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Abstract: The remote sensing of solar-induced chlorophyll fluorescence (SIF) has attracted considerable
attention as a new monitor of vegetation photosynthesis. Previous studies have revealed the close
correlation between SIF and terrestrial gross primary productivity (GPP), and have used SIF to
estimate vegetation GPP. This study investigated the relationship between the Orbiting Carbon
Observatory-2 (OCO-2) SIF products at two retrieval bands (SIF757, SIF771) and the autumn crop
production in China during the summer of 2015 on different timescales. Subsequently, we evaluated
the performance to estimate the autumn crop production of 2016 by using the optimal model
developed in 2015. In addition, the OCO-2 SIF was compared with the moderate resolution imaging
spectroradiometer (MODIS) vegetation indices (VIs) (normalized difference vegetation index, NDVI;
enhanced vegetation index, EVI) for predicting the crop production. All the remotely sensed products
exhibited the strongest correlation with autumn crop production in July. The OCO-2 SIF757 estimated
autumn crop production best (R2 = 0.678, p < 0.01; RMSE = 748.901 ten kilotons; MAE = 567.629
ten kilotons). SIF monitored the crop dynamics better than VIs, although the performances of VIs
were similar to SIF. The estimation accuracy was limited by the spatial resolution and discreteness
of the OCO-2 SIF products. Our findings demonstrate that SIF is a feasible approach for the crop
production estimation and is not inferior to VIs, and suggest that accurate autumn crop production
forecasts while using the SIF-based model can be obtained one to two months before the harvest.
Furthermore, the proposed method can be widely applied with the development of satellite-based
SIF observation technology.
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1. Introduction

China is an agricultural country with the largest population in the world, which only accounts
for 7% of the earth’s cropland resources but it needs to feed 22% of the world population [1]. Precise
prediction of crop production in China and any other countries with the same situations is very
significant [2,3]. Autumn crop refers to the food crops planted in spring or summer and harvested
in autumn (e.g., middle rice, late rice, corn, sorghum, millet, sweet potato, soybeans, and so on),
which is important as the main food in China [4]. Therefore, large-scale and accurate estimation of
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autumn crop production is critical for policy makers and grain marketing agencies in planning for
exports and imports [5] and to solve food security issues [6]. Satellite remote sensing has been widely
used to manage cropland [7–11] and estimate crop production [5,12–15]. Vegetation indices (VIs)
(e.g., normalized difference vegetation index, NDVI; enhanced vegetation index, EVI), chlorophyll
content, leaf area index (LAI), and the fraction of absorbed photosynthetically active radiation by
vegetation (fAPAR) have been used to estimate the production of corn, rice, and other crops [16–19].
For example, crop production was forecasted by using VIs that were derived from satellite data and
machine learning methods on the Canadian Prairies [5], and by inputting NDVI and daytime land
surface temperature (LST) to build a regression tree-based model in America [18].

However, these satellite-derived products that were used in previous studies, such as VIs,
are slightly sensitive to the photosynthesis of plant and significantly indicative of vegetation
“greenness” [20–22], thereby resulting in low accuracy of crop production forecast. Solar-induced
chlorophyll fluorescence (SIF) is essentially an energy escaped from plant chlorophyll during
photosynthesis, with the wavelength ranging from 600 to 800 nm [23]. SIF is directly related to the crop
photosynthesis and is recognized as a more reliable indicator than the VIs [20,24,25]. The Greenhouse
Gases Observing Satellite (GOSAT), the Global Ozone Monitoring Experiment-2 (GOME-2), and the
Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) are
common SIF product sources [26–29]. Nevertheless, the spatial resolutions of these satellite-derived SIF
products are coarse (e.g., GOME-2: 40 × 80 km2; GOSAT: 10 km diameter; SCIAMACHY: 30 × 240 km2).
The spatial resolution of the Orbiting Carbon Observatory-2 (OCO-2) SIF product reached 1.29 ×
2.25 km2 with the development of satellite-based measurement of SIF. Recently, a new global “Orbiting
Carbon Observatory-2 (OCO-2)” SIF dataset (GOSIF) was developed [30] with spatially continuous
data. It is possible to widely monitor terrestrial photosynthesis [24–30] and estimate large-scale crop
production by using SIF product.

Although the spatial resolution of satellite-derived SIF product is not high enough for precise
agriculture, these data are quite useful in monitoring large-scale crop photosynthesis and predicting
crop yield over national or global scales [31,32]. Currently, the studies on estimating autumn crop
production while using SIF products remain scarce [33]. As the world’s most populous nation with
1.4 billion people, it is particularly important to ensure food security by mainly relying on domestic
production. In this study, we examined the correlations between the converted OCO-2 SIF products
and autumn crop production statistics at the monthly and seasonal scales during the summer of
2015. Besides, we evaluated the correlations between the converted moderate resolution imaging
spectroradiometer (MODIS) VIs (EVI, NDVI) and autumn crop production statistics to compare the
performance between SIF and these widely-used VIs. Afterwards, we modeled the autumn crop
production while using the converted products and utilized the models with the strongest correlations to
estimate the 2016 autumn crop production. Finally, we compared the performance of these estimations
of autumn crop production in China.

This study aimed to explore the relationship between SIF and autumn crop production at monthly
and seasonal timescales. The hypothesis that autumn crop production can be reliably estimated while
using SIF products during the most relevant period was examined. Moreover, the differences in both
OCO-2 SIF and MODIS VIs (EVI, NDVI) were compared for estimating the autumn crop production
and the factors affecting the accuracy of estimation were also analyzed.

2. Materials and Methods

2.1. Study Area

China has an area of 9.6 million km2 and it is located in East Asia on the west coast of the Pacific
Ocean. Most of continental China is located in the Temperate Zone; the south is located in the tropical
and subtropical zones and the north is located near the Polar Zone [34]. In addition, maize, rice,
and wheat are the main grains of China [35]. The study area included 34 provincial-level administrative
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regions, with the exception of Hong Kong, Macau, and Taiwan (Figure 1). No SIF data passed by
Shanghai on June and July 2015 and July 2016, and Tibet on June 2015 and July 2016.
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Figure 1. The trajectory of Orbiting Carbon Observatory-2 (OCO-2) passed by cropland from June to
August 2015 in China. The land cover map is from the moderate resolution imaging spectroradiometer
(MODIS) land cover type product (MCD12Q1) based on the IGBP (International Geosphere-Biosphere
Programme) classification scheme.

2.2. OCO-2 SIF Products

We used the OCO-2 SIF data, which is provided freely from (https://disc.gsfc.nasa.gov) and
available from September 2014 to present. The OCO-2 instrument is a three-channel grating spectrometer
recorded the high resolution spectra of the O2 A-band (757–775 nm) and the other two bands. Fraunhofer
lines at 758.8 and 770.1 nm can be used for the fluorescence retrieval via the FLD (Fraunhofer Line
Discrimination) algorithm. Generally, the former is referred as the 757 nm window, with the latter
as the 771 nm window [24,26,28,36]. Therefore, OCO-2 provides mid-day SIF retrievals at both 757
and 771 nm. The mid-day SIF products were converted to daily SIF by applying the daily correction
factor that was included in the SIF Lite product. The OCO-2 system observed data by three modes,
which included nadir, glint, and target. Typical OCO-2 alternately measured between the nadir and
glint viewing mode. The repeat frequency of the special target observation mode is approximately 16
days. In the nadir mode, the instrument views the ground directly below the spacecraft. In the glint

https://disc.gsfc.nasa.gov
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mode, the instrument tracks near the location with direct sunlight being reflected [29]. Besides, a target
mode is infrequently turned on when the satellite overpasses the ground validation sites. In this
mode, a large number of temporally continuous measurements at different viewing zenith angles
(VZA) are made [37]. Details of the retrieval that is based on the IMAP-DOAS (Iterative Maximum
A Posteriori-Differential Optical Absorption Spectroscopy) preprocessor, as well as the OCO-2 SIF
product can be found in Frankenberg et al. [26,28], which is also efficient in removing low and thick
clouds. In this study, we used the SIF Lite product (V8r) aggregated as daily files with 1.29 × 2.25 km2

spatial resolution.

2.3. MODIS Products

MODIS VIs and land cover type products were used in this study. These data were freely provided
from (https://e4ftl01.cr.usgs.gov).

The NDVI and EVI are two commonly-used VIs for monitoring vegetation conditions. These VIs
have significant relationships with crop production [38]. We used monthly NDVI and EVI derived
from MOD13A3 data, with 1 km spatial resolution. The algorithm ingests all the 16-day 1 km products
that overlap the month and employ a weighted temporal average.

NDVI =
NIR−Red
NIR + Red

(1)

EVI = G
NIR−Red

NIR + C1Red−C2Blue + L
(2)

where Red (620–670 nm), NIR (841–876 nm), and Blue (459–479 nm) are the surface bidirectional
reflectance factors for MODIS bands 1, 2, and 3, respectively; L is the canopy background adjustment
for correcting the nonlinear, differential NIR, and red radiant transfer through a canopy; C1 and C2 are
the coefficients of the aerosol resistance term (that uses the blue band to correct for aerosol influences in
the red band); and, G is a gain or scaling factor. The coefficients adopted for the MODIS EVI algorithm
are, L = 1, C1 = 6, C2 = 7.5, and G = 2.5 [39].

The MODIS land cover type product (MCD12Q1) provides annual data that characterize five
global land cover classification systems from 2001 to present, with the spatial resolution of 500 m.
The land cover product that we used is based on the IGBP global vegetation classification scheme.

2.4. Autumn Crop Production Data of China

The autumn crop production data of each province in China are available at the official website of
the National Bureau of Statistics (http://data.stats.gov.cn). The statistical data that we can obtain on
this website were updated to 2016. In addition to Hong Kong, Macau, and Taiwan, the autumn crop
production data were obtained of each province in 2015 and 2016. The autumn crop production can
reach up to 60 million tons in areas with large cropland (e.g., Heilongjiang) and less than one million
ton in areas with small cropland (e.g., Beijing, Hainan, and Shanghai).

2.5. Analysis

According to the definition of autumn crop, the final production is most related to the summer
season. The satellite-derived data from June to August 2015 and 2016 were extracted while using
the following processes. Firstly, we extracted “SIF 757 nm” and “SIF 771 nm” values (henceforth
denoted as SIF757 and SIF771), where the land cover type was cropland with an IGBP index of 12 and
removed the negative values, which may affect the results. The SIF data were created as a grid map
and resampled to 500 m spatial resolution. Subsequently, the VIs data were also resampled to the same
spatial resolution and masked with the cropland data to obtain the cropland VIs data. The cropland
data of 2015 and 2016 were obtained from the MCD12Q1 product, respectively. These satellite-derived
data were used zonal statistics for 31 China provinces at monthly and seasonal scales by means of

https://e4ftl01.cr.usgs.gov
http://data.stats.gov.cn


Remote Sens. 2019, 11, 1715 5 of 14

ArcGIS10.1 (ESRI, Redlands, CA, USA) to obtain the mean pixel value and the cropland pixels for
each province.

The converted value was the mean pixel value, multiplied by the cropland pixels. These converted
values were henceforth denoted as SIF757’, SIF771’, EVI’, and NDVI’. The relationships of these
converted values with autumn crop production statistics were evaluated at monthly and seasonal
timescales while using the following equation:

Valuei
′ = Valuei × ni (3)

where Valuei
′ and Valuei represented the converted satellite-derived product value and the mean

satellite-derived product pixel value for each province, respectively; ni represented the cropland pixels
for each province; and, i, which ranged from 1 to 31, represented the province where the statistical data
were available when the SIF data passed by.

To compare the potential of OCO-2 SIF and MODIS VIs in estimating autumn crop production,
the correlations between the converted OCO-2 SIF products (SIF757, SIF771), MODIS VIs (EVI, NDVI),
and the government’s autumn crop production statistics were evaluated at monthly and seasonal
scales. The SIF data were spatially discrete points, because the viewing modes alternate from orbit
to orbit. We calculated the value at a monthly scale while using the points that passed by in June,
July, and August, respectively. Subsequently, the values at a seasonal scale using the total points of
summer (June, July, and August) were calculated. We obtained the monthly scale value directly and
calculated the value at seasonal scale while using the average of June, July, and August data since VIs
were monthly raster data.

The correlations between SIF757’, SIF771’, EVI’, NDVI’, and autumn crop production were
evaluated while using the coefficient of determination (R2). Root mean square error (RMSE) and mean
absolute error (MAE) [6,40] were used to evaluate the performance of crop production estimation.
The indicators were calculated while using the following equations:

R2 = 1−

∑n
1(yi − ŷi)

2∑n
1 y2

i

(4)

RMSE =

√∑n
1(yi − ŷi)

2

n
(5)

MAE =

∑n
1

∣∣∣yi − ŷi
∣∣∣

n
(6)

where n was the number of provinces used for validation. ŷi was the SIF757’, SIF771’, EVI’, NDVI’
(Equation (4)), and estimated autumn crop production (Equations (5) and (6)). Additionally, yi was the
government’s autumn crop production statistics (ten kilotons).

All of the statistical analyzes were performed while using SPSS Statistics 22 (IBM, Chicago,
IL, USA), Origin2017 (OriginLab, Northampton, MA, USA), and MATLAB R2017b (MathWorks,
Nadick, MA, USA). Generally, the optimal result is judged by a maximum R2 value, minimum RMSE,
and MAE values.

In addition, the relationships between SIF757’, SIF771’, EVI’, NDVI’, and the autumn crop
production statistics were modeled based on the most relevant month or season data in 2015. The models
whose R2 is highest in June, July, August, and summer were selected as the most relevant models and
they were used to estimate the 2016 autumn crop production. The model with the best performance
was specifically analyzed.
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3. Results

3.1. Relationships of OCO-2 SIF and MODIS VIs with Autumn Crop Production at Monthly and
Seasonal Scales

We compared the relationship between the SIF757’, SIF771’, EVI’, NDVI’, and the government’s
autumn crop production statistics at monthly and seasonal scales. The results for the 2015 summer show
that the converted OCO-2 SIF data, MODIS VIs, and the government’s autumn crop production statistics
were strongly correlated (Figure 2). In general, SIF771’ (R2 = 0.548–0.716, p < 0.01) was more strongly
correlated with the government’s autumn crop production statistics than SIF757’ (R2 = 0.526–0.692,
p < 0.01). In addition, EVI’ (R2 = 0.628–0.664, p < 0.01) and NDVI’ (R2 = 0.666–0.672, p < 0.01) had
equally strong correlations with the government’s autumn crop production statistics.

The strongest relationship of SIF757’ (R2 = 0.692, p < 0.01), SIF771’ (R2 = 0.716, p < 0.01), EVI’ (R2

= 0.664, p < 0.01), and NDVI’ (R2 = 0.672, p < 0.01) was observed in July (Figure 2b). The mean R2 of
SIF757’ and SIF771’ were 0.643 and 0.662. Additionally, the mean R2 of EVI’ and NDVI’ were 0.650 and
0.668. Moreover, the correlation between SIF’ and autumn crop production was higher than VIs’ for
both monthly and seasonal scales, except in June, during the summer of 2015 (Table 1). In addition,
the correlation between VIs’ (EVI’ and NDVI’) and autumn crop production do not greatly vary among
months. By contrast, the correlation between SIF’ (SIF757’ and SIF771’) and autumn crop production
among the months exhibited great variation.Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 15 
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Table 1. The correlations between the SIF757’, SIF771’, EVI’, NDVI’, and the government’s autumn
crop production statistics in China during June to August 2015 at monthly and seasonal scales.

June July

SIF757’ SIF771’ EVI’ NDVI’ SIF757’ SIF771’ EVI’ NDVI’
R2 0.526 0.548 0.628 0.667 0.692 0.716 0.664 0.672

p-value <0.01 <0.01

August Summer

SIF757’ SIF771’ EVI’ NDVI’ SIF757’ SIF771’ EVI’ NDVI’
R2 0.669 0.683 0.652 0.666 0.686 0.702 0.656 0.666

p-value <0.01 <0.01

3.2. Performance Evaluation of the Autumn Crop Production Estimated by the Converted OCO-2 SIF and
MODIS VIs

The SIF’ and VIs’ in July had the strongest correlation with the autumn crop production statistics
according to the relationship between the SIF757’, SIF771’, EVI’, NDVI’, and the government’s autumn
crop production statistics in the summer of 2015 (Figure 2 and Table 1). 4 models con be chosen to
estimate autumn crop production (Table 2). The fitted models with p-values that were lower than 0.01
indicated a significant relationship between the SIF757’, SIF771’, EVI’, NDVI’, and the government’s
autumn crop production statistics, and confirmed the reliable predictive capability of these models.

Table 2. Best-fit models for each parameter’, which was used to estimate the autumn crop production
in China.

Time Parameter’ Model N R2 p-Value

July

SIF757’ ŷi = 0.01338 × xi + 604.01428 30 0.692 <0.01
SIF771’ ŷi = 0.02050 × xi + 608.13718 30 0.716 <0.01

EVI’ ŷi = 0.01280 × xi + 547.13583 30 0.664 <0.01
NDVI’ ŷi = 0.00869 × xi + 540.97517 30 0.672 <0.01

Note: ŷi represents the estimated autumn crop production; xi represents SIF757’, SIF771’, EVI’ and
NDVI’, respectively.

Growing evidence suggested that the relationship between vegetation photosynthesis (gross
primary productivity, GPP) and SIF is linearly related [41–45]. Moreover, terrestrial GPP drives the
terrestrial food chain [46]. Therefore, we assumed that SIF and production are related linearly and
selected the linear model to predict the autumn crop production. The linear models in July (Table 2)
were utilized to estimate autumn crop production in each province in 2016 (Figure 3). 2016 was the
only one year in which OCO-2 SIF product, MODIS VIs products, and the government’s autumn crop
production statistics data could be matched, except for 2015. The robustness of the coefficients derived
from these production estimation models for each province in 2016 was evaluated while using RMSE
and MAE. The scatterplots between the production statistics and estimated productions demonstrated
satisfactory results (Figure 3). The estimated autumn crop productions of each model were close to
the government’s autumn crop production statistics in 2016 (Table 3). Moreover, the performances of
SIF757’, SIF771’, EVI’, and NDVI’ are comparable. The best performance was observed in the autumn
crop productions that were estimated using SIF757’ in July (R2 = 0.678, p < 0.01; RMSE = 748.901 ten
kilotons; MAE = 567.629 ten kilotons).

The OCO-2 SIF products performed better than MODIS VIs products when estimating the autumn
crop production and SIF757’ performed best. We conducted a detailed analysis of the estimation of
SIF757’ in order to identify the constraints that affect the estimation accuracy of SIF (Figure 4). We
calculated the deviation percentage of the autumn crop production estimated while using SIF757 in
2016, and the percentage of cropland that was covered by SIF data in each province. Meanwhile,
the minimum percentage of cropland covered by SIF data is up to 3.762% (Anhui) and the maximum
percentage of cropland covered by SIF data is up to 4.524% (Heilongjiang).
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The lower the percentage of cropland covered by SIF data, the higher the deviation percentage of
autumn crop production estimated while using the SIF757’. Meanwhile, in Beijing, Hainan, Qinghai,
Tianjin, Ningxia, and Xinjiang, where the autumn crop production is approximately less than five
million tons and the elevation is higher than 1000 m, the deviation percentage of autumn crop
production estimated using the SIF757’ exceeded 100% (Figure 4a). Besides, in Sichuan, Chongqing,
Hunan, Shaanxi, and other provinces with large undulating terrain and broken cropland, the autumn
crop production that was estimated using the SIF757’ was also not very accurate (Figure 4).Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 15 
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Table 3. The comparisons between the estimated autumn crop productions using the SIF757’, SIF771’,
EVI’, NDVI’, and the government’s autumn crop production statistics in China in 2016.

July

Parameter SIF757’ SIF771’ EVI’ NDVI’
R2 0.678 0.673 0.620 0.647
p <0.01 <0.01 <0.01 <0.01

RMSE (ten kilotons) 748.901 754.852 813.066 783.330
MAE (ten kilotons) 567.629 619.806 649.126 620.205
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Figure 4. The spatial distribution of the government’s autumn crop production statistics, the percentage
of deviation of the autumn crop production estimated by using SIF757 in 2016, and the percentage
of cropland covered by solar-induced chlorophyll fluorescence (SIF) data in each province (a); and,
topography of Chinese cropland (b).

4. Discussion

4.1. Potential of OCO-2 SIF and MODIS VIs in Estimating the Autumn Crop Production of China

The main goals of this study are (1) to explore the relationship between the OCO-2 SIF data and
the government’s autumn crop production statistics and establish a simplified model for estimating
autumn crop production while using OCO-2 SIF; (2) to compare the differences between the SIF757’,
SIF771’, EVI’, NDVI’ for estimating the autumn crop production; and, (3) to analyze the factors
affecting the estimation accuracy. Therefore, it is a new attempt to use satellite remote SIF data for crop
production estimation.

Crops yield can be estimated while using remotely sensed GPP [47]. Additionally, GPP based on
GOME-2 SIF has been used to predict the crop yield in previous study [46]. Thus, GPP and crop yield
(production) are related. On the other hand, SIF is mainly determined by Absorbed photosynthetically
active radiation (APAR) [30,48], which is the key to link SIF and GPP [45]. Therefore, we conclude
that OCO-2 SIF data are closely related to autumn crop production. Besides, the spatial resolution
of MODIS VIs is finer than OCO-2 SIF and the OCO-2 SIF product is discrete, which indicates that
VIs is more advantageous than SIF. However, the autumn crop production that is predicted by SIF’ is
more accurate than VIs’, with higher R2, lower RMSE, and MAE. It proved that SIF’ is more effective
than VIs’.

In addition, the R2 of SIF’-crop production statistics were 0.548-0.716 for SIF771’ and they were
0.526–0.692 for SIF757’ (Table 1). The mean R2 of SIF’-crop production statistics were 0.662 and
0.643 for SIF771’ and SIF757’, respectively (Table 1). SIF771’ was more related to the autumn crop
production than SIF757’. However, SIF757’ performed better than SIF771’ when estimating autumn
crop production, which indicated that SIF757 is more sensitive to photosynthesis than SIF771 in this
study region. The result is consistent with another study, which showed that SIF757 has a stronger
correlation with tower GPP than SIF771 [24]. This phenomenon could be explained by 771 nm falling
farther away from the peak emission on the SIF spectrum, which indicated that SIF757 has higher
retrieval precision than SIF771 [28,30].

The crop production statistics were highly correlated with EVI/NDVI data during the leaf constant
period. In this study, the autumn crop production statistics were more strongly correlated with SIF
data during July than the other period, which is the leaf constant period. This finding can be explained
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by the strong photosynthesis during the constant leaf period. In addition, according to previous
studies, July represents the peak growing season for autumn crop [31], which explains why the most
relevant correlation between SIF and production is July. SIF757’ performed best when estimating
the autumn crop production in China (R2 = 0.678, p < 0.01; RMSE = 748.901 ten kilotons; MAE =

567.629 ten kilotons). The performance of SIF757’ is better than the estimation performance of satellite
Earth Observation (EO) time-series products for wheat, barley, and grain maize productions in Europe
(approximately R2 = 0.583) [49]. Moreover, this performance is close to the crop phenology and a
combination of EVI2 (the MODIS two-band Enhanced Vegetation Index) and NDVI estimating maize,
soybean productions in America (approximately R2 = 0.69–0.70) [16].

In addition, the correlations between VIs’ (EVI’ and NDVI’) and autumn crop production were
not much different among the months, whereas the correlations between SIF’ (SIF757’ and SIF771’)
and autumn crop production were much different among months. This result reveals that SIF can
monitor crop dynamics better than VIs, which is in good agreement with the previous results [50–53],
suggesting that SIF is able to precisely track the seasonality of photosynthesis and NDVI is insensitive
to seasonal changes in photosynthesis. This finding further indicates that it is feasible to estimate
autumn crop production while using satellite-derived SIF products. Additionally, the performance is
better and more reliable than VIs.

4.2. Limitation and Uncertainty

In this study, we determined that predicting autumn crop production while using OCO-2 SIF
product is feasible and not inferior to MODIS VIs, especially, the performance of SIF757 is best.
However, some uncertainties and limitations remain. First of all, the SIF values of each province were
obtained by point averaging due to the discrete of OCO-2 SIF product. Moreover, in some provinces,
few data passed by their cropland and the mean pixel value of SIF product may not represent the SIF
value of the entire cropland. This condition may lead to the inaccuracy of the SIF values. Figure 4
shows the higher the percentage of cropland covered by SIF data, the higher accuracy. This further
illustrates that the discrete influences the estimation accuracy. Although the OCO-2 SIF product that
we use has the highest spatial resolution available today, it is still relatively coarse. The coarse spatial
resolution indicates that the SIF value of each pixel is a mixture of cropland and other vegetation
types. The SIF value we used is inaccuracy, which leads to an inaccurate estimation. We found that the
accuracy of autumn crop prediction is higher in low-elevation provinces with large farm size and flat
cropland by comparing the spatial distribution of Chinese cropland topography with the deviation
percentage of autumn crop production estimated using SIF757 (Figure 4) (e.g., Anhui, Hebei, Henan,
and so on). This is also affected by the coarse spatial resolution. Moreover, the production of most
provinces is between 500 and 4000 ten kilotons, which leads to higher estimation accuracy in these
provinces. In addition, the spatial distribution of autumn crops is quite important for accurately
estimating the crop yield. However, the data is lacked until now, and it remains hard to distinguish the
different crop types using satellite remote sensing for a large area. Therefore, this study mixed all the
autumn crops together. Actually, the relationships between SIF and crop production may vary among
the different autumn crops due to the influence of the canopy structure, photosynthetic pathways, light
energy utilization rate, and C-N carbohydrate conversion capacity, which may constrain the accuracy
in estimating autumn crop yields. Besides, the study period (two years) is short due to the limitation of
SIF product and statistical data, which may lead to inaccurate results. we still believed that the results
were significant since the fitted model with p-values lower than 0.01.

The results can be generalized to other regions and crops, due to the similarity of the SIF generation
process. SIF is generated during the photosynthesis process, regardless of the region or crop, which
provides a possibility for SIF to estimate crop production. More and more researchers pay attention to
satellite-derived SIF, which promotes the development of satellite-derived SIF. New or future missions
(e.g., GOSIIF; Tropospheric Monitoring Instrument, TROPOMI; Fluorescence EXplorer, FLEX) with
finer spatial resolution and continuous data could be used in a similar study of crop estimation.
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If possible, our future studies will be conducted in a larger region and more crops with considering
more factors.

5. Conclusions

This study explored the potential of OCO-2 SIF product in estimating autumn crop production
in China. SIF is generated during the photosynthesis process, which leads to a closer connection
between SIF and crop production. The results showed that OCO-2 SIF757 of July had great potential in
estimating autumn crop production. The estimation accuracy was limited by the spatial resolution
and discrete of satellite-derived SIF product. SIF performs better than VIs in estimating autumn crop
production and SIF could monitor crop dynamics more effectively than VIs. With the development
of continuous SIF product, such as GOSIF (0.05 degree) [30], TROPOMI (7 km) [54], and FLEX (300
m) [55], we believed that SIF would provide an increasingly accurate crop production estimation. SIF
will be widely used in more studies that are related to terrestrial ecosystem and carbon cycles.
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