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Abstract: The accuracy of ultra-rapid orbits is a key parameter for the performance of GNSS (Global
Navigation Satellite System) real-time or near real-time precise positioning applications. The quality
of the current BeiDou demonstration system (BDS) ultra-rapid orbits is lower than that of GPS,
especially for the new generational BDS-3 satellites due to the fact that the availability of the number
of ground tracking stations is limited, the geographic distribution of these stations is poor, and the
data processing strategies adopted are not optimal. In this study, improved data processing strategies
for the generation of ultra-rapid orbits of BDS-2/BDS-3 satellites are investigated. This includes both
observed and predicted parts of the orbit. First, the predicted clock offsets are taken as constraints in
the estimation process to reduce the number of the unknown parameters and improve the accuracy of
the parameter estimates of the orbit. To obtain more accurate predicted clock offsets for the BDS’ orbit
determination, a denoising method (also called the Tikhonov regularization algorithm), inter-satellite
correlation, and the partial least squares method are all incorporated into the clock offsets prediction
model. Then, the Akaike information criterion (AIC) is used to determine the arc length in the
estimation models by taking the optimal arc length in the estimation of the initial orbit states into
consideration. Finally, a number of experiments were conducted to evaluate the performance of
the ultra-rapid orbits resulting from the proposed methods. Results showed that: (1) Compared
with traditional models, the accuracy improvement of the predicted clock offsets from the proposed
methods were 40.5% and 26.1% for BDS-2 and BDS-3, respectively; (2) the observed part of the orbits
can be improved 9.2% and 5.0% for BDS-2 and BDS-3, respectively, by using the predicted clock
offsets as constraints; (3) the accuracy of the predicted part of the orbits showed a high correlation
with the AIC value, and the accuracy of the predicted orbits could be improved up to 82.2%. These
results suggest that the approaches proposed in this study can significantly enhance the accuracy of
the ultra-rapid orbits of BDS-2/BDS-3 satellites.

Keywords: BDS-2/BDS-3; ultra-rapid orbits; predicted clock offsets; inter-satellite correlation;
constraints; Akaike information criterion (AIC)

1. Introduction

The BeiDou demonstration system (BDS-1), the BeiDou regional service system (BDS-2), and the
BeiDou global service system (BDS-3) are the “three-step” development strategy in China, presented
in [1,2]. On 27 December 2012, the BeiDou system (BDS) began to provide services to the Asia Pacific
region when it had a constellation of five GEO, five inclined geosynchronous orbit (IGSO), and four
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medium Earth orbit (MEO) satellites. Four BDS-3 experimental satellites, 15 BDS-2, and 19 BDS-3
satellites were in orbit to cover global service by the end of December 2018 [3]. Moreover, the new
generation BDS plans to form a 30 satellite network by 2020 (three GEO, twenty-four MEO, and three
IGSO), providing global navigation, positioning, and timing (PNT) services [4], which is expected
to significantly improve the performance of BDS services. Currently, the BDS, consisting of BDS-2
and BDS-3 satellites, will continue to provide PNT services for a number of years, and the combined
usage of BDS-2 and BDS-3 for PNT is expected. Compared with BDS-2 satellites, BDS-3 satellites
have been developed with new technologies, capabilities, and capacities, such as inter-satellite links,
high-accuracy onboard atomic clocks, and new signals (B1C and B2a), which marks BDS-3 satellites
with superior performances and abilities. However, the differences between BDS-2 and BDS-3 satellites
will impose a huge data processing challenge on the optimal combination of the two systems.

For GNSS (Global Navigation Satellite System) applications, the data needed are mainly the precise
satellite orbit and clock offsets. Although the satellite orbits and clock offsets products can be improved
when more satellites are involved. For different navigation satellite systems, precise satellite orbit and
clock offset products are still prerequisites in the domain of high-precision applications, especially
for real-time or near real-time PNT services [5]. For BDS, research over BDS-2’s orbit and clock offset
has been mainly focused on the following three key aspects: (1) based on the available regional
tracking network [6,7], the data processing strategies are constrained to a small number, and uneven
geographical distribution, of ground tracking stations; (2) satellite geometric and physical models are
refined [8–10], such as attitude models, sun radiation pressure, and the phase centre; (3) multi-GNSS
observations are combined to augment BDS-2’s performance. BDS-2’s orbit determination has been
studied extensively to improve accuracy and the relevant algorithms [11–13]. Results showed that the
three-dimensional root-mean-square error (3D RMS) of the BDS-2’s one-day overlapping arc for MEO
(and IGSO) and GEO were improved from 0.5 m and 3.0 m to 0.2 m and 1.0 m, respectively. Moreover,
the BDS-3 orbit and clock determination is focused on the following three aspects: (1) analyses
of the precision, accuracy, and quality of BDS-3 observations and products, respectively [14,15];
(2) assessment of the impact of introducing inter-satellite links on precise BDS-3 orbit and clock
offset determination [14,16,17]; (3) stacking the satellite-ground link and satellite-to-satellite cross-link
observations in BDS-3 orbit determination [18]. Similarly, the results indicate that the radial and
along-track directions of one-day orbit overlapping (the discrepancy of arcs based on two adjacent orbit
determination processes) were improved from 10.0 cm and 25.0 cm to 3.7 cm and 7.9 cm, respectively,
and the frequency stability of theonboard clock also increased by more than 10 times for BDS-3
experimental satellites [15,19]. However, the accuracy and precision of the BDS-2/BDS-3 satellite orbit
and clock offset are still undesirable and not comparable with GPS. GNSS data processing strategies
have not yet taken full advantage of the BDS-3 system, e.g., the system’s highly precise information
(such as more stable atomic clocks). This paper aims to exploit the use of a combination of BDS-2 and
BDS-3 for better estimation of orbital parameters.

For precise point positioning using GNSS orbit and clock offset products, the accuracy of the
ultra-rapid orbit directly affects the ambiguity resolution of the estimation system [20,21]. Due to
the constraints of timeliness and a limited number of BDS tracking stations used in the ultra-rapid
orbit determination process, the orbit parameters cannot be resolved from the insufficient number of
observations [22]. However, recent research suggests that the accuracy of the orbit parameter estimates
can be significantly improved by imposing a constraint on the clock based on the correlation between
orbit and clock [23]. Research pertinent to the determination of the satellite’s clock offset carried out
so far has mainly concentrated on the following three aspects: (1) pre-processing of the clock offset
series [24,25]; (2) refinement of its prediction model [26,27]; (3) analyses of the impact of environmental
and physical factors on the clock offset [28]. Moreover, investigations of the algorithms and data
processing strategies for the prediction of the clock offset mainly cover improving the estimation and
prediction of the clock’s long-term behavior, such as investigations of expanded state models [29] and
implementation of artificial neural networks [30]; multiple sinusoid approach, including an improved
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iterative algorithm [31], and sidereal filtering with systematic sub-daily clock bias variations [27].
However, it should be noted that all these methods for the clock offset prediction ignore the correlation
between different satellites in the solution, which has demonstrated a significant impact on BDS-2
satellite clock prediction [32]. Therefore, consideration of inter-satellite correlation may improve the
accuracy of the ultra-rapid orbit from BDS-2/BDS-3. For example, the predicted high-precision clock
offsets can be taken as a constraint in the ultra-rapid orbit determination process.

Orbit prediction strategies [33], optimal arcs prediction [34], predicted time intervals [35], and the
impact of Earth rotation parameters [36] have been investigated by scholars for the refinement of the
orbit models and strategies due to the low accuracy of the predicted ultra-rapid orbits. The accuracy
of the BDS-2/BDS-3 ultra-rapid orbit for both the observed and predicted components cannot meet
the requirements of a BDS third phase system specification (observed orbit/clock offset <5 cm/0.2 ns;
predicted orbit/clock offsets <10 cm/5 ns). Furthermore, the benefits of combing BDS-2 and BDS-3
orbit determination and perturbation models have not been fully studied and analyzed. Therefore,
the focus of this study is improving the precision BDS-2/BDS-3 ultra-rapid orbit determination with
the aid of a precise satellite clock offset. For GNSS ultra-rapid orbit, the orbit update is generally
comprised of a 24 h observed orbit and a 24 h predicted orbit, and the predicted part is obtained by
extrapolation based on the initial orbit and the numerical integration technique [22]. Two significant
problems need to be addressed in the optimization in the process of the initial state of the ultra-rapid
orbit: one problem is that the optimal prediction conditions cannot be satisfied by stacking one-day
observations [33,34], meaning that optimal arcs should be taken into consideration; the other problem
is that the error in the model of the initial state estimation cannot be further reduced as independent of
different satellites (ignoring the inter-satellite correlation). Hence, in this research, both the optimal
length of the arcs and inter-satellite correlation between BDS-2 and BDS-3 are considered for improving
the precision of BDS-2/BDS-3 combined ultra-rapid orbit determination.

The layout of this paper is as follows. First, the clock offset prediction method is investigated.
To obtain more accurate predicted clock offsets, a denoising method, inter-satellite correlation, and
the partial least squares method are all incorporated into the clock offsets prediction model. And
the predicted clock offsets are taken as constraints in the satellite orbit estimation process to reduce
the number of the unknown parameters and improve the accuracy of the parameter estimates of the
orbit. Then, a new strategy for the selection of optimal arc lengths in estimating the initial state of the
predicted orbit is proposed. Finally, the improved models and methods are evaluated using various
signal frequencies and products.

2. Materials and Methods

The satellite clock offset is an important parameter in the solution of orbit determination. Due
to the noise in GNSS observations and errors in the estimation model, the clock offset series are
contaminated. To minimize the effects of the noise in the observed clock series, the original clock
offset series can be extracted by a denoising technique, such as wavelet transformation or filtering
algorithms. However, due to the complex and time-consuming nature of the technique, it is not suitable
for ultra-rapid orbit determination. Instead, the Tikhonov regularization algorithm is proposed to
improve the pre-processing ability of the satellites’ clock offset series [37,38]. The extracted original
clock offset series can be expressed as the one presented in [27,32]:

mk(ti) = Sk(ti) + Dk(ti) + εk(ti) (1)

Sk(ti) = ak
0 + ak

1ti + ak
2t2

i (2)

Dk(ti) =
∑n

j=1
(A j sin(

2π
T

ti) + B j cos(
2π
T

ti)) (3)

where mk(ti) represents the clock offset series of the kth satellite at the epoch time ti; Sk(ti), Dk(ti) and
εk(ti) are the trend term, periodic term, and the residual term of the clock offset series mk(ti), respectively;
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a0, a1, and a2 are the polynomial coefficients of the clock offset; n is the number of periodic terms; A, B,
and T are the amplitudes of the sine and cosine functions and the clock offset period, respectively.

The modeling process of the satellite clock offsets series can be summarized as: (1) calculate the
polynomial coefficients of Sk(ti) by considering the inter-satellite correlation; (2) solve the periodic and
amplitudes of Dk(ti) by fast Fourier transform (FFT); (3) extract systemic variations of εk(ti) by the
partial least squares (PLS) combined with artificial neural network (ANN) algorithms.

2.1. Trend Term Modeling of the Clock Offset

Compared with BDS-2 satellites, BDS-3 satellites are equipped with more stable atomic clocks.
To fully exploit the advantages of BDS-3 satellites, this study proposes a new method for calculating
the inter-satellite correlation between BDS-2 and BDS-3 during the modeling process of the BDS clock
offset series. As a result, the performance of the prediction model of the BDS satellite clock offset is
improved. The specific data processing methods are described as follows.

According to Equation (1), the error equation of using a quadratic polynomial to model the clock
offset can be written as

Vk(ti) = [ 1 ti t2
i ]


ak

0
ak

1
ak

2

− Lk(ti) (4)

where Vk(ti) denotes the residual of the modeling clock offset Sk(ti) from a quadratic polynomial model
and the estimated clock offset Lk(ti) from the rapid satellite clock error products.

To improve the efficiency estimation, clock offsets of all satellites are estimated in one solution.
Let b be the number of all the satellites and s be the number of observation epochs. The matrix form of
Equation (4) is:

V
bs×1

= A
bs×3b

X
3b×1
− L

bs×1
P

bs×bs
(5)

Ai
b×3b

= diag[ A1
i A2

i · · · Ab
i ]

A1
i = A2

i = · · · = Ab
i =

[
1 ti t2

i

]
P

bs×bs
= diag[ P(t1) P(t2) · · · P(ts) ]

A
bs×3b

=
[
(A1)

T
· · · (Ai)

T
· · · (As)

T
]T

(6)

X
3b×1

=
[

a1
0 a1

1 a1
2 a2

0 a2
1 a2

2 · · · ab
0 ab

1 ab
2

]T
(7)

L
bs×1

=
[

L1(t1) L2(t1) · · · Lb(t1) · · · L1(ts) L2(ts) · · · Lb(ts)
]T

(8)

P
b×b

(ti) =


δ11 δ12 · · · δ1b
δ21 δ22 · · · δ2b

...
...

. . .
...

δb1 δb2 · · · δbb


−1

. (9)

In Equation (5), A represents the coefficient matrix, X represents the unknown parameter matrix,
and P represents the weight matrix respectively. In Equation (9), the diagonal elements δkk can be
calculated by δkk = STDk, which is the standard deviation of the fitting residuals for the kth satellite,
and for the non-diagonal elements, e.g., for the kth satellite and jth satellite,δkj =

∣∣∣rkj
∣∣∣ √δkk · δ j j is the

covariance between the kth and the jth satellites, in which rkj is the correlation coefficient between the
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two satellites of kth and the jth. rkj can be calculated by Equation (10), where mk denotes the mean of
the clock offset series:

rkj =

s∑
ti=1

(mk(ti) −mk(ti))(m j(ti) −m j(ti))√
s∑

ti=1
(mk(ti) −mk(ti))

2

√
s∑

ti=1
(m j(ti) −m j(ti))

2

. (10)

To further improve the accuracy of the prediction model, the weight matrix P(ti) can be
reconstructed as P(ti) using a time function, which indicates that the data near to the start of
the prediction should have higher weights:

P
j× j
(ti) =

1
(s− i + 1) · ∆t

P
j× j
(ti) (11)

where ∆t is the interval of samples, and its values are assigned to 30 s or 300 s in this study.
In Equation (11), P is calculated from all satellites of clock offsets series, which represents the fitting
precision of each satellite and inter-satellite correlation using a quadratic polynomial model.

2.2. Periodic Term Modeling of Clock Offset

After using a quadratic polynomial to model the clock offset series, the remaining values still
include the periodic term and the residuals term. For the estimation of periodic terms, the FFT
algorithm was utilized to determine the relevant parameters. In our previous study [32], three types of
BDS-2 clock offsets were modeled with two significant periodic terms for prediction, where the major
significant periods of GEO and IGSO clocks are approximately 24 h and 12 h, and MEO clocks are
approximately 12 h and 6 h, respectively. The periodic terms in BDS-2 are quite complicated due to
the fact that different types of observations are involved (i.e., B1I, B2I, B3I), so there is a need for an
optimized selection of periodic terms. To avoid over-fitting the satellite clock offset parameters, the
first two primary terms (the first and second periodic terms in one day) are chosen to model BDS-2
clock offsets, which is similar with [27]. For BDS-3 satellites, it is difficult to obtain a constant periodic
term for all satellites as the different qualities of clock offset series [39]. To improve the accuracy of
clock offset prediction models, three significant periodic terms (in one day) of BDS-3 satellites clock
offsets were chosen by FFT in this study.

To discuss the strategy for the selection of periodic terms, one-month (31 days, Day of Year (DOY)
60-90, 2019) of rapid clock products (using B1I and B3I observations) from the WHU GNSS Analysis
Centre is used. Eight BDS satellites (BDS-2: C06, C10, C11 and C14; BDS-3: C19, C20, C21, and C27)
are chosen as an example in Figure 1, in which the periodic terms beyond one day and the significant
periodic terms in one day (two and three for BDS-2 and BDS-3 respectively) and its corresponding
amplitudes for all periodic terms are listed in Table 1.

It should be noted that the selected periodic terms (two and three for BDS-2 and BDS-3 respectively)
are all in one day, while the other periodic terms (over one day and in one day) are ignored during the
modeling of the periodic term Dk(ti). In the following discussions, we will further extract the useful
components (e.g. over one-day and in one day periodic variations) from the residuals.
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Table 1. Period and amplitudes of eight BDS satellites clock offsets beyond one day and in one day.

Satellites Period (h)
beyond One Day Amplitude (ns) Period (h)

in One Day Amplitude (ns)

C06 31.30 0.04 24.00; 12.00 0.16; 0.14
C10 30.00 0.08 20.00; 12.00 0.19; 0.38
C11 27.69 0.03 12.85; 6.85 0.11; 0.10
C14 36.00 0.03 14.40; 12.85 0.14; 0.12
C19 27.69 0.05 17.56; 14.12; 6.85 0.20; 0.05; 0.03
C20 27.69 0.06 15.00; 13.85; 6.85 0.03; 0.25; 0.05
C21 27.69 0.06 20.00; 18.00; 12.85 0.03; 0.03; 0.23
C27 27.69 0.03 18.00; 6.85; 4.69 0.11; 0.06; 0.05

The model coefficients of periodic term Dk(ti) can be obtained by the above method and can be
input into Equation (1) to model and predict the clock offset series of BDS-2 and BDS-3. However, it
should be noted that many systematic variations (e.g., variations over one day and sub-daily periodic
variations) of the clock offset still are contained in the residuals after using the quadratic polynomial
and periodic functions to model the clock offset series. Thus, further modeling of the residual term
εk(ti) should be done to more accurately model the clock offset series.

2.3. Residual Term Modeling of the Clock Offset

To extract systemic variations of εk(ti), this study attempts to model the residuals using the PLS
combined with the ANN algorithm. In this study, the PLS regression method was adopted to exploit
the benefits of the multiple correlations between variables in the clock offsets residuals; ANN was
used to capture the nonlinear relationships in the clock offsets residuals. The specific procedure is
introduced below.

Let the residuals of a clock offset series be {Y(ti), i = 1, 2, . . . , s}, the multi-scale binary discrete
wavelet decomposition (WD) is performed, and db6 of dbN wavelet series is selected to decompose
the residuals first where the db6 denotes the WD with six orders. According to our extensive
experiments, 1–5 layers of decomposition can achieve the desired performance. The first step for
PLS is the normalization of the decomposed clock residuals, assuming one of the decomposed series
(one satellite with a 1–5 layer decomposed series) is divided into x0 = [x(t1), x(t2), · · · , x(tp)] and
y0 = [y(tp+1), y(tp+2), · · · , y(ts)], where p denotes a point between the inputs and output of the
PLS models.

In the PLS-improved clock prediction model, a PLS regression is used to extract the main
components f 1 and u1 in the above x0 and y0 series, respectively, depending on the residuals of the
different layers. The extracted main components are required to satisfy the following condition:

Var(f1)→ max
Var(u1)→ max
r(f1, u1)→ max

(12)

where Var and r are the variance and correlation operation, respectively. Let ξ1 and c1 be the first unit
directions for x0 and y0 respectively, then {

f1 = x0ξ1

u1 = y0c1
. (13)

Substituting Equation (12) into Equation (13) leads to the following optimization condition:
ξT

1 ξ1 = 1
cT

1 c1 = 1
maxCov(f1, u1) = max

√
Var(f1) ·Var(u1) · r(f1, u1)

. (14)
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In Equation (14), Cov is the covariance operation. Then, the target function is constructed as

f (ξ1, c1,λ1,λ2) = ξT
1 xT

0 y0c1 − λ1(ξ
T
1 ξ1 − 1) − λ2(cT

1 c1 − 1) (15)

Equation (15) can be further expressed as

ξT
1 xT

0 y0c1 = 2λ1 = 2λ2. (16)

Set
θ1 = 2λ1 = 2λ2 (17){

(xT
0 y0yT

0 x0)ξ1 = θ2
1ξ1

(yT
0 x0xT

0 y0)c1 = θ2
1c1

. (18)

According to Equations (17) and (18), it can be concluded that ξ1 is the eigenvector of xT
0 y0yT

0 x0,
corresponding to the maximum eigenvalue of θ2

1. The first main component of the residuals in the clock
offset series can be estimated using Equation (13). It is noted that the linear model is adopted to obtain
the main components. However, considering the fact that the residuals may have a nonlinear trend,
the function between f 1 and u1 is a nonlinear model. Therefore, an ANN function is first proposed to
construct the relationship for the main components (f 1, u1). ANN exhibits a strong nonlinear fitting
capability that can map complex nonlinear relationships, which demonstrate robustness and powerful
memory, nonlinear mapping, and self-learning capabilities [27,32]. In the ANN function, f 1 is the
input layer, u1 is the output layer, and the correlation between f 1 and u1 is through the hidden layers.
Therefore, a linear decomposition, with the main component x0 and a nonlinear decomposition with
the neural network of y0, is formed as{

x0 = f1ξ
T
1 + f2ξ

T
2 + · · ·+ fdξ

T
d + Ex

y0 = C(f1, f2, · · · , fd) + Fy
(19)

where Ex and Fy are the residuals of the model in Equation (19); C is a mapping function. Equation (19)
represents a nonlinear mapping model with d layers of inputs and outputs. The steps for obtaining the
second main component, (f 2, u2), can be summarized as follows. Based on the first component f 1 of
x0 and the neural network model, the corresponding maximally related main component u1 of y0 is
output; then, the residual matrix (x1,y1) of (x0, y0) is obtained based on (f 1, u1). Similarly, the second
main component, (f 2, u2), is extracted, in which, as a necessary condition, f 1 and u1 are orthogonal to
f 2 and u2, respectively. Thus, the condition function can be expressed as

f2 = x1ξ2

u2 = y1c2

f1 × f2 = 0
u1 × u2 = 0

(20)

Figure 2 shows a detailed skeleton of the data processing strategy of the BDS-2/BDS-3 satellite
clock offset prediction. The main steps include: (1) obtain BDS-2/BDS-3 rapid clock offset products and
pre-process these data to improve the quality of the basic data series; (2) model the basic data series by
a quadratic polynomial function; (3) model the remaining values of step (2) by some periodic functions;
(4) further model the residuals of step (3) by PLS and the ANN algorithm; (5) predict the satellite clock
offset series by using a combined model of (2), (3), and (4). In the ultra-rapid orbit estimation process,
the predicted clock offsets are taken as the priori values with the corresponding constraints to improve
the strength of the BDS orbit parameter estimation.
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2.4. Optimal Arc Length Selection for the BDS Ultra-Rapid Predicted Orbit

It should be noted that the predicted part of the orbit is obtained by extrapolation from the
observed part with the same initial state. According to published research, one-day observations
cannot result in an optimal solution for the predicted part of the orbit. Thus, the length of the arc
should be increased in the estimation of the initial orbit state. However, the model error will increase
accordingly, with the arc length increasing through the combination of two adjacent observed orbits
(rapid orbit of the previous day and ultra-rapid observed orbit of the current day). The optimal length
of the observed arc for the predicted orbit in the initial orbit solution should be investigated as a
priority for merging orbits shown in Figure 3. In this research, a strategy for the selection of an optimal
arc length based on the Akaike information criterion (AIC) [40] is proposed. Moreover, the correlation
between BDS-2 and BDS-3 is also considered in the estimation of the initial orbit state.

The AIC is closely related to an important concept in statistics—the Fisher likelihood theory. This
theory was initially used to estimate Kullback–Leibler information. It is used to express the loss of one
probability distribution or the relative values of information loss when using a model to represent
data [41]. Assuming that the distribution of an observation’s uncertainty is normal, the value of AIC is
defined by

AIC = n log(σ̂2) + 2k (21)

where n is the number of the observations, k is the number of the parameters to be estimated, and
σ̂ is the mean square error of the fitted residuals. On the right hand side of Equation (21), the first
and second terms denote the fitting performance and complexity of the model, respectively [42].
An optimal model is the one that results in the minimum AIC value. In this study, Equation (21) is
used to determine the optimal length of an arc in the estimation of the predicted initial orbit state.
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Figure 3. Merger of the two-day observed orbit for the estimation of the orbit’s initial states.

To improve the accuracy of the initial orbit state, the high-precision information of BDS-3 satellites
is also utilized in the orbit prediction by considering the inter-satellite correlation, which is similar
to the method of the clock offset prediction in Section 2. The details of orbit prediction are described
as follows.

Assume the orbit state at the ith epoch is

→

Xorb(ti) = ϕ(ti, t0) ·
→

X0 (22)

where
→

X0 is the initial orbit state vector andϕ(t,t0) is the state transition matrix, which is based on the
variational equations by the integrating with accelerations and coefficients of satellite orbit. ϕ(t,t0) can
be expressed as
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In Equation (23), t0 denotes the beginning epoch; r,
.
r, p represents the positions, velocities and

perturbations vectors, respectively, where the subscript of 0 denotes the corresponding initial states. I
is an identity matrix. Equation (23) can be obtained by numerical integration method. Thus, the orbit
fitting equations for estimating the initial state can be expressed as: vc2(ti) = ϕc2(ti, t0) ·

→

X
c2

0
−
→

X
c2

orb
(ti)

vc3(ti) = ϕc3(ti, t0) ·
→

X
c3

0
−
→

X
c3

orb
(ti)

(24)

In Equation (24), C2 and C3 denote the BDS-2 and BDS-3 satellites, respectively; ti and t0 are

the current and initial epochs respectively. It should be noted that
→

Xorb consists of both ultra-rapid
observed and the rapid orbits. The matrix form of Equation (24) can be expressed as

V(ti) = ϕ(ti, t0) ·
→

X0 −
→

Xorb(ti)P(ti). (25)

Similarly, the weight matrix, P, in Equation (25) is similar to Equation (9), in which δ is the residual
of the orbit fitting. Compared with traditional methods for the estimation of the initial orbit state,
the BDS-2/BDS-3 combined solution using the inter-satellite correlation can improve the estimation
of the parameters. However, the σ value in Equation (21) is calculated from Equation (24), and its
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determination should take the iteration process into consideration. The data processing strategy of
BDS-2/BDS-3 ultra-rapid orbit prediction is shown in Figure 4.
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3. Results

The ideas and methodologies proposed are tested using a one month (31 days, DOY 60-90, 2019)
observations and rapid products. The main investigation includes a clock offset prediction model,
an ultra-rapid orbit determination with the constraint of predicted clock offsets, and the optimal arc
length of the initial state estimation for the predicted orbit.

3.1. BDS Satellite Clock Offset Prediction

In ultra-rapid orbit determination, the predicted clock offsets based on the rapid clock products
of the previous day are taken as the constraints of clock parameters, so it is essential to acquire the
predicted clock offsets precisely. In this study, the denoising method coupled with inter-satellite
correlation and PLS is used to improve the accuracy of the predicted clock offset determination. Eight
BDS-2 satellites and 19 BDS-3 satellites are used in the clock offset prediction, and the three schemes
used for the test are:

Scheme 1: Based on the rapid clock offset products, a polynomial function plus periodic terms
are selected in the clock offset prediction model, while the inter-satellite correlation and denoising
algorithm are not considered.

Scheme 2: Similar to Scheme 1, the Tikhonov regularization algorithm and inter-satellite correlation
are used in the prediction models.

Scheme 3: Similar to Scheme 2, the PLS method is added into the prediction solution to reduce the
model residuals.

The rapid clock offset products in the three schemes are obtained from the rapid orbit determination,
in which raw observations from the B1I and B3I signals are used to construct the undifferenced
observation equations. The rapid clock offset is also taken as a reference for the accuracy assessment of
the predicted clock offset series. Moreover, the two times difference method is adopted in the analyses
of the clock offset accuracy. The accuracy is measured by the RMS of the differences between the
predicted results and the reference. As an example, Figure 5 shows the daily accuracy (i.e., the RMS of
all the epochs of a day) of the predicted clock offset obtained from the three schemes on DOY 60 for
each of the BDS-2/BDS-3 satellites. Table 2 lists the average daily accuracy of the clock offsets of all the
satellites shown in Figure 5 for a period of 31 days, as well as the corresponding improvements.
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schemes on DOY 60.

Table 2. The average daily accuracy of the clock offsets resulting from the three schemes and
corresponding improvements.

Schemes BDS-2 (ns) Improvement BDS-3 (ns) Improvement

Scheme 1 3.16 - 2.68 -
Scheme 2 2.64 16.5% 2.17 19.0%
Scheme 3 1.88 40.5% 1.98 26.1%

These results indicate that: (1) compared with traditional approaches, the denoising method
together with a consideration of inter-satellite correlation can improve accuracy up to 19.0%, which may
be limited by unmodeled residuals. (2) Scheme 3 shows the best performance with an improvement in
the prediction accuracy of 40.5% and 26.1% for the BDS-2 and BDS-3 satellites, respectively. The clock
offset prediction of BDS-3 satellite is easier than that of BDS-2 satellite, because the frequency of the
BDS-3 satellite clock is more stable than that of the BDS-2 satellite clock.

In addition, for an analysis of the model errors in the different schemes, the results of C14 and
C21 on DOY 60 are selected as examples to represent BDS-2 and BDS-3 respectively, see Figure 6 for
the residuals at each epoch (with a 5 min interval). It can be seen that Scheme 2 slightly improves the
model results of Scheme 1, while Scheme 3 significantly improves the model results. The primary
reasons for this result are that there are still many systemic variations in the residuals after modeling
the clock offset via polynomial and periodic functions. The systemic character information of these
residuals can be captured and modeled by PLS and the ANN algorithm. Therefore, the residuals of
Scheme 3 are much smaller than those of Schemes 1 and 2.
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To analyze the inter-satellite correlation, the correlation coefficients among all BDS satellites are
calculated and listed in Table 3. As shown in Table 3, the correlation values are between 0.49 and
0.64 (absolute values), which are well above the minimum recommended level of significance (i.e.,
0.50). It also is indicated that the inter-satellite correlation of BDS-2 and BDS-3 is stronger than that of
BDS-2 and BDS-3. The inter-satellite correlation information can be used to improve the accuracy of
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the clock offset estimation/prediction for BDS-2 due to the high-quality nature of the BDS-3 satellite
clocks. For example, BDS-2 can benefit from the combined estimation process.

Table 3. Correlation coefficients (average) between different satellites over one day (DOY 60, 2019).

Satellite Types BDS-2 BDS-3

BDS-2 0.52 0.64
BDS-3 0.64 0.49

Moreover, to analyze the differences between the model results obtained from the proposed
approaches (Scheme 3 and Scheme 2) and the traditional method (Scheme 1), the histograms for C14
and C21 and the above three schemes during a 31 day period are shown in Figure 7. It is suggested
that Scheme 3 can not only significantly improve the clock offset prediction and but also reduce the
model’s residuals.
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3.2. Ultra-Rapid Orbit Determination Based on Clock Offsets Constraint

To verify the proposed strategy (the precision of ultra-rapid orbit determination with the aid of
precise satellite clock offsets can be improved), a number of real BDS-2/BDS-3 data were collected
and tested. The distribution of the selected stations for our experiments is shown in Figure 8,
which consists of 18 international GNSS Monitoring and Assessment Service (iGMAS) stations and
9 Multi-GNSS EXperiment (MGEX) stations, as well as the B1I and B3I signals of BDS-3 satellites.
In orbit determination, un-differenced ionosphere-free code and a phase combination of B1I and
B3I observations were conducted. Moreover, the arc length is set to three-days, and a parameter
configuration similar to [10,13] is used. It is noted that the un-differenced and double-differenced
methods are two popular data processing strategies for orbit determination, and they each have their
own advantages and disadvantages. For example, the satellite clock offset parameters will be removed
and the data processing be simplified in a double-differenced mode (e.g., Bernese software). This is
beneficial to orbit determination if the satellite clock parameters cannot be precisely known. However,
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the correlation information of the satellite clock parameters is lost, because they are considered
unrelated in a double-differenced mode. In contrast, the satellite clock offset parameters are modeled
and estimated together with orbit parameters in the un-differenced mode (e.g., PANDA software).
This mode is helpful for orbit determination if the satellite clock parameters can be accurately obtained.
Otherwise, it will lead to a decrease in orbit determination precision if the precision of satellite clock
parameters is poor. Thus, un-differenced and double-differenced modes are equivalent if satellite clock
parameters can be precisely known and are temporally unrelated. The four test scenarios are designed
as follows:

Scenario 1: The broadcast clock information from navigation files is used in the orbit determination
of BDS-3 (B1I and B3I observations), in which a 5000 m accuracy of the clock offset is utilized as
a constraint.

Scenario 2: The rapid precise clock products from the WHU Analysis Centre are used in the orbit
determination of BDS3 (B1I and B3I observations), in which 10 m is utilized as a constraint.

Scenario 3: The new signals (B1C and B2a) are used, and the broadcast clocks from navigation files
are used in the orbit determination, in which a 5000 m accuracy of the clock error is used as a constraint.

Scenario 4: The new signals (B1C and B2a) are used, and the rapid precise clock products from
the WHU Analysis Centre are used for the orbit determination, in which a 10 m accuracy of the clock
error is used as a constraint.

In the experiment, the constraint of the clock offset parameter is taken as a condition equation
to estimate the orbit determination parameter. In this study, the clock accuracies of the precise clock
and broadcast clock are set as 10 m and 5000 m, respectively, which are referenced in [8,13]. Similarly,
experiments using 31 days (DOY 30–60, 2019) of data are conducted for the analyses of the orbit results
estimated from the use of the constraints on the clock parameters. The final products from the WHU
Analysis Centre are used as references for the validation of the test results. The results of C14 and C21
are chosen as examples for the differences between Scenario 1 and Scenario 2. Figure 9 shows their daily
accuracy, from which it can be seen that Scenario 2 (red) is slightly better on most days than Scenario 1
(black) for the two types of satellites. In Figure 9, the orbit determination results of C21 in DOY 71,
2019 were blank due to C21’s orbit maneuver during this day, which lead to a solution divergence.
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Figure 10 shows the orbit accuracy for all satellites (distinguished with BDS-2 and BDS-3 satellites)
on DOY 60. Table 4 lists the average daily accuracy of the BDS-2 and BDS-3 orbits resulting from
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Scenario 1 and Scenario 2, respectively, of all the satellites shown in Figure 10, for all 31 days, and their
corresponding improvements. One can see that the orbit obtained from the precise clocks is slightly
better than that from the broadcast clocks (6.7% and 3.6% for BDS-2 and BDS-3, respectively).
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(black) and Scenario 2 (red) on DOY 60.

Table 4. The average daily accuracy of the BDS rapid orbit resulting from two types of clocks and the
corresponding improvements.

Type of Clock BDS-2 (cm) Improvement BDS-3 (cm) Improvement

Broadcast 12.52 - 13.68 -
Precise 11.68 6.7% 13.19 3.6%

The clock offsets are also analyzed using the two times difference (referred to as the WHU final
products). The change in the accuracy of the clock offset is indicated fby the statistical results of
Scenario 1 and Scenario 2 shown in Figure 11 and Table 5, as Figures 9 and 10, and Table 4, respectively.
From the average daily accuracy of all the satellites and the 31 days, one can see that the accuracy
improvements of the BDS-2 and BDS-3 satellites are 48.4% and 12.5%, respectively.
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Figure 11. The daily clock offset accuracy of various satellites resulting from Scenario 1 (black) and
Scenario 2 (red) and the B1I and B3I observations during the 31 day period (upper panels) and on DOY
60 (bottom panels).

Table 5. The average daily accuracy of the BDS rapid clock offsets resulting from the two types of
clocks and the corresponding improvement.

Type of Clock BDS-2 (ns) Improvement BDS-3 (ns) Improvement

Broadcast 0.95 0.88
Precise 0.49 48.4% 0.77 12.5%

For Scenarios 3 and 4, due to the availability of limited numbers of stations for B1C and B2a
observations during the period of the experiments (only iGMAS stations had BDS-3 observations,
but with low integrity), and the BDS-2 orbit results were omitted in the WHU products. Figure 12
shows the BDS-3 orbit accuracy for two days (DOYs 67 and 78), as examples for a comparison of
the accuracy differences of the two test scenarios. One can see that Scenario 4 (precise clocks with
constraint conditions) outperforms Scenario 3 (a broadcast clock), which is consistent with the previous
conclusions from Scenarios 1 and 2. However, the accuracy (1D RMS) of the new signals’ orbit is poorer
than 40 cm, which is significantly lower than the ones from the B1I and B3I observations.
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of clock offsets, and from the B1C and B2a observations, on DOYs 67 (left) and 78 (right).

For the BDS-2/BDS-3 combined ultra-rapid orbit determination, the predicted clock offsets based
on the rapid clock products are also assessed using 31 days of experimental data. In the orbit
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determination, the same observations as the rapid orbit determination solutions are selected, in which
the arc length of the observations is reduced to one day. The procedure is the same as above. The
broadcast and the predicted clock offsets, along with the constraints on the clock parameters of 5000
m and 10 m, respectively, are input into the ultra-rapid orbit determination. The results of DOY 60,
selected as the examples, are shown in Figures 13 and 14 to show the differences resulting from the
two different strategies. Tables 6 and 7 show the average daily accuracy of the BDS-2 and BDS-3 orbits
and clock offsets, respectively, of all the satellites for 31 days, shown in Figures 13 and 14, respectively,
and the corresponding improvements.
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Figure 14. The daily accuracy of the clock offset of each satellite estimated from the broadcast and
predicted clocks on DOY 60.

Table 6. The average daily accuracy of the ultra-rapid orbit resulting from two types of clocks and the
corresponding improvement.

Type of Clock BDS-2 (cm) Improvement BDS-3 (cm) Improvement

Broadcast 32.6 - 28.8 -
Precise 29.6 9.2% 27.4 5.0%

Table 7. The daily average accuracy of the ultra-rapid clocks resulting from two types of clocks and the
corresponding improvement.

Type of Clock BDS-2 (ns) Improvement BDS-3 (ns) Improvement

Broadcast 0.83 - 1.02 -
Precise 0.81 2.4% 1.04 2.0%
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From the above results, it can be concluded that the use of constraints on the clock parameters can
improve the accuracy of the orbit and clock of the BDS products. However, due to the limited accuracy
of the predicted clock offsets, the improvements of the clock products are under 10%. This result needs
to be further investigated using more observations and more accurate rapid clock products.

3.3. The Ultra-Rapid Predicted Orbit from Improved Models

In this section, experimental results for the improved model of BDS ultra-rapid prediction are
verified. The AIC values and the inter-satellite correlation are considered in the estimation of the initial
orbit state. In the experiments, the predicted ultra-rapid orbits of the BDS-2/BDS-3 satellites for 21 days
are output with a one day arc length. It is noted that the rapid orbit of the previous day for each of the
experimental solutions needs to be prepared before an ultra-rapid orbit determination is performed.
In the accuracy analysis of the predicted orbit, again, the final products from the WHU Analysis Centre
are also used as the references for the validation of the experimental results.

First, the feasibility of the AIC values is tested with simulation experiments. To explain the
relationship between the AIC value and its corresponding predicted orbit accuracy, the average of the
daily RMS for all BDS satellites and the corresponding AIC value from DOY 60 are taken as an example.
Figure 15a shows the orbit accuracy variation with the AIC value, where 24 data samples selected are
shown for the DOY. The accuracy of the predicted orbit (1D RMS) presents a high-correlation with the
AIC value, which is consistent with the results of the C21 and C14 satellites orbits shown in Figure 15b.
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Figure 16 shows the C14 and C21 results for a period of 21 days, in which two days of results
(between 79 and 80) are excluded because of their lower accuracy. This figure indicates that the
accuracy of the predicted orbit has been significantly improved based on the AIC selection model in
the estimation of the initial state of the BDS’s predicted orbit.Remote Sens. 2019, 6, x FOR PEER REVIEW  19 of 23 
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Based on the ultra-rapid orbit determination, the observed part is estimated by imposing
constraints on the clock parameters, i.e., the clock offsets obtained from the solution of high-precision
prediction are treated as constraints in the estimation of the orbit’s initial state for the observed part.
Moreover, the observed part will be taken as the observations in estimating the orbit’s initial state for
the predicted part. Identically, the 21 day predicted orbits are compared against the final products
provided from the WHU Analysis Centre. For more details, the accuracy of the original predicted
orbit (the initial state is estimated from a one day observed ultra-rapid orbit), the AIC selected orbit
(minimum of the AIC values), and the sub-optimal selected orbit (before and after the minimum of
AIC values) are presented in Table 8.

Table 8. Accuracy of the BDS’ predicted orbit and improvement.

Schemes BDS Orbit (cm) Improvement

Original 349 -
Before three hours 71 79.6%
Before two hours 66 81.1%
Before one hour 63 81.9%

Minimum 62 82.2%
After one hour 62 82.2%

After two hours 63 81.9%
After three hours 63 81.9%

It can be found that the accuracy of the BDS predicted orbits is significantly improved after
considering the rapid orbit in the estimation of the initial orbit state. The optimal arc length can be
determined by the selection of the AIC values, from which the improvement can reach 82.2%, compared
with the original predicted orbit. However, the accuracy of the BDS predicted orbit is still worse than
60 cm, which may be further improved by the use of some more accurate perturbation models, attitude
models, etc.

4. Discussion

In this paper, to improve the accuracy of BDS-2/BDS-3 combined ultra-rapid orbit products, the
predicted clock offsets based on the rapid clock products of the previous day are taken as constraints of
clock parameters in ultra-rapid orbit determination. According to the prediction strategy, the Tikhonov
regularization algorithm, inter-satellite correlation, and the PLS methods are considered to optimize
the prediction model. Compared with traditional approaches, the denoising method together with
consideration of inter-satellite correlation can improve accuracy up to 19.0%, which may be limited by
unmodeled residuals. Due to the more stable frequency of the satellites’ onboard clocks, the accuracy
of BDS-3 is better than that of BDS-2. Based on the BDS-2/BDS-3 satellites’ combined rapid orbit
determination, four further scenarios for testing various frequencies and clock offset products are
selected. From the average daily accuracy of all the satellites with 31 days, one can see that the accuracy
improvements of the BDS-2 and BDS-3 satellites are 48.4% and 12.5%, respectively. Moreover, the
accuracy (1D RMS) of the new signals’ orbit is poorer than 40 cm, which is significantly lower than
the ones from B1I and B3I observations. However, due to the limited accuracy of the predicted clock
offsets, the improvements of the clock products are under 10%, which needs to be further investigated
using more observations and more accurate rapid clock products.

For the predicted part of the ultra-rapid orbit, it is indicated that one-day arc length of the
observations could not result in optimal results for the initial orbit states. Thus, the rapid orbit obtained
from the previous day is used as observations in the observed part of the ultra-rapid orbit to estimate
the orbit’s initial states. Moreover, to select the optimal length of the arc, the AIC values are proposed
to be used in the new strategy. The AIC values and the inter-satellite correlation are considered in
the estimation of the orbit’s initial state. The accuracy of the predicted orbit (1D RMS) presents a
high-correlation with the AIC value, which is consistent with the results of the C21 and C14 satellites
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orbits shown in Figure 15b. This result indicates that the accuracy of the predicted orbit has been
significantly improved based on the AIC selection model in the estimation of the initial state of the
predicted BDS orbit.

It is noted that the orbit accuracies that resulted from the improved models are still not as desirable
as they should be (i.e., worse than 27 cm and 60 cm for the observed and predicted orbit parts,
respectively). Future work will focus on the following investigations: (1) the accuracy of the predicted
clock offsets may be improved by rapid clock products and predicted models; (2) models such as
perturbation models and attitude models of BDS satellites may need to be refined with larger data sets;
(3) highly precise BDS-3 satellite information needs to be further exploited to determine the best use.

5. Conclusions

GNSS satellite ultra-rapid orbits play a critical role in the performance of GNSS services, especially
for Chinese BDS due to its limited number of observations and the uneven distribution of the tracking
stations. It is challenging to achieve the same accuracy as GPS. In this research, new approaches for
better orbit solutions are proposed to improve BDS ultra-rapid products.

First, to improve the accuracy of the parameter estimates in ultra-rapid orbit determination,
the BDS-predicted clock offsets are used as constraints. The traditional clock prediction models are
then modified for an improved prediction of the BDS-2/BDS-3 combined clock offsets. The Tikhonov
regularization based denoising method inter-satellite correlation, and the PLS method are investigated
to improve the accuracy of the predicted BDS-2/BDS-3 combined clock offset. Compared with the
traditional method, our results show that the improvements to the predicted clock offsets are 40.5%
and 26.1% for the BDS-2 and BDS-3 satellites, respectively.

Second, experimental results for the constraints imposed on clock parameters in orbit determination
have showed that: Rapid orbit accuracy is improved with 6.7% and 3.6% for BDS-2 and BDS-3 satellites,
respectively, and the improvements to the clock offsets can be up to 48.4% and 12.5%, respectively.
Moreover, by using a constraint on the predicted clock offsets, the observed BDS-2 and BDS-3 ultra-rapid
orbits were improved 9.2% and 5.0%, respectively, while their clock offsets were improved by 2.4%
and 2.0%. In general, minor improvements to the ultra-rapid observed orbit were made by using the
constraints of the predicted BDS-2/BDS-3 satellites’ clock offsets.

The experimental results showed that the AIC values presented a high correlation with the accuracy
of the predicted orbit. Moreover, the AIC selection strategy significantly improved the accuracy of the
predicted orbit, compared with the traditional method. When the clock offset constraints were applied
in ultra-rapid orbit determination and the use of the AIC value selection method, the BDS’s predicted
orbits were improved by 82.2%, compared to the traditional strategy. These results suggest that the
improved models can enhance BDS-2/BDS-3 combined satellites’ ultra-rapid orbit products.
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