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Abstract: Multi-temporal analysis of census small-area microdata is hampered by the fact that census
tract shapes do not often coincide between census exercises. Dasymetric mapping techniques provide
a workaround that is nonetheless highly dependent on the quality of ancillary data. The objectives of
this work are to: (1) Compare the use of three spatial techniques for the estimation of population
according to census tracts: Areal interpolation and dasymetric mapping using control data—building
block area (2D) and volume (3D); (2) demonstrate the potential of unmanned aerial vehicle (UAV)
technology for the acquisition of control data; (3) perform a sensitivity analysis using Monte Carlo
simulations showing the effect of changes in building block volume (3D information) in population
estimates. The control data were extracted by a (semi)-automatic solution—3DEBP (3D extraction
building parameters) developed using free open source software (FOSS) tools. The results highlight
the relevance of 3D for the dasymetric mapping exercise, especially if the variations in height between
building blocks are significant. Using low-cost UAV backed systems with a FOSS-only computing
framework also proved to be a competent solution with a large scope of potential applications.

Keywords: building parameters; 3D point cloud; free open source software; Monte Carlo
simulations; census

1. Introduction

In the urban planning of small areas, their characterization and analysis precedes the drafting of
intervention proposals. The aforementioned urban analysis requires updated information, both for the
spatial distribution of the population and for residential buildings. This is a common practice of urban
planners and urbanists. For this characterization and analysis, census data are used. These census data
are only useful for urban planning if they have a large spatial disaggregation. Therefore, they have to
be collected by urban area units of a dimension that enables large-scale urban planning (census tracts).
However, the geometry of these census tracts has been found to change between two censuses, either
by spatial aggregation or by spatial disaggregation. This aggregation or spatial disintegration occurs
especially when new structures are built or when urban densification processes occur. Now, these tract
boundary changes imply that the population has to be recalculated at time ty so we can compare it
with time ty, ..., ty. After recalculating the population, urban planners and urbanists can perceive
the evolution of the population in these urban areas. This evolution of the population is particularly
useful to study enclosures, lost spaces, public spaces, proximity, contiguity and urban density [1].
Thus, in this context, dasymetric mapping using different geometrical schemes and different types of
information becomes useful [2—4].

The use of different geometrical schemes (zones) to aggregate geographical data into polygons has
long been recognized as problematic [5,6]. There are issues related to the assumption of stationarity
inside each spatial unit; this is commonly known as an ecological fallacy [7]. Related but not the
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same is that different aggregation geometries result in the well-documented modifiable areal unit
problem—MAUP [8], which hampers the multi-temporality of multivariate analysis. General purpose
solutions involve the use of dasymetric mapping techniques, in which data is re-allocated and
aggregated according to a common geometry [5].

Spatial interpolation techniques, in particular dasymetric mapping, allow the re-allocation of areal
data from source to target zones/geometries. In the present work, the terms “geometrical schemes”
or simply “geometry (or geometries)” are used instead of “zones”, “areas”, “regions” or simply
“polygons”. Although they are considered more general, it must be clear that the object of this work is
only data aggregated into polygons. The efficiency of a dasymetric mapping exercise strongly depends
on the quality of the ancillary (or control) data, which allows you to drop the intra-regional isotropy
assumption, in other words, spatial variation of the variable of interest is not assumed to follow a
homogeneous distribution within each spatial unit. Examples of ancillary or control datasets are
land-use patterns or building footprints. Studies that use different methodologies may be grouped
following the classification used in [6]. Areal interpolation exercises may take into account one (or
more) of the following spatial attributes: Form, structure and function. The first takes into account the
scale and shape of the source and target geometries; the second—structure—is related to local variation
according to some homogeneous geographical layer (e.g., building footprints); finally, function allows
the stratification of ancillary data considering a certain attribute (e.g., distinction between residential
and commercial buildings).

The dasymetric mapping is essential for the multi-temporal analysis of census datasets, when
the shapes of the census tracts do not coincide [9]. The application of dasymetric mapping for the
estimation of population size can be improved by using ancillary 2D or 3D data related to the buildings.
Currently the acquisition of 2D/3D data from census areas is easier to obtain and it is faster and cheaper
than using classical topography and photogrammetry surveying methods. In this work, the 2D/3D
data obtained from a low-cost technology allowed us to look at the structure of census tracts.

Advances in digital photogrammetry, airborne sensor systems (imaging or laser) and computer
vision have turned the acquisition of 2D/3D geographical data into a more time- and cost-effective
process, based on a high level of automation. Furthermore, the development of unmanned aerial
vehicles (UAV) systems has enabled the production of photogrammetric survey data with relative
ease [10,11].

Generically, a UAV system is a low-cost user-friendly technology, which offers great potential
and support in various applications [12], such as 3D building modeling for urban and spatial
planning [13,14], particularly in areas where no other source of volumetric information exists or when
it does exist it is not updated. This technology can also enable the fast acquisition of 2D/3D data, with
the positional accuracy of centimeters required for the estimation of building parameters [13].

The two major types of UAV aircrafts are fixed-wings and multi-rotors. Fixed-wing UAVs are
more stable than multi-rotors [15], however they require a larger take-off and landing area. On the
other hand, they are more suited to acquire urban objects for modeling purposes than the other type
of UAVs. In this work, a fixed-wing system—Swinglet CAM—produced by SenseFly was used for
the acquisition of a 3D point cloud over the study area. This is one of the most lightweight systems
(weighing around 500 g), which enables the performance of a fast survey at low altitude [16].

A UAV system integrates a miniaturized direct georeferencing system [17] and a small sensor (RGB,
CIR, etc.), which together allow the acquisition of georeferenced image pairs. The direct georeferencing
system allows a “real-time georeferencing” [18] through a positioning system based on GNSS (global
navigation satellite systems) and an inertial measurement unit (IMU). The GNSS provides the position
of the laser sensor (Xg, Yo, Zg) based on one or more GNSS base stations and the IMU provides the
sensor’s attitude and heading angles (roll around x-axis, pitch around y-axis and yaw around z-axis).
The weakness of this technology is its flight autonomy (battery life is usually 30 min), thus it is used
only for small areas.
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Furthermore, the advances in the development of robust computational algorithms have allowed
the production of high-density 3D point clouds with dozens of points per square meter from a dense
image matching of multiple image pairs [19]. This processing of image pairs is a combination of
computer vision and photogrammetric techniques [20], which comprise the image matching of image
pairs and the external orientation based on the adjustment of the six parameters (X, Yo, Zy, roll, pitch,
yaw) obtained from direct georeferencing. In general, a high-density 3D point cloud is obtained from
high-resolution images with very high forward (along the flight direction) and lateral (between flight
lines) overlap of about 90% and 60%, respectively.

The use of a large volume of data as a 3D point cloud for the (semi)-automatic extraction of
building parameters requires the development of robust methodologies that need to be optimized or
updated in order to allow different study-areas to be used. The use of 3D point clouds in the extraction
of building parameters has been demonstrated by [13,14]. 3D data extracted from satellite imagery [21]
and LiDAR [22] have also already been used as auxiliary information in dasymetric exercises.

This work estimates population size in 2001 according to the 2011 census tracts for a residential
building area of interest. Data from the 2001 census is re-allocated according to the 2011 census
tracts spatial aggregation scheme using three different techniques: (i) Taking into account the area of
each census tract, and assuming intra-regional stationarity, data is interpolated from source to target
geometries; (ii) using building block footprints as control data, the isotropy assumption is dropped and
a dasymetric exercise is performed; and (iii) 3D data (height and volume) of building blocks is used to
bring the exercise closer to reality. The area, height and volume of building blocks are extracted from
the UAV imagery using the 3DEBP (3D extraction building parameters) methodology [23]. This work
is innovative in the use of rough point cloud datasets to extract volumetric information as control
data in a dasymetric mapping exercise. Primary data is obtained using low-cost UAV technologies.
Furthermore, for this purpose, a methodology was developed using free open source software (FOSS)
tools (excluding the acquisition of a 3D point cloud), which facilitate reproduction of the results,
increases accountability, and reduces costs. The potential use of the same methodology with much
larger datasets enables the large-scale computation of multi-temporal social-economic datasets.

Finally, in order to test the effect of variations in building volume, a sensitivity analysis was
performed, allowing building block height to vary in existing buildings and the effect of taking into
account missing elements (e.g., new buildings). Monte Carlo results demonstrate that the data quality
of ancillary data is of paramount importance.

During this research, every software tool used for the development of methodology, described
below, is FOSS [24] and the geo-demographic data used are freely available on the web [25]. These two
elements permit reproducibility and follow recent trends towards a greater use of FOSS tools and free
data dissemination [26].

2. Data and Methodology

The re-allocation of geographical data that characterize or are aggregated into areas (polygons)
involves the creation of some sort of weighting scheme that can carry a proportion of the variable
of interest from source to target spatial entities. For variable X, which is geographically distributed
according to a certain source spatial scheme, its values are given by the set X5 = {X51/ Xs,,., Xsn}~

The values of the same variable, according to the target scheme, are given by X1 = {XTl, X1,,.., X1,, }
Each value of X aggregated in T spatial units is given by the expression:

k
X, = Z]. w;Xs;, 1)

where k is the subset of n whose intersection with T; is not empty and w is the proportion of X;, which
is to be allocated to i.

In the case of two polygons, one from the source (S) and the other from the target geographical
scheme (T), only the proportion of S, defined by S N T, is going to be allocated to T. The re-allocation
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exercise, as mentioned, may be performed simply according to the area/size of each intersecting zone
or using control datasets. The use of control datasets means that S is allocated to T taking into account
the proportion of the weighting scheme based on 2D information (e.g., area of residential buildings) or
3D information (e.g., building volume).

2.1. Study-Area and Data

The study-area corresponds to a small neighborhood in the outskirts of Lisbon, with an extension
of 150 m wide North to South and 600 m long East to West (Figure 1). It contains seven residential
building blocks with tiled roofs, heterogeneous shapes and small differences in their overall height—the
number of stories varies between four and six. This is a residential building area of interest containing
a sample of buildings with the usual shape and design in the Lisbon metropolitan area. Therefore,
this study-area contains representative residential buildings for the case of dasymetric mapping.
The characteristics of the chosen neighborhood enabled the distinction of three types of building blocks
(Figure 1): a. Regular (Zone A), b. irregular (Zone B) and c. building block islands (Zone C).
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Figure 1. Study area with census tracts and building footprints.

The objective was to estimate the population in 2001 according to the 2011 geometries (Figure 2),
so the areal interpolation and dasymetric mapping exercises were used as source geometry (zones)
census tracts (S) from 2001 and as target geometry census tracts (T) from 2011. In Portugal, census tract
geometries are known as the Geographic Base for Information Referencing—BGRI (Figure 2).

For the analysis of results, geographical zones were classified from source and target schemes,
as illustrated in Figure 2, according to the three zones A, B and C (Figure 1).
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Figure 2. Census tracts: Source (Geographic Base for Information Referencing—BGRI 2001) and target
(BGRI 2011).
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The re-allocation of 2001 census to the 2011 census tract shapes using control data (residential
building block area and volume) required the acquisition of geographical data. These data were
obtained from the processing of a UAV point cloud.

At the end of the summer of 2012, a UAV flight was performed on this residential area with
a Swinglet CAM. This is one of the most lightweight systems, which enables a fast survey at low
altitude over small urban areas without any human intervention during the flight. The study area was
covered by 85 stereo aerial images (3000 by 4000 pixels each image). These aerial images were acquired
(Figure 3) with a higher overlapping between them, which is about 80% along flight and 60% side
overlap. The flight height average (above ground level) was 100 m over the study area, providing a
ground sample distance (cm/pixel) of about 6 cm for imagery.

The UAYV point cloud was obtained by an automatic processing workflow implemented in PIX4D.
The georeferencing of every stereo pair was refined through the measuring of eight ground control
points for every image where they appeared in order to obtain a more accurate point cloud [27]. Next,
the 3D point cloud was automatically obtained through the multi-stereo image matching processing,
which allows you to estimate a set of 3D points from the correlation between stereo pair pixels.

The result was more than one million points of the 3D point cloud, an average of around 11 points
per square meter, which means that the average distance between points is about 30 cm.

Figure 3. Trajectory flight lines performed by Swinglet CAM.

Furthermore, the reference dataset obtained through classical photogrammetric restitution
was used to benchmark area and height building parameters extracted from UAV point cloud.
These reference datasets were 2D/3D accurate vector data (at a scale of 1:2000): Building footprints and
elevations of each building (roof and terrain), produced between 2010 and 2011.

In addition, working with this small urban area (containing distinct shapes in terms of building
footprints) was important for: (a) The development of a methodology that is independent from any
performance tools; and (b) the study of the performance of a sensitivity analysis with great control
over the effect of changing parameters.

2.2. Methodology

In order to evaluate the added value of working with volumetric data, three dasymetric mapping
exercises were performed using different methodologies (Figure 4). The first assumed stationarity, with
a homogeneous distribution of the variable of interest within each zone (census tracts); population
data was re-allocated (without control data) according to the area (size) of each small area resulting
from the intersection of source and target schemes. The second exercise used as ancillary data (or
control data) the building block footprints extracted from the UAV point cloud, which define the area
of a building block. In the final exercise, 3D information—building block volume—was used as control
data, which attempts to approximate reality as the level of abstraction is reduced. As an example,
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consider one 2001 census tract (source dataset), which is divided into two in 2011 (Target dataset).
Following the flowchart presented in Figure 4, if the 2D footprint is considered as ancillary data to
compute re-allocation weights, then w; = 0.25 and wp = 0.75. However the correct weights would be
0.5 for both since the volume of both blocks is the same.

T
Without Control i |
Data I
Census Tracts
- (Source)
appine e Building Block Footprint

: - ‘ : 25% | 75%
=2

Census Tracts
2011 (Target)

Figure 4. Summary flowchart.

The following two subsections will discuss the methodology used to extract the 3D dataset used
as control data in the dasymetric exercise, and a Monte Carlo simulation used to further explore how
sensitive population estimates from the dasymetric exercise are to changes in volumetric information.

2.2.1. Control Data

The (semi)-automatic methodology developed to obtain the control data (Figure 5)—building
block area and volume [13,23]—was divided into three distinct steps: (i) Point cloud data was filtered
using a clustering method in order to select the set of elevation points that represent the building blocks
in order to estimate the area of each block; (ii) the elevation points of terrain and eave of the building
blocks were selected in order to obtain the estimated height of each building block; (iii) building block
volumes were calculated using both estimated area and height.

This (semi)-automatic methodology—3DEBP—was implemented by using FOSS tools [23].
It included a set of hierarchical scripts for each step described below (Figure 5), which were proposed
in R language, GRASS GIS and PostgreSQL/PostGIS, respectively.

1
Filtering the 3D Point Cloud Building Block Footprint

CLARA
Clustering Large
Applications (Z variable)

. _ Building Block Boundary
Clustering Building Blocks
3 Building Block Volume [BBV]

it 1 "y Ad OSE £ H'H Building Block Height

2 w e SR R Building Block Area
e L = > =l electing Roof Building Value
‘ e ] d > / Points contained within

TR - J 1m of boundary roof

The clusters are represented by each color

I

Concave Hull of
Building Block Clusters

Mean Value of Elevation Multiplying BBV

Eave roof.

Selecting Terrain Points Building Block Height
‘ within 2m distance of (Mean value of each subset of points)

one side of boundary roof

Mean Value of Elevation
Main Steps of Methodology VY, Elilefe] Output data Ground

Figure 5. Methodological approach to building block volume extraction—3DEBP—based on a 3D
Point Cloud.




Remote Sens. 2019, 11, 1716 7 of 14

The filtering of the UAV point cloud was performed using the clustering large applications (CLARA)
algorithm [28]. CLARA is a partitioning method based on the partition of data into several sub-groups
(k clusters) around k representative values (k-medoids) that are centrally located. This clustering is
suitable for large datasets as is the case of 3D point clouds. The point cloud data was divided into three
areas according to urban design, topography and building block types. Clustering was performed
for each of these areas by using the elevation variable (z). The 3D points contained in each area were
clustered into k sub-groups, which allowed us to isolate each block. The evaluation of clustering results
was based on a silhouette plot analysis [29]. The implementation of the CLARA algorithm within
the CLUSTER library [30] was used to obtain the clusters and silhouette plots. The latter allowed
the evaluation of the clustering quality based on intra-group homogeneity and average dissimilarity.
At the end of this process, the k-clusters that better represented each building block were selected
(Figure 5): One cluster for area A; two clusters for area B and three clusters for area C. Next, using
a concave hull algorithm implemented in GRASS [31], polygon geometries were created from the
previously selected clusters. These polygons representing the building block footprints (Figures 5
and 6) allowed us to calculate the total block area.

In order to estimate an average building block height, a set of spatial proximity functions were
applied to the building block clusters [23] in order to: (i) Select sets of UAV points (r) that best define the
eave of each building block (Figure 6) inside a one meter buffer from the block’s rooftop (concave-hull
polygon), according to building block roof shape. This buffer distance is enough to remove the points
that did not belong to the roof. The selection of points from corresponding clusters for each area can
be represented by Rp, = {r € A :r C Eave block Roof i}, where i is the block i =1,2 and A is area; and
(ii) select ground points (g) from the front side of the building block ground level located (Figure 6)
within a two-meter buffer from the building block’s rooftop (concave-hull polygon), according to
the characteristics of the building’s surroundings (Figure 6). These ground points in area A can be
represented by Gp, = {g € A : ¢ C Block Base;}, where i is the block i = 1,2.

Building Block Height

Building Rooftop Points (R) Ground Points (G)

Building ® Building rooftop * Building rooftop Ground reference points * Ground points from UAV
Reference points UAV points

Average Building Block Height=R - G

Figure 6. Points selected (eave roof and ground) for each block in area A.

For each block, the mean elevation at ground level and of the block eaves was calculated in order
to take into account the existence of extreme values. The difference between both statistics for each
building block allowed us to estimate the mean building block height; hence BBH; = Rp, — Gg,, where i
is the block number. Lastly, the volume of each building block was computed using data from the two
previous stages, by multiplying the estimated area and building block height.

These steps to estimate building block height and volume were performed by a set of scripts
developed by the authors using PostgreSQL/PostGIS, which are part of 3SDEBP.
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2.2.2. Sensitivity Analysis

In order to test how sensitive the results from the dasymetric exercise using 3D control data are
to changes in building volume or the addition of a new building block, eight distinct hypothetical
scenarios were simulated.

If we assume population is a random variable P then p; represents the estimated population for
area i, while P; represents the expected value from averaging out all individual estimations over m
runs of the algorithm (Equation (2)). Hence, we allow building volume (V) to change:

Pi(py, ... pm) = f(V). @

lim f(V) =} P. ©)

Population estimates P; are taken randomly as the height (hence the volume) of a chosen building
is allowed to vary between the initial state, and infinity (Equation (3)). If we recall that volumetric
information is the ancillary dataset that determines the result of the dasymetric exercise, increasing the
volume of one building or adding a new one acts as a pulling factor, causing the population to increase
in that particular area. The upper limit for population estimates is determined by the total observed
population. Therefore, as the volume increases, the probability for the population to be concentrated
in that particular area increases until it converges to the upper limit. The faster the rate of convergence,
the more sensitive the algorithm is in respect to a particular scenario.

The dasymetric mapping exercise was performed repeatedly using a Monte Carlo simulation with
building block height varying according to a set of conditions, which included simulating the effect
of adding new building blocks [32]. Eight tests were performed, covering a set of distinct possible
conditions/settings, as described in Figure 7.

All settings refer to situations where new buildings of varying height are added to one or two
particular source zones, in this case zones SB1 and SB2 (refer back to Figure 2). This is true with the
exception of condition 1, where population estimations were subject to varying height in one existing
building block.

The union of SB1 and part of SB2 results in TB1 area. SB2 was itself broken into three areas—TBl1,
TB2 and TB3. To simplify, these zones were generalized according to the following classification
scheme (Figure 7): SB1 and TB1 — 6;; SB2 and TB1 — &;; SB2, TB2 and TB3 — ¢. More precisely, eight
tests were performed for these building blocks (Figure 7), the first test simply considered the existing
building block. The conditions between test 2 and test 8 were based on the addition of new buildings
to areas 81, 6 or both.

Figure 7. Sensitivity analysis performed using blocks (V1, V2, V3 and V4) changing block height.



Remote Sens. 2019, 11, 1716 9of 14

The eight tests represented in Figure 7 include all possible changes between two intercepting areas,
hence they provide a complete overview of possible changes in the overall results of the dasymetric
exercise using volume as the ancillary variable.

The Monte Carlo analysis was performed to evaluate the effect of these conditions for the
estimation of the population [32]. More precisely, maintaining the total number of residents, these
were re-distributed according to an artificial increase in a particular building block or the creation of a
new one, which changes the control dataset used in the dasymetric exercise.

3. Results and Discussion

In the dasymetric mapping exercise with control data, area and volume building block parameters
from the UAV point cloud were estimated. Moreover, the error associated with each parameter was
calculated, using as benchmark accurate vector data acquired by photogrammetric restitution, which
included building footprint or building boundary on the ground (Figure 8) and elevations (roof and
terrain) for each building (Figure 6).

Table 1 shows the area and volume of each of the building blocks extracted from the UAV point
cloud and the associated relative error—percentage of error represents the quality of each parameter.
The building block area extracted from the UAV point cloud was overestimated for every building
block, because the building blocks extracted include some elements at the rooftop, which were not
included in the photogrammetric restitution—used for benchmarking, such as the top of outdoor
balconies on the top floor. Building blocks in area B had the best results, with a relative error of 4.1%
and 5.8%. The highest error was found in building block 7 (Figure 8), because the variations of building
heights inside this block are higher.

Table 1. Building block parameters (area, height and volume) estimated from unmanned aerial vehicle
(UAV) and the error obtained in this estimation.

Ar Building Area Height Volume Error Error Error
e Block (m?) (m) (m®  Area(%) Height(m) Volume (%)

A 1 2473.92 18.65 46,139 10.4 -0.13 9.7
2 2410.50 15.35 37,001 6.3 —-0.52 2.8
3 3206.12 14.51 46,521 6.1 -0.73 1.0

B 4 2665.80 15.03 40,067 5.8 -0.84 0.1
5 2614.84 13.78 36,033 41 —-0.31 1.8

C 6 3175.61 14.28 45,348 6.6 -0.31 4.4
7 3175.02 15.75 50,007 19.3 +0.16 20.5

The magnitude of absolute building block height errors (less than one meter) demonstrates that
the (semi)-automatic methodology developed allows us to extract relevant and useful information
from a UAV point cloud. Building block heights (except block 7) were underestimated when using the
UAV dataset, with the absolute range of errors varying between 0.13 m and 0.84 m. If the maximum
value of block height error were removed from the sample, it would imply a reduction to 0.36 m of
average absolute height errors.

As a consequence of these results, the main source of error associated with the estimated volume
is the estimated block area (Figure 8). Building block 7 had the highest relative error (about 21%),
because the area error obtained for this block was high (Table 1). Building block volumes estimated in
area B achieved the best results, with values ranging between 0.1% and 1.8%. The 3D visualization of
block volumes (Figure 8) obtained from UAV point cloud that were generated using extruded height
from the block footprint estimated have a 3D shape that is very close to the actual reference volumes,
except the south facade of block 6.
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Comparison between Blocks from
UAV and Reference Blocks

Figure 8. 2D/3D comparison between reference data and data estimated from UAV: (a) Building block
footprints (red: Reference dataset; black: extracted from UAV dataset); (b) 3D block model obtained
from reference dataset; (c) 3D block model obtained from UAV data and (d) combination of the two 3D
models represented in b, c).

Additionally, it is important to highlight that the mean error for the estimated building block
volume when using accurate area value (from the reference dataset) was reduced from 5.8% to 2.8%.

After obtaining the control data from the point cloud dataset, population for 2001, distributed
according to the 2011 geometrical zones, was estimated using the methodologies described—(i) areal
interpolation, (ii) dasymetric mapping using 2D and (iii) dasymetric mapping using 3D control data.
Table 2 shows the final results. One final column shows population estimates obtained from building
point datasets. This latter dataset contains the actual number of residents per building and can therefore
be used for benchmarking.

Table 2. Estimated population in 2001 according to 2011 census tracts (refer to Figure 2).

Control Data

Zones Area Interpolation 2D 3D Benchmark !

TA1 4 0 0 0

TA2 14 0 0 0

TB1 374 379 380 367

TB2 327 342 356 348

TB3 312 336 321 343

TC1 486 498 498 498

TC2 350 384 384 384
Absolute Deviation 17.53 3.66 6.32 0

! Estimated from dwellings.

As expected, the areal interpolation results are those with the highest absolute deviation, which
proves the importance of using control datasets and highlights the problems of assuming stationarity;
lower performance in this case is justified since distribution within zones is assumed to be homogeneous.
When the stationarity assumption is dropped, population estimates approximate the benchmark values.
Note that only three zones (TB1, TB2, TB3) are affected by the changing conditions—those whose
boundaries intersect existing building blocks. Moreover, the absolute deviation is lower when using
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2D data than when compared with the 3D control data. Yet, given the small size of the dataset,
differences are not significant. Taking into account the fact that actual building heights do not vary
greatly within the study-area, large differences when adding 3D data would be probably derived from
bad estimation parameters.

After comparing three methods of interpolating demographic data, a final exercise attempted to
quantify the effect of overall UAV data accuracy—including omission and inclusion errors. Inclusion
errors are mostly semantic (e.g., non-residential buildings to estimate population), whilst omission
errors are mostly producer and processing errors (blocks filtered out during processing). As previously
described, this exercise consisted in simulating a sequential increase in volume of one building and
assessing the effect of estimated population using the same dasymetric methodology with 3D control data.

Figure 9 shows the results from running a number of Monte Carlo simulations according to
conditions/rules one to eight (Figure 7). In these tests, population converges to a maximum value as a
result of changing conditions, hence variations in the control datasets used in the dasymetric exercise.
In other words, convergence represents the point when, as a result of increased building volume, the
population is transported from unaffected areas to those where construction is allowed to increase.
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Figure 9. Results of the Monte Carlo simulation.

When a new building block is inserted in SB1 (rule 2), its relative weight in terms of volume
increases, but the results do not change. This is explained by the fact that no population from SB1
is re-allocated to TB1 (both constitute §1). In fact, in all the tests that include changing conditions
in 81, the results were the same as the proportional conditions (3 and 4, 5 and 8, 6 and 7). When a
new building block was added in 6; (rules 6 and 7), population increased rapidly until convergence.
When one of the simulation blocks was added between 61 and 6, convergence occurred but at a slower
rate (rules 3 and 4, 5 and 8). In the case of rule 1, convergence is faster since, as can be seen in Figure 9,
the existing block in sub-areas 6; and 8, was implemented mainly in the area on the left, contrary to
the new blocks artificially added, with equal proportions between both sub-areas (Figure 7). If existing
volume were the same between SB1 and SB2 (8; and 07), then results would not change. However,
since the initial proportion in SB2 (87) was lower, a similar increase in both represents a more rapid rate
of change in 5,—which results in an increase in the estimates until convergence. This is an important
result, which is deductively correct: An equal nominal increase in two parts (in this case, in the total
building block volume), one being larger than the other, results in a higher relative increase in the
smaller of the two. Consequently, the significance of this result is that when technical conditions
change at the time of capturing primary data (e.g., UAV point-cloud), estimations using these datasets
as control data are more prone to errors when both building densities and building heights are lower.
In a consolidated built environment with large building footprints and height, differences between
control datasets are diluted.
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4. Conclusions

This work attempted to show that the use of 2D/3D control data, extracted from UAV data in
dasymetric mapping, is relevant to estimate a population using dasymetric mapping techniques within
urban areas. A high precision dasymetric mapping (using 3D information) was proposed to resolve
the issue of multi-temporal analysis of census datasets, when there were changes in the boundaries of
census tracts. Furthermore, this work highlights the usage of UAV data for the extraction of building
block volume information under the development of a set of scripts based on a FOSS methodology.

The results achieved showed that the 3SDEBP methodology developed for the (semi)-automatic
extraction of control data (building block volume/area) using a UAV point cloud was very effective.
The use of the UAV point cloud for the automatic extraction of building block units also proved very
acceptable—with errors below one story—and for a clean yet not exact rendering of the built-up area.
However, the extraction of accurate building block volumes depends on points selected along the eaves
of roofs, which were used to compute height and area. The key issues for the successful extraction
of these building parameters are: (i) The filtering methods used to remove the points that do not
belong to the top of the building blocks; (ii) processing aerial image pairs to obtain a dense point cloud
without gaps along the building blocks and (iii) the complexity level of building block typology and
urban morphology.

As expected, the results for high precision dasymetric mapping with 3D control data were similar
to those using 2D control data. This is due to the little differences in height between building blocks
within the study area. As mentioned previously, this shows the consistency of the given methodology
and the potential of the UAV data used, given the great heterogeneity “within” each block. The next
evident step is to test the methodology in other urban morphologies, with larger heterogeneity
“between” blocks (large differences in height).

The results of the sensitivity analysis conducted point in this direction, as they showed that
changing existing conditions with the addition of one abnormally high block rapidly alters the estimated
results, with estimated population being drawn to this new building. Furthermore, the sensitivity
analysis allows us to conclude that the volume error has no impact on the results of dasymetric
mapping (or estimation of population).

In future studies, the use of small study areas will again prove beneficial, as small localized
phenomena can be easily studied, adding robustness to the methodology under different and more
complex urban morphologies.
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