the performance of the GCMs in simulating SSR globally or regionally, studies assessing
the performance of these models over high-latitude areas are sparse. This study evaluated and
intercompared the SSR simulations of 48 GCMs participating in the fifth phase of the Coupled Model
Intercomparison Project (CMIP5) using quality-controlled SSR surface measurements at 44 radiation
sites from three observation networks (GC-NET, BSRN, and GEBA) and the SSR retrievals from the
Clouds and the Earth’s Radiant Energy System, Energy Balanced and Filled (CERES EBAF) data set
over high-latitude areas from 2000 to 2005. Furthermore, this study evaluated the performance of the
SSR estimations of two multimodel ensemble methods, i.e., the simple model averaging (SMA) and
the Bayesian model averaging (BMA) methods. The seasonal performance of the SSR estimations of
individual GCMs, the SMA method, and the BMA method were also intercompared. The evaluation
results indicated that there were large deficiencies in the performance of the individual GCMs in
simulating SSR, and these GCM SSR simulations did not show a tendency to overestimate the SSR
over high-latitude areas. Moreover, the ensemble SSR estimations generated by the SMA and BMA
methods were superior to all individual GCM SSR simulations over high-latitude areas, and the
estimations of the BMA method were the best compared to individual GCM simulations and the SMA
method-based estimations. Compared to the CERES EBAF SSR retrievals, the uncertainties of the SSR
estimations of the GCMs, the SMA method, and the BMA method are relatively large during summer.

Keywords: Bayesian model averaging; surface incident shortwave radiation; CMIP5; general
circulation models; multimodel ensembles; high-latitude areas

1. Introduction

Surface incident shortwave radiation (SSR) is not only an important parameter in many
atmospheric, oceanic, and land process models [1], but also a critical ingredient in energy exchanges
between the Earth’s surface and the atmosphere [2]. It also plays an important role in the hydrological
and carbon cycles [3–5] and ultimately influences the Earth’s climate. Therefore, knowing the spatial
distribution and temporal evolution of SSR is essential for improving our understanding of the Earth’s
climate and climate change.
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SSR is usually obtained through four methods: surface measurements, satellite retrievals,
reanalysis products, and general circulation models (GCMs) simulations [6]. GCMs have become an
important tool for producing spatially and temporally continuous long-term global products of energy
balance components. Many studies have investigated the performance of SSR simulations from the
GCMs at both global and regional scales [7–11]. For instance, Ma et al. [9] found that the biases of
the global average SSR simulations varied from 4.8 W m−2 to 11.9 W m−2 among the 48 fifth phase
of Coupled Model Intercomparison Project (CMIP5) models compared to the ground observations
from 446 stations during 2000–2005. In addition, the CMIP5-simulated multimodel mean SSR using
the simple model averaging (SMA) method had a bias value of 2.6 W m−2 compared with the SSR
retrievals from the Clouds and the Earth’s Radiant Energy System, Energy Balanced And Filled (CERES
EBAF) over the globe, 4.7 W m−2 and 1.7 W m−2 over land and oceans, respectively. Wild et al. [10]
evaluated 43 CMIP5 models with SSR observations at ground sites during 2000–2004 from the Global
Energy Balance Archive (GEBA) and Baseline Surface Radiation Network (BSRN) networks. The root
mean squared errors (RMSEs) of the annual average SSR ranged from 18.3 W m−2 to 35.2 W m−2

among the GCMs with respect to the 760 GEBA sites. These studies indicated that large uncertainties
in the simulated SSR exist among the GCMs, and GCMs exhibit systematic bias, i.e., the simulated
SSR values are usually greater than the observed values. It was also found that the differences in
physical basis, parameterization schemes, and coupling schemes were the major reason for various
uncertainties in climate change [12].

Although previous studies have comprehensively assessed the performance of GCMs in simulating
SSR globally or regionally, studies assessing the performance of these GCMs over high-latitude areas
are sparse. Compared with low-latitude regions, high-latitude areas are most vulnerable to global
warming and thus experience more dramatic environmental changes [13]. The dramatic changes of
environment in high-latitude areas may cause changes in cloud and surface albedo, and may further
disturb the surface radiation budget [14]. In addition, the remote sensing surface radiation retrieval
methods are also very problematic in high-latitude areas [15], likely because it is hard to distinguish
between the snow/ice and cloud, which widely cover high-latitude areas and are hard to be accurately
estimated under the cloud retrieval schemes [13,16].

Different GCMs have their own strengths and weaknesses when simulating the SSR [17].
The multimodel ensemble (MME) methods are able to postprocess the GCM simulations with equal or
unequal weights. It is found that a SMA method is able to perform better than any individual GCM in
estimating climatic and energy budget variables [12,18–20]. In addition to the traditional SMA method,
more sophisticated MME methods are proposed wherein the participating single models are given
different weights [19–23]. In general, the sophisticated MME methods perform better than the SMA
method [19–21,24,25].

Among the sophisticated MME methods, the Bayesian model averaging (BMA) method is one of
the most promising methods [12]. Based on Bayesian inference, the statistical postprocessing method
can not only provide an expectation but also a probability density function (PDF) of any quantity
of interest based on the training data [12]. This advantage makes the BMA method a widely used
postprocessing method in various essential climate variable estimations and predictions, such as global
surface air temperature predictions [20] and hydrological predictions [26]. Studies have found that the
BMA method produces more accurate and reliable outputs than the individual GCMs and other MME
methods [19,24,25]. However, the BMA method is still rarely used in SSR estimation.
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This study evaluated the SSR simulations from 48 CMIP5 models using the quality-controlled
surface observations between 2000 and 2005 from 21 Greenland Climate Network (GC-NET) sites,
5 BSRN sites, and 18 GEBA sites in the high-latitude areas (>60◦) and compared these SSR simulations
with the SSR satellite retrievals from CERES EBAF, which have the most accurate SSR retrievals among
satellite-based products [6]. We evaluated the SSR simulations and intercompared the performance
of both the SMA and BMA methods for estimating the SSR in high-latitude areas. The seasonal
performance of the outputs from individual GCMs, the SMA method, and the BMA method were
also intercompared.

This paper is organized as follows. The SSR data used in this study are described in Section 2.
The methodology for the evaluation is given in Section 3. The results are analyzed in Section 4, and the
study is concluded and discussed in Section 5.

2. Data

Three kinds of SSR data are used in this study: CMIP5 simulations, ground measurements,
and satellite retrievals. The details of these data sets are described in the following subsections.

2.1. CMIP5 GCMs

The CMIP5 in the IPCC’s Fifth Assessment Report (IPCC AR5) provides simulations from a number
of GCMs developed and maintained by different institutions around the world [17]. These data have
been organized by the Program for Climate Model Diagnosis and Intercomparison (PCMDI) for the
IPCC AR5. Compared to the third phase of the Coupled Model Intercomparison Project (CMIP3) in
the fourth IPCC assessment report (IPCC AR4), the GCMs in IPCC AR5 have many improved model
types, with more interactive components, including aerosols, dynamic vegetation, atmospheric physics
and carbon and hydrological cycles [24]. Most dynamic, physical, and chemical algorithms were also
improved in the IPCC AR5 models [10,11].

At the time of this study, 48 GCM simulations of SSR were available. We selected the “r1i1p1”
ensemble and the “historical” experiment, which was aimed at accurately reconstructing the climate
evolution of the 20th century by considering all major natural and anthropogenic forcing factors,
such as changes in atmospheric greenhouse gases, aerosol loadings (tropospheric and stratospheric
volcanic), solar output, and land use [11]. Most historical and r1i1p1 simulations in CMIP5 were run
for the period from 1850 to 2005.

The spatial resolution of the 48 CMIP5 GCMs used in this study varies from 0.56◦ × 0.56◦ to
3.75◦ × 3.75◦. Detailed information on the 48 CMIP5 GCMs, host institutions, countries, and spatial
resolutions, is summarized in Table 1.
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Table 1. Detailed information of the Coupled Model Intercomparison Project (CMIP5) general circulation
models (GCMs) used in this study.

ID Model Name Institute ID Country Resolution

1 ACCESS1.0 CSIRO-BOM Australia 1.88◦ × 1.24◦

2 ACCESS1.3 CSIRO-BOM Australia 1.88◦ × 1.24◦

3 BCC-CSM1.1(m) BCC China 1.13◦ × 1.13◦

4 BCC-CSM1.1 BCC China 2.81◦ × 2.81◦

5 BNU-ESM GCESS China 2.81◦ × 2.81◦

6 CanCM4 CCCMA Canada 2.81◦ × 2.81◦

7 CanESM2 CCCMA Canada 2.81◦ × 2.81◦

8 CCSM4 NCAR USA 1.25◦ × 0.94◦

9 CESM1-BGC NSF-DOE-NCAR USA 1.25◦ × 0.94◦

10 CESM1-CAM5 NSF-DOE-NCAR USA 1.25◦ × 0.94◦

11 CESM1-CAM5.1.FV2 NSF-DOE-NCAR USA 2.50◦ × 1.88◦

12 CESM1-FASTCHEM NSF-DOE-NCAR USA 1.25◦ × 0.94◦

13 CESM1-WACCM NSF-DOE-NCAR USA 2.50◦ × 1.88◦

14 CMCC-CESM CMCC Italy 3.75◦ × 3.75◦

15 CMCC-CMS CMCC Italy 1.88◦ × 1.88◦

16 CMCC-CM CMCC Italy 0.75◦ × 0.75◦

17 CNRM-CM5.2 CNRM-CERFACS France 1.41◦ × 1.41◦

18 CNRM-CM5 CNRM-CERFACS France 1.41◦ × 1.41◦

19 CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 1.88◦ × 1.88◦

20 FGOALS-g2 LASG-CESS China 2.81◦ × 3.00◦

21 FIO-ESM FIO China 2.81◦ × 2.81◦

22 GFDL-CM2p1 NOAA GFDL USA 2.50◦ × 2.00◦

23 GFDL-CM3 NOAA GFDL USA 2.50◦ × 2.00◦

24 GFDL-ESM2G NOAA GFDL USA 2.50◦ × 2.00◦

25 GFDL-ESM2M NOAA GFDL USA 2.50◦ × 2.00◦

26 GISS-E2-H-CC NOAA GISS USA 2.50◦ × 2.00◦

27 GISS-E2-H NOAA GISS USA 2.50◦ × 2.00◦

28 GISS-E2-R-CC NOAA GISS USA 2.50◦ × 2.00◦

29 GISS-E2-R NOAA GISS USA 2.50◦ × 2.00◦

30 HadCM3 MOHC UK 3.75◦ × 3.47◦

31 HadGEM2-AO NIMR/KMA Korea/UK 1.88◦ × 1.24◦

32 HadGEM2-CC MOHC UK 1.88◦ × 1.24◦

33 HadGEM2-ES MOHC UK 1.88◦ × 1.24◦

34 INM-CM4 UNM Russia 2.00◦ × 1.50◦

35 IPSL-CM5A-LR IPSL France 3.75◦ × 1.88◦

36 IPSL-CM5A-MR IPSL France 2.50◦ × 1.26◦

37 IPSL-CM5B-LR IPSL France 3.75◦ × 1.88◦

38 MIROC-ESM-CHEM MIROC Japan 2.81◦ × 2.81◦

39 MIROC-ESM MIROC Japan 2.81◦ × 2.81◦

40 MIROC4h MIROC Japan 0.56◦ × 0.56◦

41 MIROC5 MIROC Japan 1.41◦ × 1.41◦

42 MPI-ESM-LR MPI-M Germany 1.88◦ × 1.88◦

43 MPI-ESM-MR MPI-M Germany 1.88◦ × 1.88◦

44 MPI-ESM-P MPI-M Germany 1.88◦ × 1.88◦

45 MPI-CGCM3 MRI Japan 1.13◦ × 1.13◦

46 MPI-ESM1 NCC Norway 1.13◦ × 1.13◦

47 NorESM1-ME NCC Norway 2.50◦ × 1.88◦

48 NorESM1-M NCC Norway 2.50◦ × 1.88◦

2.2. Ground Measurements

Ground observations of SSR over high-latitude areas used to evaluate SSR estimates stem from
three networks: BSRN (five sites) [27], GC-NET (21 sites) [28], and GEBA (18 sites) [29]. Figure 1 shows
the geographical distributions of the observation sites used in this study.
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Figure 1. Geographical distributions of the observation sites (44 sites in total) used in this study from
Baseline Surface Radiation Network (BSRN) (5 sites in blue dots), Greenland Climate Network (GC-NET)
(21 sites in green triangles), and Global Energy Balance Archive (GEBA) (18 sites in pink asterisks).

The BSRN was operational in the early 1990s and was established by the World Climate Research
Programme (WCRP) to provide radiation measurements of high accuracy and high temporal resolution
at a limited number of sites in various climate zones [30]. The SSR measurement instruments at BSRN
sites are calibrated every six months and regularly maintain a SSR uncertainty of less than 5% [27].
To improve data continuity, the SSR was measured by two parallel observation systems [27]. At present,
the BSRN project has archived more than 60 sites covering a wide latitude range from 89.98◦ S to 82.49◦

N and a wide longitude range from 156.61◦ W to 169.69◦ E [2].
The GC-NET consists of more than 20 automatic weather stations (AWSs) mainly distributed in

the accumulation areas of ice sheets. GC-NET AWSs are equipped with various factory-calibrated
instruments to measure surface energy and mass balance components [31]. By 2013, all the AWS have
gone through a rigorous data quality control process to reduce interference from the typical problems
experienced by unattended weather stations, such as station tilt, low cosine responses at large solar
zenith angles, riming on sensor domes, and sensor overheating [32]. The GC-NET provides hourly
radiation observations with instruments located between 0.1 and 5 m above the surface, depending on
the local accumulation rates and tower heights.

The GEBA is a database maintained at ETH Zurich (Switzerland) for the central storage of
worldwide measured energy fluxes at the Earth’s surface [33,34]. The current version (2017) contains
2500 worldwide locations with an average of approximately 500,000 monthly entries of various surface
energy balance components [33]. Thus, the SSR is the most widely measured quantity in the GEBA.
The GEBA has undergone substantial changes in terms of available data, data access, and internet
appearance and has been widely used to evaluate the SSR estimates from satellite observations,
reanalysis data, and GCMs [6].

Since the BSRN and the GC-NET only provide instantaneous values of the SSR, critical quality
control procedures were applied to estimate the monthly SSR observations from the instantaneous
values of the surface measurements from the GC-NET and the BSRN. First, the daily mean SSR were
obtained by integrating the instantaneous values in a day which has at least 80 percent valid observed
values. The missing data were estimated via the simple linear interpolation method. Then, the monthly
values were calculated by averaging the available daily values within the month. If daily mean SSR
data were missing for more than 10 days in one month, the monthly SSR data were excluded from
the evaluation.

The CERES EBAF SSR products begin in 2000, and most CMIP5 GCMs SSR simulations end in
2005. Therefore, the study period is the overlap: 2000–2005. A subset of the 21 GC-NET sites, five BSRN
sites, and 18 GEBA sites at high-latitude areas, which provides at least 10 months of records within
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the period of 2000–2005, was used in this study. Detailed information of the sites used in this study,
including their latitudes, longitudes, and elevations, is summarized in Table 2.

Table 2. Detailed information of the sites from GC-NET, BSRN, and GEBA used in this study.

Network Site Name Latitude (◦) Longitude (◦) Elevation (m)

GC-NET Swiss Camp 69.57 N 49.32 W 1149
GC-NET Crawford Pt. 69.88 N 46.99 W 2022
GC-NET NASA-U 73.84 N 49.50 W 2369
GC-NET GITS 77.14 N 61.04 W 1887
GC-NET Humboldt 78.53 N 56.83 W 1995
GC-NET Summit 72.58 N 38.51 W 3254
GC-NET TUNU-N 78.02 N 33.99 W 2113
GC-NET DYE-2 66.48 N 46.28 W 2165
GC-NET JAR 69.50 N 49.68 W 962
GC-NET Saddle 66.00 N 44.50 W 2559
GC-NET South Dome 63.15 N 44.82 W 2922
GC-NET NASA-E 75.00 N 30.00 W 2631
GC-NET CP2 69.88 N 46.99 W 1990
GC-NET NGRIP 75.31 N 42.33 W 2950
GC-NET NASA-SE 66.48 N 42.50 W 2425
GC-NET KAR 69.70 N 33.00 W 2579
GC-NET JAR2 69.42 N 50.06 W 568
GC-NET JAR3 69.39 N 50.31 W 283
GC-NET Aurora 67.15 N 47.29 W 1798
GC-NET Petermann Gl. 80.68 N 60.23 W 37
GC-NET PeterMann ELA 80.09 N 58.07 W 965

BSRN Barrow 71.32 N 156.61 E 8
BSRN Georg von Neumayer 70.65 S 8.25 W 42
BSRN Ny-Ålesund 78.93 N 11.93 E 11
BSRN South Pole 89.98 S 24.80 W 2800
BSRN Syowa 69.01 S 39.59 E 18
GEBA Oimyakon 63.27 N 143.15 E 726
GEBA Vanavara 60.33 N 102.26 E 259
GEBA Verkhoyansk 67.55 N 133.38 E 137
GEBA Yakutsk 62.08 N 129.75 E 103
GEBA Bergen 60.40 N 5.32 E 45
GEBA Borlaenge 60.43 N 15.50 E 153
GEBA Helsinki-Airport 60.32 N 24.97 E 53
GEBA Jokioinen 60.82 N 23.50 E 104
GEBA Jyvaskyla-Airpt. 62.40 N 25.68 E 141
GEBA Kiruna 67.85 N 20.23 E 505
GEBA Lerwick 60.13 N 1.18 W 82
GEBA Lulea 65.55 N 22.13 E 16
GEBA Oestersund 63.18 N 14.50 E 876
GEBA Reykjavik 64.13 N 21.90 W 52
GEBA Sodankyla 67.37 N 26.65 E 178
GEBA Umea 63.82 N 20.25 E 10
GEBA Utsjoki, Kevo 69.75 N 27.03 E 107
GEBA Resolute 74.72 N 94.98 W 67

2.3. CERES EBAF SSR Retrievals

The distribution of the radiation ground sites is widespread as shown in Figure 1, but gaps remain
particularly over the Antarctic continent and the high-latitude oceans. Thus, this study also evaluated
the SSR estimations from the MME methods and individual GCMs by comparing them with the satellite
SSR retrievals, which can provide globally gridded values of the SSR. The monthly mean satellite
derived SSR retrievals with a spatial resolution of 1◦ × 1◦ from the CERES EBAF product (Ed 4.0),
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which has been reported to be more accurate than other gridded SSR products [2,9,35], are used in
this study.

The CERES EBAF retrieves shortwave fluxes based on TOA radiance observations from the
passive Terra, Aqua, and Suomi-National Polar-Orbiting Partnership satellites [36]. Moreover, the
surface irradiances are adjusted using radiative kernels in the retrieval algorithm of the CERES EBAF.
The surface irradiance adjustment process is composed of bias correction and a Lagrange multiplier [37].
In the bias correction process, the bias in the temperature and the specific humidity between 200 and
500 h Pa is corrected based on observations incorporated from the atmospheric infrared sounder (AIRS),
which is on board the MODIS-Aqua satellite. The bias in the cloud fraction (CF) is corrected based on the
observations from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
and CloudSat. In the Lagrange multiplier process, errors in the surface, cloud, and atmospheric
properties are corrected. Over the high-latitude areas, the cloud properties are derived from the Terra
and Aqua reflectance data using one of two retrieval algorithms depending on the existence of snow
and ice [36,38]. To reduce the error in the surface irradiances and to increase the consistency in the
TOA irradiances, surface irradiances are constrained using the CERES-derived TOA irradiance [39].

3. Methods

3.1. Bayesian Model Averaging (BMA) Method

The BMA method provides a way to combine different models to a multimodel and is a promising
method for calibrating ensembles in forecasts [40]. Standard statistical analysis (e.g., regression
analysis), proceeds conditionally on one assumed statistical model, which may be selected from among
several possible competing models. Other models can also provide different results but with different
uncertainties. BMA [41,42] overcomes the problem by conditioning, not on a single/best model, but on
the entire ensemble of statistical models considered. To better take advantage of the GCM simulations
and obtain more reliable results, we used the BMA method to combine 48 GCM SSR simulations.

In the BMA method, the output is a PDF, which is a weighted average of the conditional PDFs,
weighted by their posterior model probabilities. We denote the quantity to be forecasted by y. The law
of total probability gives the combined forecast PDF of the quantity y by:

p
(

y
∣∣∣yT

)
=

K∑
i=1

p
(

y
∣∣∣Xi, yT

)
p
(
Xi|yT

)
(1)

where p
(

y
∣∣∣Xi, yT

)
is the forecast PDF based on model Xi alone, estimated from the training data yT,

and K is the number of models using to be combined. p
(
Xi

∣∣∣yT
)

denotes the posterior probability of
model Xi is the best given the training data, reflecting how well model Xi matches the training data.
According to the Bayesian theory, this term is computed by:

p
(
Xi|yT

)
=

p
(

yT
∣∣∣Xi

)
p(Xi)

K∑
j=1

p
(

yT
∣∣∣X j

)
p
(
X j

) (2)

The initial value of p(Xi) can be assigned based on the previous knowledge of the model
performance. In this study, uniform prior is assigned p(Xi) =

1
K . Thus, Equation (2) can be further

simplified and rewritten as:

p
(
Xi|yT

)
=

p
(

yT
∣∣∣Xi

)
K∑

j=1
p
(

yT
∣∣∣X j

) (3)
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Because BMA method assumes that the model forecasts are unbiased, the bias-correction methods
should be applied in advance. The linear regression method is applied for each GCM SSR simulations:

fi = ai + bi·yi (4)

where fi denotes the bias-corrected forecast for model Xi and yi is the forecast of the variable from
model Xi. Unique coefficients ai and bi for each model Xi are determined through least squares
approximation, with the observations in the training period as the dependent variable and the forecasts
as the explanatory variables.

Considering the application of BMA method to bias-corrected forecast fi, Equation (1) can be
rewritten as:

p
(

y
∣∣∣ f1, . . . , fK, yT

)
=

K∑
i=1

wipi
(

y
∣∣∣ fi, yT

)
(5)

where wi = p
(
Xi|yT

)
is the BMA weight for model Xi computed from the training data and reflects

the relative performance of model Xi on the training period. The BMA weights are nonnegative and
add up to 1. The conditional probabilities pi

(
y
∣∣∣ fi, yT

)
can be interpreted as the conditional PDF of y

conditional on fi and training data yT. These conditional PDFs are assumed to be normally distributed
for computational convenience as:

y
∣∣∣( fi, yT

)
∼ N

(
ai + biyi, σ2

)
(6)

where the coefficients ai and bi are calculated from the bias-correction procedure described above.
This means that the BMA predictive distribution becomes a weighted sum of normal distributions,
with equal variance and centered at the bias-corrected forecast. A deterministic forecast can be obtained
using the conditional expectation of y given the forecasts:

E
[

y
∣∣∣( f1, . . . , fK, yT

)]
=

K∑
i=1

wi(ai + bi fi) (7)

The BMA weights and the variance are estimated by the maximum likelihood [43] from the
training dataset. For given parameters to be estimated, the likelihood function is defined as the
probability of the training data and is viewed as a function of the parameters. The BMA weights and
variance are used to maximize this function, that is, the parameter values for which the observations
were most likely to have been observed. It is convenient to maximize the log-likelihood function rather
than the likelihood function itself. Following the recommendation of Raftery et al. [44], we use the
expectation maximization (EM) algorithm [45] to maximize the log-likelihood function. In brief, the EM
algorithm is iterative and alternates between the E (or expectation) step and the M (or maximization)
step. More detailed description of the BMA method is provided by Raftery et al. [44].

In this study, the SSR ground observations over six years (2000–2005) from 44 stations spread
across high-latitude areas were randomly selected as the training (22 stations) and testing (22 stations)
data for the BMA analysis.

3.2. Statistical Measures

3.2.1. Normalized RMSE

To evaluate the performance of the SSR estimations from individual GCMs and the MME methods,
the bias between simulations and reference data, the corresponding RMSE and correlation coefficient
(R) were calculated. These three statistics can quantify the similarity between the simulations and the
reference data.
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To compare the RMSE of each GCM SSR simulation more intuitively, the average RMSEs were
normalized following [46]. The normalization results are called nRMSEs, which are defined as follows:

nRMSE =
RMSE−RMSEm

RMSEm
(8)

where RMSEm, the “typical” GCM error, is defined as the median of RMSE values. We use the median
rather than the average value here to prevent GCMs with unusually large errors (outliers) from unduly
affecting the results. The nRMSE is a measure of how well a GCM (with respect to particular surface
observations) compares with the typical GCM error. If nRMSE > 0, then the GCM is inferior to the
typical GCM (the GCM whose RMSE is determined as RMSEm); the greater the nRMSE value is,
the worse the GCM. Conversely, if nRMSE < 0, then the GCM is better than the typical GCM; the
smaller the nRMSE value (greater than −1), the better the GCM.

3.2.2. Nash–Sutcliffe Efficiency

The performance of the SSR estimations from the GCMs, the SMA method, and the BMA method
was also evaluated by the Nash–Sutcliffe efficiency (NSE), which reflects how close the plot of the
model simulation versus observed data is to the 1:1 line. The NSE is calculated as follows:

NSE = 1−

n∑
i=1

(Oi −Mi)
2

n∑
i=1

(
Oi −O

)2
(9)

where Oi and Mi are the observed and estimated SSR, respectively. n is the size of data. O is the
average value of the observed SSR. The NSE can range from −∞ to 1, with higher values indicating
better agreement.

4. Results and Analysis

4.1. Evaluating CMIP5 GCMs SSR Simulations with Ground Measurements

The simulated SSR values on the original grid scale were directly compared with the ground SSR
observations within the grid cells. Before evaluation, all the GCM SSR simulations were re-projected
into a 1◦ × 1◦ spatial resolution using bilinear interpolation since they have different spatial resolutions.
This study chose 44 sites from three networks with more than ten months of available SSR data between
2000 and 2005. Four statistical parameters were used to evaluate the individual GCM: R, RMSE,
bias, and nRMSE. All the calculations were performed based on the monthly averages of the six year
(2000–2005) time series.

The calculation results of the bias, RMSE and R for the 48 GCM SSR simulations were labeled on
the scatter plots (Figure 2), and the bias, RMSE, and R histograms for the 48 GCM SSR simulations are
shown in Figure 3. The biases in the GCM SSR simulations compared with the ground observations
for all sites vary from −30 W m−2 to 15 W m−2 and only slightly more than half (only 26 GCMs) of the
GCMs overestimate the SSR. Overall, the GCMs do not show an obvious tendency to overestimate the
SSR over high-latitude areas. The absolute bias values of 28 GCM simulations are within 5 W m−2.
The biases of 11 GCMs SSR simulations range from 5 to 15 W m−2. The biases of 9 GCM SSR simulations
are less than −5 W m−2. The MIROC4h SSR simulations have the largest positive bias of 13.23 W m−2,
followed by the GISS-E2-R-CC and GISS-E2-R SSR simulations, which have approximately the same
bias values. Among the GCMs that underestimate the SSR when compared to the ground observations,
the CMCC-CESM SSR simulations have the largest negative bias of approximately −28.98 W m−2,
the largest RMSE and the smallest R. The underestimation of SSR over high-latitude areas may be due
to an overestimation of the total cloud cover in this region [9,47].



Remote Sens. 2019, 11, 1776 10 of 24

Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 24 

 

 
Figure 2. Scatterplots of the monthly surface incident shortwave radiation (SSR) observations from 
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NET sites, blue dots: surface observations from GEBA) and individual general circulation models 
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Figure 2. Scatterplots of the monthly surface incident shortwave radiation (SSR) observations from
44 sites (red dots: surface observations from BSRN sites, black dots: surface observations from GC-NET
sites, blue dots: surface observations from GEBA) and individual general circulation models (GCMs)
simulations from 2000 to 2005 (in units of W m−2).

Figure 2 also illustrates that most GCM SSR simulations result in an RMSE in the range of
20–50 W m−2 and a large R above 0.90. Figure 3b,c illustrates that most of the GCM (36 GCMs) SSR
simulations have RMSEs between 25 and 30 W m−2 and R above 0.965, respectively. Among the 48
GCMs, the CMCC-CESM SSR simulations yield the maximum RMSE of 48.75 W m−2, followed by
the FGOALS-g2 SSR simulations with a RMSE of 38.86 W m−2. The GFDL-CM3 SSR simulations has
the smallest RMSE of 23.74 W m−2, followed by the ACCESS 1.3 SSR simulations with a RMSE of



Remote Sens. 2019, 11, 1776 11 of 24

24.18 W m−2. GCMs with higher spatial resolutions did not always have a lower RMSE than those
with lower spatial resolutions (such as FGOALS-g2).
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Figure 3. Bias (a), root mean squared errors (RMSE) (a) and R (c) histograms for monthly SSR
simulations from 48 GCMs.

To further assess the influence of the radiation ground site selections and the quality of the
measurements on the evaluation of the SSR simulations over high-latitude areas, this study repeated
the above analysis with the sites from GEBA, BSRN, and GC-NET, respectively. The RMSEs at the BSRN
sites for the individual GCM SSR simulations range from 15 to 40 W m−2. These RMSEs are typically
smaller than those from the GEBA and the GC-Net sites. However, the absolute bias values averaged
over the five BSRN sites for most GCM SSR simulations are not smaller than the absolute average
bias values from the 18 GEBA and 21 GC-NET sites. The SSR is underestimated by the 48 GCMs for
the BSRN sites by 1.23 W m−2, which is close to the average bias for the GC-NET sites (−0.97 W m−2),
while the average bias for the GEBA sites is 1.62 W m−2. The R at the BSRN sites for the individual
GCM SSR simulations are typically larger than those at the GEBA and the GC-Net sites. Meanwhile,
the R averaged over the 18 GEBA sites for most GCMs SSR simulations are typically smaller than the
average R for the five BSRN and 21 GC-NET sites.

To compare the RMSEs of each GCM SSR simulation more intuitively, the RMSEm and the nRMSEs
were also calculated. In this analysis, the RMSEm was approximately 27.88 W m−2. As shown in
Figure 4, the GCMs SSR simulations with negative nRMSEs are all greater than −0.2, which illustrates
that their RMSE are only slightly smaller than the RMSEm. The RMSE of the GCM SSR simulations
with positive nRMSEs are obviously larger than RMSEm. Among the GCM SSR simulations with
negative nRMSEs, the GFDL-CM3 SSR simulations have the smallest nRMSE of −0.15, followed
by the ACCESS1.3 (−0.13) and GFDL-ESM2M (−0.10) SSR simulations. Among the GCMs with
positive nRMSEs, the CMCC-CESM SSR simulations have the largest nRMSE of 0.71, followed by the
FGOALS-g2 (0.39) and BNU-ESM (0.28) SSR simulations.
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4.2. Evaluating the MME Method Results with the Ground Measurements and the CERES EBAF Retrievals

This study used the SMA and BMA methods to generate higher accuracy SSR estimations by
combining 48 GCMs SSR simulations. Figure 5 shows the weights of the individual GCMs calculated
by the BMA method. The weights vary across GCMs. The greatest contributor to the SSR ensemble is
the GFDL-ESM2G which has the largest weight (0.0272), more than 30% larger than the priori weight
(0.0208), followed by GFDL-ESM2M (0.0259), CESM1-CAM5.1.FV2 (0.0254), and HadCM3 (0.0250).
The weight of FGOALS-g2 is only 0.0123, which is about 40% lower than the priori weight, because of
its relatively poor performance.
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Figure 5. Relative weights of 48 GCMs calculated by the Bayesian model averaging (BMA) method.

Based on Figure 6, obvious and expected improvements in R occur for the results of the BMA
method; specifically, the bias is 0.10 W m−2 and the RMSE is 16.79 W m−2, which are lower than those
of the SMA method. Although Figure 6 shows that the estimations from the BMA and SMA methods
have clear advantages over the CERES EBAF retrievals in reducing the biases, the estimations of the
two methods neither reduce the RMSE nor increase the R compared with the CERES EBAF retrievals.
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Figure 6. Evaluation of monthly SSR estimated from the Clouds and the Earth’s Radiant Energy System,
Energy Balanced and Filled (CERES EBAF), simple model averaging (SMA) method, and BMA method
from 2000 to 2005 (in units of W m−2).

The SSR estimations from the SMA and BMA methods were also compared with the CERES
EBAF SSR retrievals over high-latitude areas as shown in Figure 7. Bilinear interpolations are applied,
to make the spatial resolution of these gridded GCM SSR simulations with different spatial resolutions
consistent with that of the CERES EBAF SSR retrievals with a 1◦ × 1◦ spatial resolution.
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Figure 7. Geographical distribution of the different values (a) between the BMA results and the CERES
EBAF retrievals, (b) between the SMA results and the CERES EBAF retrievals, and (c) between the
SMA results and the BMA results from 2000 to 2005 (in units of W m−2). The results shown in (c) is 1–2
orders of magnitude smaller than those in (a) and (b).

Figure 7a,b shows the geographical distribution of the differences between the BMA results and
the CERES EBAF retrievals and between the SMA results and the CERES EBAF retrievals from 2000
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to 2005, respectively. There are obvious geographical patterns in the differences over high-latitude
areas, which may be attributed to the uncertainties in the representation of the cloud microphysical
processes in the GCMs. From Figure 7a, the BMA estimations commonly show positive biases over
inland Antarctica, the seas around Antarctica, and the seas of the Arctic Ocean (the Greenland Sea,
the Labrador Sea, and the Barents Sea). However, negative biases are found in many other regions,
particularly in the high-latitude areas of Eurasia and North America, the central part of the Arctic
Ocean, much of Greenland, and the coast of Antarctica. The largest negative bias is found in Iceland,
up to −36.67 W m−2, and the largest positive bias is found in eastern seas near Antarctica, up to
26.70 W m−2.

To directly compare the geographical distribution of the SMA results and the BMA results,
we calculate the different SSR values between the SMA results and the BMA results (Figure 7c).
The geographical differences between the BMA results and the SMA results are much more distinct
than the statistical calculation results (Figure 6). From Figure 7c, relative to the SMA results, the BMA
results yield lower SSR over almost all the high-latitude areas, except Greenland and coastal areas of
Antarctica. Grids with large SSR differences are concentrated in the coastal regions of Antarctica and
Greenland, Europe, and Iceland and the seas around them. This geographical dissimilarity is mainly
attributed to the differences weights assigned by the BMA method to different GCM SSR simulations,
and the BMA results are more accurate than the SMA results.

Figures 8 and 9 show the seasonal geographical distributions of the differences between the
BMA results and the CERES EBAF retrievals and between the SMA results and the CERES EBAF
retrievals over high-latitude areas, respectively. It is obvious that the differences are typically larger
over high-latitude areas during local spring (MAM in the Northern Hemisphere and SON in the
Southern Hemisphere) when the sea ice begins to melt in summer (JJA in the Northern Hemisphere
and DJF in the Southern Hemisphere). During local fall (SON in the Northern Hemisphere and MAM
in the Southern Hemisphere) and winter (DJF in the Northern Hemisphere and JJA in the Southern
Hemisphere), the situation is the opposite. Since the SMA and BMA difference results have similar
seasonal geographical distributions, this study only analyses the results of the BMA method (Figure 8).
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Figure 9. Seasonal geographical distribution of the different values between the SMA results and the
CERES EBAF retrievals from 2000 to 2005. (a–d) and (e–h) are in local spring, summer, fall, and winter
in the South and Northern Hemispheres, respectively (in units of W m−2).

During spring in the Northern Hemisphere, the BMA method tends to overestimate the SSR over
the Norwegian Sea, the Danish Strait, and the Davis Strait, and underestimate the SSR over the land
and the central Arctic Ocean compared with the CERES EBAF. In the Southern Hemisphere, the SSR
is overestimated over the Weddell Sea and the Ross Sea, and over the coastal areas of the Antarctic
continent. During summer, the underestimation of the SSR is the most prominent over the central
Arctic region, with local positive biases presented around the ocean near Greenland and the Canadian
Arctic Archipelago and the ocean and land near the Bering Strait. The ocean near Greenland and the
land of Eurasia and North America shows a widespread overestimation.

Figure 8c,g shows the differences in the SSR between the BMA results and the CERES EBAF
during fall. In the Northern Hemisphere, the central Arctic Ocean, Europe, Iceland, Alaska, and coast
of Greenland are the areas with the most obvious underestimations. In the Southern Hemisphere,
the south Atlantic and the Bellingshausen Sea show a large underestimation, while the rest of the
ocean typically shows a large overestimation. The coast of Antarctica shows a large underestimation,
while the central and eastern areas of Antarctica show a large overestimation. As shown in Figure 8d,
the underestimation of the SSR during winter occurs primarily over the coasts. The BMA results
over coasts are approximately 5 W m−2 and 20 W m−2 lower than the CERES EBAF retrievals in the
Northern Hemisphere and the Southern Hemisphere, respectively. The overestimation of the SSR over
ocean is approximately 5 W m−2 and 20 W m−2 larger than the CERES EBAF retrievals in the Northern
Hemisphere and the Southern Hemisphere, respectively.

To further investigate the precision differences of the SSR estimates in the bright (spring and
summer) and dark (fall and winter) seasons, we also compared the seasonal geographical distribution
of the normalized differences between the MME results and the CERES EBAF retrievals from 2000 to
2005. The normalized values were obtained by the SSR estimates divided by the mean SSR for the
respective season. It was found that the normalized differences between the MME results and CERES
EBAF retrievals were smaller than those for the unnormalized differences in both the Northern and
the Southern Hemispheres in each season, but such differences between the bright and dark seasons
were still obvious. This large seasonal discrepancy indicated that the GCM SSR simulations exhibited
different precision in the bright and dark seasons.

4.3. Comparing and Evaluating the GCM Simulations and the MME Results with the CERES EBAF Retrievals

It has been reported that some of the CMIP5 GCMs have large biases when simulating cloud
water and ice paths compared to satellite retrievals [36], and clouds can have a significant influence
on the SSR simulation. To understand the differences between the GCMs and the CERES EBAF in
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estimating the SSR over high-latitude areas, this study calculated the bias, RMSE, R, and NSE values
of each GCM simulations compared with the CERES EBAF retrievals, as shown in Figures 10 and 11.
In addition, this study also used Taylor diagrams (Figures 12 and 13) to show the gaps among the SSR
outputs from the individual GCMs, the SMA method and the BMA method and the CERES EBAF.
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green, blue, and black dots, respectively. (a) Spring, (b) Summer, (c) fall, (d) winter.
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Figure 13. Taylor diagram of the estimations from the SMA method, the BMA method, the CERES
EBAF, and the 48 GCMs over high-latitude areas from 2000 to 2005 in the Southern Hemisphere.
The SMA method, the BMA method, the CERES EBAF, and the 48 GCMs are represented by purple,
green, blue, and black dots, respectively. (a) Spring, (b) summer, (c) fall, (d) winter.

In the Northern Hemisphere, as shown in Figure 10a, most of the GCM SSR simulations exhibit
relatively greater RMSE values in boreal summer than those in other seasons. A total of 39 out of
48 GCM SSR simulations show an underestimation tendency compared with ground measurements in
summer (JJA). The possible reason may be that the GCMs have difficulties in capturing the insulating
effect of clouds, since cloud properties represented by GCM SSR estimation models are one of the most
important factors in regulating the estimated SSR. The SSR simulations from BMA method have the
smallest RMSE values compared to any SSR estimates from individual GCM and the SMA method.
Figure 10b shows that the absolute bias values of GCM SSR simulations are relatively smaller in fall
(SON) and winter (DJF), but greater in summer (JJA). Figure 10c illustrates the R values of the SSR
estimates. It is obvious that the R values for each GCM and the MME method are relatively small
in summer (JJA). As shown in Figure 10d, all the NSE values of SSR estimates are greater than zero,
except the BNU-ESM (−0.17) and CMCC-CESM (−0.87). The NSE values of the SSR estimations from
individual GCMs, the SMA method, and the BMA method in spring (MAM), fall (SON), and winter (DJF)
are greater than those in summer (JJA). Among the individual GCM SSR simulations, the NSE values
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of GFDL-CM3 (0.94), HadGEM2-CC (0.77), inmcm4(0.95), and GISS-E2-R-CC (0.97) SSR simulations
are the greatest ones in local spring, summer, fall, and winter, respectively.

In the Southern Hemisphere, as shown in Figure 11a, the SSR evaluation results are similar to
those in the Northern Hemisphere in the local spring, fall, and winter seasons. The biases shown in
Figure 11b indicate that the underestimation tendency in the Northern Hemisphere does not exist in
Southern Hemisphere. As shown in Figure 11c, the R values of the SSR estimates are greater than
those in Northern Hemisphere, especially in summer. In both Northern and Southern Hemispheres,
the BMA method SSR simulations have greater NSE values than any individual GCM and the SMA
method SSR simulations.

In both the Hemispheres, the Taylor diagrams (Figures 12 and 13) show that the MME methods
generally have better performance in simulating the SSR than the individual GCMs, except in local
winter. According to these figures, it is obvious that the distribution of the spots is relatively scattered
in local summer. It indicates that the differences in uncertainty of GCM SSR simulations are greater
in local summer than in other seasons for both Northern and Southern Hemispheres. Additionally,
the performance of the CERES EBAF SSR retrievals is not always the best among the SSR estimations
from individual GCMs, SMA method, and BMA method in four seasons (Figures 12 and 13). Therefore,
we conclude that the BMA method exhibited relatively better performance in simulating SSR compared
to individual GCMs and the SMA method.

5. Discussion

In this study, we evaluated the SSR simulations and intercompared the performance of both the
SMA and BMA methods for estimating the SSR in high-latitude areas using quality-controlled surface
observations at 44 sites from three SSR observation networks (BSRN, GC-NET, and GEBA) and the
CERES EBAF SSR retrievals from 2000 to 2005.

The evaluation results indicated that the precision of each GCM SSR simulations were quite
different and GCMs with higher spatial resolutions did not guarantee better performance in simulating
SSR. Relative to ground observations, the bias, RMSE, and R values of the SSR simulations ranged from
−30 W m−2 to 15 W m−2, 20 W m−2 to 50 W m−2 and 0.94 to 0.99, respectively. Previous studies showed
that the GCM SSR simulations exhibit a tendency toward excessive SSR at the Earth’s surface [11].
However, the validation results indicated that the GCM SSR simulations did not show an obvious
tendency to overestimate the SSR over high-latitude areas in this study. Only slightly more than
half of the GCMs (26 out of the 48 GCMs) overestimated the SSR over high-latitude areas when
compared with the ground observations, although some discrepancies between the current GCM
SSR simulations and ground measurements still existed over high-latitude areas. Cloud and aerosol
properties represented by the GCMs are two important factors in regulating the estimated SSR [9].
The GCMs have been reported to overestimate aerosol optical thickness [48] and total cloud cover
over high-latitude areas [9,36,47]. Thus, the excessive total cloud cover and aerosol optical thickness
possibly contribute to the offset of the overestimation of the SSR in many of the GCMs. More data
including the parameters related to cloud and aerosol are needed to conduct further investigation over
high-latitude areas.

Besides cloud and aerosols, measurement errors, such as instrument replacement and drift and
spatial representativeness of ground measurements were also potential error sources of SSR evaluations.
For example, the monthly representation errors at the surface sites with respect to their 1◦ surroundings
are on average 3.7% (4 W m−2) [49]. The GCMs have different spatial resolution that varies from 0.56◦

× 0.56◦ to 3.75◦ × 3.75◦ which might cause certain biases for the SSR evaluation.
The function of the BMA method for the improvements of the SSR estimations was estimated

based on the change in statistical calculations and Taylor diagrams. The performance of the BMA
method was superior to that of any single GCM in simulating the SSR over high-latitude areas,
especially during summer. Our results also showed that the use of different weights obtained by the
BMA method for each GCM based on its performance can be a good alternative to the SMA method.



Remote Sens. 2019, 11, 1776 21 of 24

The BMA simulations were also compared with the CERES EBAF retrievals, and there were noteworthy
geographical patterns in the differences between them over high-latitude areas.

Generally, the MME methods where the GCM weights are determined by the GCMs prior
performance performs better than the SMA method, e.g., [24,50–54]. Some studies have also obtained
similar estimates generated by different MME methods (e.g., [24,55]), which partially reflects the
alleged “equifinality” in which different combinations of GCM weights produce identical fit to the
ground measurements. The performance of BMA method may be influenced by the training sample
sizes. Although the advantage of BMA method was not apparent in this study, the BMA method
provides a new option to generate more accurate SSR simulations through the entire ensemble of the
model first considered.

Author Contributions: Conceptualization, X.Z.; data curation, W.Z.; supervision, X.Z. and W.L.; writing—original
draft, W.Z.; writing—review and editing, X.Z., W.L., N.H., Y.W., K.J., Y.Y., and J.C.

Funding: This research was funded in part by the National Key Research and Development Program of China
under Grants 2017YFA0603002 and 2016YFA0600102, in part by the National Natural Science Foundation of China
under Grant 41571340.

Acknowledgments: CERES-EBAF data were obtained through the NASA Langley Research Center
CERES ordering tool at http://ceres.larc.nasa.gov/. CMIP5 GCM SSR simulations were downloaded from
http://cmip-pcmdi.llnl.gov/cmip5/. The in situ SSR data collected at the GC-NET, BSRN, and GEBA station in the
high latitude areas are available at http://cires1.colorado.edu/science/groups/steffen/gcnet/, http://bsrn.awi.de/,
and http://www.geba.ethz.ch/, respectively. The authors would like to thank the anonymous reviewers and editors
for their valuable suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wu, H.R.; Zhang, X.T.; Liang, S.L.; Yang, H.; Zhou, G.Q. Estimation of clear-sky land surface longwave
radiation from MODIS data products by merging multiple models. J. Geophys. Res. Atmos. 2012, 117.
[CrossRef]

2. Zhang, X.T.; Liang, S.L.; Wang, G.X.; Yao, Y.J.; Jiang, B.; Cheng, J. Evaluation of the reanalysis surface incident
shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations.
Remote Sens. 2016, 8, 225. [CrossRef]

3. Mercado, L.M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P.M. Impact of changes in
diffuse radiation on the global land carbon sink. Nature 2009, 458, 1014–1017. [CrossRef]

4. Gupta, S.K.; Ritchey, N.A.; Wilber, A.C.; Whitlock, C.H.; Gibson, G.G.; Stackhouse, P.W. A climatology of
surface radiation budget derived from satellite data. J. Clim. 1999, 12, 2691–2710. [CrossRef]

5. Ramanathan, V.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science
2001, 294, 2119–2124. [CrossRef] [PubMed]

6. Zhang, X.T.; Liang, S.L.; Wild, M.; Jiang, B. Analysis of surface incident shortwave radiation from four
satellite products. Remote Sens. Environ. 2015, 165, 186–202. [CrossRef]

7. Abadi, A.M.; Oglesby, R.; Rowe, C.; Mawalagedara, R. Evaluation of GCMs historical simulations of monthly
and seasonal climatology over Bolivia. Clim. Dyn. 2018, 51, 733–754. [CrossRef]

8. Seiler, C.; Hutjes, R.W.A.; Kabat, P. Likely ranges of climate change in Bolivia. J. Appl. Meteor. Climatol. 2013,
52, 1303–1317. [CrossRef]

9. Ma, Q.; Wang, K.C.; Wild, M. Impact of geolocations of validation data on the evaluation of surface incident
shortwave radiation from Earth System Models. J. Geophys. Res. Atmos. 2015, 120, 6825–6844. [CrossRef]

10. Wild, M.; Folini, D.; Hakuba, M.Z.; Schaer, C.; Seneviratne, S.I.; Kato, S.; Rutan, D.A.; Ammann, C.; Wood, E.F.;
Koenig-Langlo, G. The energy balance over land and oceans: An assessment based on direct observations
and CMIP5 climate models. Clim. Dyn. 2015, 44, 3393–3429. [CrossRef]

11. Wild, M.; Folini, D.; Schar, C.; Loeb, N.; Dutton, E.G.; Konig-Langlo, G. The global energy balance from
a surface perspective. Clim. Dyn. 2013, 40, 3107–3134. [CrossRef]

12. Fang, M.; Li, X. Application of Bayesian model averaging in the reconstruction of past climate change using
PMIP3/CMIP5 multimodel ensemble simulations. J. Clim. 2016, 29, 175–189. [CrossRef]

http://ceres.larc.nasa.gov/
http://cmip-pcmdi.llnl.gov/cmip5/
http://cires1.colorado.edu/science/groups/steffen/gcnet/
http://bsrn.awi.de/
http://www.geba.ethz.ch/
http://dx.doi.org/10.1029/2012JD017567
http://dx.doi.org/10.3390/rs8030225
http://dx.doi.org/10.1038/nature07949
http://dx.doi.org/10.1175/1520-0442(1999)012&lt;2691:ACOSRB&gt;2.0.CO;2
http://dx.doi.org/10.1126/science.1064034
http://www.ncbi.nlm.nih.gov/pubmed/11739947
http://dx.doi.org/10.1016/j.rse.2015.05.015
http://dx.doi.org/10.1007/s00382-017-3952-y
http://dx.doi.org/10.1175/JAMC-D-12-0224.1
http://dx.doi.org/10.1002/2014JD022572
http://dx.doi.org/10.1007/s00382-014-2430-z
http://dx.doi.org/10.1007/s00382-012-1569-8
http://dx.doi.org/10.1175/JCLI-D-14-00752.1


Remote Sens. 2019, 11, 1776 22 of 24

13. Riihela, A.; Laine, V.; Manninen, T.; Palo, T.; Vihma, L. Validation of the Climate-SAF surface broadband
albedo product: Comparisons with in situ observations over Greenland and the ice-covered Arctic Ocean.
Remote Sens. Environ. 2010, 114, 2779–2790. [CrossRef]

14. Boeke, R.C.; Taylor, P.C. Evaluation of the Arctic surface radiation budget in CMIP5 models. J. Geophys. Res.
Atmos. 2016, 121, 8525–8548. [CrossRef]

15. Frouin, R.; Franz, B.A.; Werdell, P.J. The SeaWiFS PAR product. NASA Tech. Memo. SeaWIFS Postlaunch Tech.
Rep. Ser. 2003, 46–50.

16. Riihela, A.; Key, J.R.; Meirink, J.F.; Munneke, P.K.; Palo, T.; Karlsson, K.G. An intercomparison and validation
of satellite-based surface radiative energy flux estimates over the Arctic. J. Geophys. Res. Atmos. 2017, 122,
4829–4848. [CrossRef]

17. Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol.
Soc. 2012, 93, 485–498. [CrossRef]

18. Chen, Y.; Yuan, W.P.; Xia, J.Z.; Fisher, J.B.; Dong, W.J.; Zhang, X.T.; Liang, S.L.; Ye, A.Z.; Cai, W.W.; Feng, J.M.
Using Bayesian model averaging to estimate terrestrial evapotranspiration in China. J. Hydrol. 2015, 528,
537–549. [CrossRef]

19. Yao, Y.J.; Liang, S.L.; Li, X.L.; Hong, Y.; Fisher, J.B.; Zhang, N.N.; Chen, J.Q.; Cheng, J.; Zhao, S.H.;
Zhang, X.T.; et al. Bayesian multimodel estimation of global terrestrial latent heat flux from eddy covariance,
meteorological, and satellite observations. J. Geophys. Res. Atmos. 2014, 119, 4521–4545. [CrossRef]

20. Miao, C.Y.; Duan, Q.Y.; Sun, Q.H.; Li, J.D. Evaluation and application of Bayesian multi-model estimation in
temperature simulations. Prog. Phys. Geogr. 2013, 37, 727–744. [CrossRef]

21. Doblas-Reyes, F.J.; Hagedorn, R.; Palmer, T.N. The rationale behind the success of multi-model ensembles in
seasonal forecasting—II. Calibration and combination. Tellus A 2005, 57, 234–252. [CrossRef]

22. Stephenson, D.B.; Coelho, C.A.S.; Doblas-Reyes, F.J.; Balmaseda, M. Forecast assimilation: A unified
framework for the combination of multi-model weather and climate predictions. Tellus A 2005, 57, 253–264.
[CrossRef]

23. Demirel, M.C.; Moradkhani, H. Assessing the impact of CMIP5 climate multi-modeling on estimating the
precipitation seasonality and timing. Clim. Chang. 2016, 135, 357–372. [CrossRef]

24. Miao, C.Y.; Duan, Q.Y.; Sun, Q.H.; Huang, Y.; Kong, D.X.; Yang, T.T.; Ye, A.Z.; Di, Z.H.; Gong, W. Assessment
of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environ. Res. Lett.
2014, 9. [CrossRef]

25. Sun, Q.H.; Miao, C.Y.; Duan, Q.Y. Extreme climate events and agricultural climate indices in China: CMIP5
model evaluation and projections. Int. J. Climatol. 2016, 36, 43–61. [CrossRef]

26. Ajami, N.K.; Duan, Q.Y.; Sorooshian, S. An integrated hydrologic Bayesian multimodel combination
framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction. Water
Resour. Res. 2007, 43. [CrossRef]

27. Ohmura, A.; Dutton, E.G.; Forgan, B.; Frohlich, C.; Gilgen, H.; Hegner, H.; Heimo, A.; Konig-Langlo, G.;
McArthur, B.; Muller, G.; et al. Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry
for climate research. Bull. Am. Meteorol. Soc. 1998, 79, 2115–2136. [CrossRef]

28. Steffen, K.; Box, J.E.; Abdalati, W. Greenland Climate Network: GC-Net, CRREL 96–27 Special Report on Glaciers,
Ice Sheets and Volcanoes; Colbeck, S.C., Ed.; Trib. To M. Meier; Greenland Climate Network: Boulder, CO,
USA, 1996.

29. Gilgen, H.; Wild, M.; Ohmura, A. Means and trends of shortwave irradiance at the surface estimated from
global energy balance archive data. J. Clim. 1998, 11, 2042–2061. [CrossRef]

30. Feng, F.; Wang, K.C. Merging satellite retrievals and reanalyses to produce global long-term and consistent
surface incident solar radiation datasets. Remote Sens. 2018, 10, 115. [CrossRef]

31. Box, J.E.; Steffen, K. Sublimation on the Greenland ice sheet from automated weather station observations.
J. Geophys. Res. Atmos. 2001, 106, 33965–33981. [CrossRef]

32. Wang, W.S.; Zender, C.S.; van As, D.; Miller, N.B. Spatial distribution of melt season cloud radiative
effects over Greenland: Evaluating satellite observations, reanalyses, and model simulations against in situ
measurements. J. Geophys. Res. Atmos. 2019, 124, 57–71. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2010.06.014
http://dx.doi.org/10.1002/2016JD025099
http://dx.doi.org/10.1002/2016JD026443
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1016/j.jhydrol.2015.06.059
http://dx.doi.org/10.1002/2013JD020864
http://dx.doi.org/10.1177/0309133313494961
http://dx.doi.org/10.1111/j.1600-0870.2005.00104.x
http://dx.doi.org/10.3402/tellusa.v57i3.14664
http://dx.doi.org/10.1007/s10584-015-1559-z
http://dx.doi.org/10.1088/1748-9326/9/5/055007
http://dx.doi.org/10.1002/joc.4328
http://dx.doi.org/10.1029/2005WR004745
http://dx.doi.org/10.1175/1520-0477(1998)079&lt;2115:BSRNBW&gt;2.0.CO;2
http://dx.doi.org/10.1175/1520-0442-11.8.2042
http://dx.doi.org/10.3390/rs10010115
http://dx.doi.org/10.1029/2001JD900219
http://dx.doi.org/10.1029/2018JD028919


Remote Sens. 2019, 11, 1776 23 of 24

33. Wild, M.; Ohmura, A.; Schar, C.; Muller, G.; Folini, D.; Schwarz, M.; Hakuba, M.Z.; Sanchez-Lorenzo, A.
The Global Energy Balance Archive (GEBA) version 2017: A database for worldwide measured surface
energy fluxes. Earth Syst. Sci. Data 2017, 9, 601–613. [CrossRef]

34. Gilgen, H.; Ohmura, A. The global energy balance archive. Bull. Am. Meteorol. Soc. 1999, 80, 831–850.
[CrossRef]

35. Rahimikhoob, A.; Behbahani, S.M.R.; Banihabib, M.E. Comparative study of statistical and artificial neural
network’s methodologies for deriving global solar radiation from NOAA satellite images. Int. J. Climatol.
2013, 33, 480–486. [CrossRef]

36. Lenaerts, J.T.M.; Van Tricht, K.; Lhermitte, S.; L’Ecuyer, T.S. Polar clouds and radiation in satellite observations,
reanalyses, and climate models. Geophys. Res. Lett. 2017, 44, 3355–3364. [CrossRef]

37. Kato, S.; Rose, F.G.; Rutan, D.A.; Thorsen, T.J.; Loeb, N.G.; Doelling, D.R.; Huang, X.L.; Smith, W.L.; Su, W.Y.;
Ham, S.H. Surface irradiances of edition 4.0 clouds and the earth’s radiant energy system (CERES) energy
balanced and filled (EBAF) data product. J. Clim. 2018, 31, 4501–4527. [CrossRef]

38. Minnis, P.; Sun-Mack, S.; Young, D.F.; Heck, P.W.; Garber, D.P.; Chen, Y.; Spangenberg, D.A.; Arduini, R.F.;
Trepte, Q.Z.; Smith, W.L.; et al. CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and
Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4374–4400. [CrossRef]

39. Kato, S.; Loeb, N.G.; Rose, F.G.; Doelling, D.R.; Rutan, D.A.; Caldwell, T.E.; Yu, L.S.; Weller, R.A. Surface
irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Clim.
2013, 26, 2719–2740. [CrossRef]

40. Wilson, L.J.; Beauregard, S.; Raftery, A.E.; Verret, R. Calibrated surface temperature forecasts from the
Canadian ensemble prediction system using Bayesian model averaging. Mon. Weather Rev. 2007, 135,
1364–1385. [CrossRef]

41. Leamer, E.E. Regression selection strategies and priors. J. Am. Stat. Assoc. 1978, 73, 580–587. [CrossRef]
42. Kass, R.E.; Raftery, A.E. Bayes factors. J. Am. Stat. Assoc. 1995, 90, 773–795. [CrossRef]
43. Fisher, R.A. On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. Lond. A 1922, 222,

309–368. [CrossRef]
44. Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate

forecast ensembles. Mon. Weather Rev. 2005, 133, 1155–1174. [CrossRef]
45. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm.

J. R. Stat. Soc. Series B 1977, 39, 1–38. [CrossRef]
46. Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. Atmos.

2008, 113. [CrossRef]
47. Li, J.L.F.; Waliser, D.E.; Stephens, G.; Lee, S.; L’Ecuyer, T.; Kato, S.; Loeb, N.; Ma, H.Y. Characterizing

and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis.
J. Geophys. Res. Atmos. 2013, 118, 8166–8184. [CrossRef]

48. Glantz, P.; Bourassa, A.; Herber, A.; Iversen, T.; Karlsson, J.; Kirkevag, A.; Maturilli, M.; Seland, O.; Stebel, K.;
Struthers, H.; et al. Remote sensing of aerosols in the Arctic for an evaluation of global climate model
simulations. J. Geophys. Res. Atmos. 2014, 119, 20. [CrossRef]

49. Hakuba, M.Z.; Folini, D.; Sanchez-Lorenzo, A.; Wild, M. Spatial representativeness of ground-based solar
radiation measurements. J. Geophys. Res. Atmos. 2013, 118, 8585–8597. [CrossRef]

50. Min, S.K.; Hense, A. A Bayesian approach to climate model evaluation and multi-model averaging with
an application to global mean surface temperatures from IPCC AR4 coupled climate models. Geophys. Res.
Lett. 2006, 33, 5. [CrossRef]

51. Sloughter, J.M.; Raftery, A.E.; Gneiting, T.; Fraley, C. Probabilistic quantitative precipitation forecasting using
Bayesian model averaging. Mon. Weather Rev. 2007, 135, 3209–3220. [CrossRef]

52. Wang, Q.J.; Schepen, A.; Robertson, D.E. Merging seasonal rainfall forecasts from multiple statistical models
through Bayesian model averaging. J. Clim. 2012, 25, 5524–5537. [CrossRef]

53. Yang, T.; Hao, X.B.; Shao, Q.X.; Xu, C.Y.; Zhao, C.Y.; Chen, X.; Wang, W.G. Multi-model ensemble projections
in temperature and precipitation extremes of the Tibetan Plateau in the 21st century. Glob. Planet. Chang.
2012, 80–81, 1–13. [CrossRef]

http://dx.doi.org/10.5194/essd-9-601-2017
http://dx.doi.org/10.1175/1520-0477(1999)080&lt;0831:TGEBA&gt;2.0.CO;2
http://dx.doi.org/10.1002/joc.3441
http://dx.doi.org/10.1002/2016GL072242
http://dx.doi.org/10.1175/JCLI-D-17-0523.1
http://dx.doi.org/10.1109/TGRS.2011.2144601
http://dx.doi.org/10.1175/JCLI-D-12-00436.1
http://dx.doi.org/10.1175/MWR3347.1
http://dx.doi.org/10.1080/01621459.1978.10480058
http://dx.doi.org/10.1080/01621459.1995.10476572
http://dx.doi.org/10.1098/rsta.1922.0009
http://dx.doi.org/10.1175/MWR2906.1
http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x
http://dx.doi.org/10.1029/2007JD008972
http://dx.doi.org/10.1002/jgrd.50378
http://dx.doi.org/10.1002/2013JD021279
http://dx.doi.org/10.1002/jgrd.50673
http://dx.doi.org/10.1029/2006GL025779
http://dx.doi.org/10.1175/MWR3441.1
http://dx.doi.org/10.1175/JCLI-D-11-00386.1
http://dx.doi.org/10.1016/j.gloplacha.2011.08.006


Remote Sens. 2019, 11, 1776 24 of 24

54. Zhang, X.S.; Srinivasan, R.; Bosch, D. Calibration and uncertainty analysis of the SWAT model using genetic
algorithms and Bayesian model averaging. J. Hydrol. 2009, 374, 307–317. [CrossRef]

55. Duan, Q.Y.; Phillips, T.J. Bayesian estimation of local signal and noise in multimodel simulations of climate
change. J. Geophys. Res. Atmos. 2010, 115. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jhydrol.2009.06.023
http://dx.doi.org/10.1029/2009JD013654
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data 
	CMIP5 GCMs 
	Ground Measurements 
	CERES EBAF SSR Retrievals 

	Methods 
	Bayesian Model Averaging (BMA) Method 
	Statistical Measures 
	Normalized RMSE 
	Nash–Sutcliffe Efficiency 


	Results and Analysis 
	Evaluating CMIP5 GCMs SSR Simulations with Ground Measurements 
	Evaluating the MME Method Results with the Ground Measurements and the CERES EBAF Retrievals 
	Comparing and Evaluating the GCM Simulations and the MME Results with the CERES EBAF Retrievals 

	Discussion 
	References

