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Abstract: Due to a rapid increase in accessible Earth observation data coupled with high computing
and storage capabilities, multiple efforts over the past few years have aimed to map land use/land cover
using image time series with promising outcomes. Here, we evaluate the comparative performance
of alternative land cover classifications generated by using only (1) phenological metrics derived
from either of two land surface phenology models, or (2) a suite of spectral band percentiles and
normalized ratios (spectral variables), or (3) a combination of phenological metrics and spectral
variables. First, several annual time series of remotely sensed data were assembled: Accumulated
growing degree-days (AGDD) from the MODerate resolution Imaging Spectroradiometer (MODIS)
8-day land surface temperature products, 2-band Enhanced Vegetation Index (EVI2), and the spectral
variables from the Harmonized Landsat Sentinel-2, as well as from the U.S. Landsat Analysis Ready
Data surface reflectance products. Then, at each pixel, EVI2 time series were fitted using two different
land surface phenology models: The Convex Quadratic model (CxQ), in which EVI2 = f (AGDD) and
the Hybrid Piecewise Logistic Model (HPLM), in which EVI2 = f (day of year). Phenometrics and
spectral variables were submitted separately and together to Random Forest Classifiers (RFC) to
depict land use/land cover in Roberts County, South Dakota. HPLM RFC models showed slightly
better accuracy than CxQ RFC models (about 1% relative higher in overall accuracy). Compared
to phenometrically-based RFC models, spectrally-based RFC models yielded more accurate land
cover maps, especially for non-crop cover types. However, the RFC models built from spectral
variables could not accurately classify the wheat class, which contained mostly spring wheat with
some fields in durum or winter varieties. The most accurate RFC models were obtained when using
both phenometrics and spectral variables as inputs. The combined-variable RFC models overcame
weaknesses of both phenometrically-based classification (low accuracy for non-vegetated covers)
and spectrally-based classification (low accuracy for wheat). The analysis of important variables
indicated that land cover classification for this study area was strongly driven by variables related to
the initial green-up phase of seasonal growth and maximum fitted EVI2. For a deeper evaluation of
RFC performance, RFC classifications were also executed with several alternative sampling scenarios,
including different spatiotemporal filters to improve accuracy of sample pools and different sample
sizes. Results indicated that a sample pool with less filtering yielded the most accurate predicted
land cover map and a stratified random sample dataset covering approximately 0.25% or more of the
study area were required to achieve an accurate land cover map. In case of data scarcity, a smaller
dataset might be acceptable, but should not smaller than 0.05% of the study area.
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1. Introduction

Knowledge about land use/land cover (LULC) is fundamental for natural resource management,
agricultural policy making, and regional and urban planning. Most reliable data sources for LULC
information are periodic surveys from governmental agencies, e.g., the National Resource Inventory
and the National Agricultural Statistics Service (NASS), both in the United States Department of
Agriculture (USDA) [1,2]. However, those datasets often lack spatial and temporal details, which
prevents a comprehensive analysis of land change. Remote sensing technology can complement
field observations and surveys. Conventional classification approaches, such as those applied in the
National Land Cover Dataset (NLCD) [3–5] or the Cropland Data Layer (CDL) [6], were developed in
an era of data scarcity and limited computational power and data storage. Thus, they have focused on
mapping annual land cover from multispectral data from one or just a few image dates. However, in
areas with frequent morning cloud cover, collecting even a few cloud-free scenes over a year can be
challenging. The recent rapid increase of accessible Earth observation data coupled with improved
computing and storage capabilities is leading to the emergence of methods for mapping land cover
using multi-date imagery and dense image time series [7]. Compared to the traditional approach, the
use of image time series often improves classification accuracy by incorporating both spectral and
temporal profiles [8–10].

Land surface phenology (LSP) has been a useful approach to characterize seasonal vegetation
dynamics on vegetation index time series [11]. Over the past few years, several efforts have been made
to map LULC using phenological metrics derived from satellite image time series with promising
outcomes [12–18]. Due to the relatively low return interval of orbital sensors with spatial resolutions
finer than 50 m, many studies—with notable exceptions [13,16,18]—have relied on MODIS time series
to capture phenological characteristics of land surfaces, thus often producing cover maps at spatial
resolutions (e.g., 250–1000 m) that are coarse relative to human land uses, such as agriculture and
settlements. To overcome limited temporal coverage of Landsat-like data and map land covers at finer
spatial resolutions, Jia et al. [13] and Kong et al. [16] fused the MODIS Normalized Different Vegetation
Index (NDVI) [19] with Landsat and Gaofen-1 NDVI time series, respectively. Although each produced
land cover maps at finer spatial resolution (30 m for Landsat and 16 m for GF-1), neither Jia et al. [13]
nor Kong et al. [16] were able to map more than Level-1 NLCD Land Cover Classification System,
except for coniferous and broadleaf forest in Kong et al. [16] (Level-2 NLCD).

In 2016, the United States Geological Survey reorganized the Landsat archive into a tiered
collection, namely the Landsat Collections, to facilitate time series analysis and data stacking [20].
Taking advantage of the Landsat Collections data, Nguyen et al. [18] performed a phenometrically-based
classification for sample areas in South Dakota using all available Tier-1 (highest quality) images
from Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and
Landsat 8 Operational Land Imager (OLI). At each pixel, an Enhanced Vegetation Index (EVI) time
series calculated from Landsat Collections data was simulated as a convex quadratic function of
accumulated growing degree-days (AGDD), i.e., a measure of accumulated heat from January 1
onward whenever the average temperature exceeded 0◦ Celsius. Results showed that classification
using only phenometrics generated from the fitted model could accurately map broad thematic land
cover classes (water, developed, grassland) as well as commodity crops (corn/maize, soybean, wheat)
in Codington and Roberts counties in South Dakota for two years (2012 and 2014). However, they
also pointed out some challenges of the phenometrically-based classification. First, the classification
accuracy varied, since the form of the chosen land surface phenology (LSP) model might be more
suitable for some certain vegetation types than others. Second, the phenometrically-based classification
performed well only for vegetated classes, particularly crops. Third, many cloud/snow/shadow-free
observations were needed at each pixel over a year to fit the LSP model well and to avoid data gaps
in the predicted land cover map. Regarding the last point, they [18] also showed that an adequate
number of observations could be gathered by combining data from multiple comparable sensors,
especially in sidelap zones of Landsat swaths. Finally, in addition to pointing out the challenges of



Remote Sens. 2019, 11, 1677 3 of 23

classification based on phenometrics, Nguyen et al. [18] also discussed the potential opportunity to
improve classification accuracy by incorporating both phenological and spectral information.

Here, we explored the challenges of the phenometrically-based classification and a potential
way to improve classification accuracy, as demonstrated in [18]. This study focused on evaluating
the performance of alternative land cover classifications using either (1) only phenological metrics
derived from either of different land surface phenology (LSP) models: The Convex Quadratic Model,
in which EVI2 = f (AGDD) [11,21] and the Hybrid Piecewise Logistic Model, in which EVI2 = f (day
of year) [22], or (2) a suite of spectral band percentiles and normalized ratios (spectral variables),
or (3) both phenological metrics and spectral variables. In our evaluation, we addressed three
research questions. The first question was whether the maps from the phenometrics were more
accurate than maps from spectral variables alone. As land surface phenology has been a useful tool
to characterize the dynamics of the vegetated land surface [11], we hypothesized that land cover
classifications using only phenometrics could be more accurate for vegetated land covers, especially
for commodity crops, than those using only spectral variables. The second question asked which
set of phenometrics—derived either from the Convex Quadratic Model (CxQ) or from the Hybrid
Piecewise Logistic Model (HPLM)—performed better. In the temperate ecosystem, plant development
is sensitive to variation in temperature. We hypothesized, therefore, that the Convex Quadratic Model,
which links vegetation growth with the progression of thermal time, would be better suited to land
cover classification of our study area in northeastern South Dakota. The third question asked whether
combining the phenometrics and spectral variables would result in superior performance. Studies have
indicated that classification accuracies were improved by incorporating phenological features [13,16].
Thus, we hypothesized that classification using a combination of spectral variables and phenometrics
would be consistently more accurate than using only phenometrics or spectral variables. To build a
more complete picture of classification performance, we ran Random Forest Classifiers (RFC) with
different sampling scenarios and sets of input variables.

First, three annual time series of remotely sensed data were constructed, including accumulated
growing degree-days from the MODIS 8-day composites of land surface temperatures and 2-band
Enhanced Vegetation Index (EVI2) [23] and spectral variables from surface reflectance products from
(1) Landsat Analysis Ready Data (ARD) and (2) Harmonized Landsat Sentinel-2 (HLS) data, separately.
At each pixel, EVI2 time series were then fitted to the LSP models, CxQ or HPLM. Phenometrics
derived from the fitted LSP models as well as spectral variables were submitted individually and in
combination to RFC to map land use/land cover of the study area. Accuracy assessments for both
RFC models and predicted land cover maps were reported using both conventional accuracy metrics
(overall, producer’s, and user’s accuracies) [24] and alternatives for kappa [25].

Our assessment of classification performance is two-fold. First, RFC model performance was
evaluated by submitting different input datasets randomly generated from the CDL. Accuracy
comparisons between classification scenarios were tested by both Mann–Whitney U [26] and equivalence
tests [27,28]. These two tests are based on opposite but complementary evaluation perspectives.
The nonparametric U test indicates whether the two sets of accuracy metrics are statistically different,
regardless how difference magnitude. The equivalence test, on the other hand, examines whether
differences fall within a certain user-defined threshold and, thus, deemed equivalent or are large
enough to be deemed not equivalent. The second step was to compare the predicted land cover maps
with the CDL.

2. Data and Study Area

2.1. Study Area

The proposed classification exercise was demonstrated for Roberts County, South Dakota (SD),
in two years, 2016 and 2017. Roberts County is at the northeastern corner of South Dakota with a
total area of 2940 km2 and a current population of approximately 10,000. According to 2016 CDL
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(Figure 1), cropland is a dominant land cover in Roberts County, accounting for approximately 53.3%
of the county area. Other cover types in the County include grassland (25.9%), wetland (8.9%), water
(5.2%), barren/developed (4.4%), and forest (2.2%). The County falls within overlap zones of Landsat
paths, which allows retrieval of more cloud-free observations.
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Figure 1. The 2016 reclassified Cropland Data Layer for Roberts County, South Dakota.

2.2. Input Data

2.2.1. Landsat Analysis Ready Data

The Landsat Analysis Ready Data (ARD) products from the US Geological Survey are designed to
reduce the amount of data preparation for scientists and to facilitate time series analysis by generating
data at the highest scientific standards required for direct use in applications [29]. Landsat Collection 1
Level-1 scenes serve as the input for generating all ARD products. The ARD dataset is defined in the
Albers Equal Area (AEA) projection and World Geodetic System 1984 datum (WGS84). The products
are distributed in 150 × 150 km tiles instead of the traditional Landsat swaths in the WRS-2 path-row
coordinate system. Both Landsat 7 and Landsat 8 images in the ARD surface reflectance (SR) product
were used. On average, there are 22.8 and 19.5 ARD observations per pixel for 2016 and 2017,
respectively (Figure 2).
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2.2.2. Harmonized Landsat Sentinel-2

The Harmonized Landsat and Sentinel-2 (HLS) product suite is a combined surface reflectance
dataset consisting of observations from both the Landsat 8 Operational Land Imager and Sentinel-2
Multi-Spectral Instrument (MSI) [30]. We used two products from HLS version 1.4: (1) S30—SR
derived from Sentinel-2 MSI L1C data and resampled to 30m and (2) L30—30 m SR derived from
Landsat-8 OLI L1T data. Both S30 and L30 products provide nadir BRDF-adjusted (Bidirectional
Reflectance Distribution Function) reflectance (NBAR) data gridded with the Sentinel-2 tiling system
in Universal Transverse Mercator (UTM) projection and World Geodetic System 1984 datum (WGS84).
The Sentinel-2 MSI radiometry is adjusted to mimic the spectral bandpasses of Landsat 8 OLI for visible,
near infrared, and shortwave infrared bands. On average, there are 20.2 and 18.3 HLS observations per
pixel for 2016 and 2017, respectively (Figure 2).

2.2.3. MODIS Land Surface Temperature

We used the Collection 6 MODIS level-3 land surface temperature (LST) 8-day composites at 1000 m
spatial resolution from both Aqua (MYD11A2) and Terra (MOD11A2) satellites [31,32]. The MODIS
LST data are provided in a sinusoidal grid format and display the mean clear-sky LST in Kelvin
observed during the 8-day compositing period. All MODIS data were reprojected and resampled
to 30 m using bilinear interpolation into UTM zone 14N to work with the HLS data and into AEA
projection to work with the ARD. The LST time series were converted from Kelvin to degrees Celsius
for calculation of thermal time used in the LSP modeling.

2.2.4. Cropland Data Layer

The USDA Cropland Data Layer (CDL) is a crop-specific land cover raster created annually for
the continental United States by the NASS using moderate resolution satellite imagery and extensive
agricultural ground observations [33]. It is distributed in AEA projection and North American 1983
datum (NAD83). The CDL was first produced in 1997 for North Dakota but has covered the contiguous
US yearly only since 2008. The product has approximately 130 classes and a spatial resolution of 30 m
at best. We regrouped the CDL layers into ten classes (Table S1) and then used this reclassified data to
generate sample datasets for input to the RFCs. The reclassified CDL layer also provided a reference
against which to evaluate the predicted land cover maps. To work with HLS data, the CDL data were
reprojected into UTM zone 14N. Due to differences in the original projections and data, the reclassified
CDL, ARD, and HLS pixels are not perfectly co-aligned. While offsets between the CDL and ARD
pixels are only about 3 m in both latitude and longitude directions, offsets between the CDL and HLS
pixels are 15 m (half pixel) in each direction. We did not resample these data into a common grid,
as this step would introduce another source of uncertainty into the analysis.

3. Methods

3.1. Land Surface Phenology Modeling

3.1.1. EVI2 time series from ARD and HLS surface reflectance

The two-band Enhanced Vegetation Index (EVI2) was calculated from ARD and HLS surface
reflectance products (red—R and near infrared—NIR bands) using Equation (1) [23]. EVI2 was
chosen over the more commonly used Normalized Difference Vegetation Index (NDVI) to avoid the
well-known loss of sensitivity that NDVI experiences with denser canopies. EVI2 performs similarly
to its predecessor, the 3-band EVI, especially with continuing advancements in atmosphere corrections.
Poor-quality observations—snow, high confidence cloud, or cloud shadow pixels—were all masked
out using quality control layers delivered with the ARD and HLS products. EVI2 values outside the
valid range (from 0 to 1) were also excluded. The remaining “good” EVI2 values at each pixel were
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then stacked in chronological order from the first day of the year (DOY = 1) to the final day of the year
(DOY = 365 or 366 in leap years).

EVI2 = 2.5
(NIR−R)

(NIR + 2.4R + 1)
(1)

3.1.2. AGDD time series from MODIS LST

From MODIS LST, we calculated the accumulated growing degree-days (AGDD) as follows:

GDDt = max
{

Tmax, t + Tmin, t

2
, 0
}

, (2)

AGDDt = AGDDt−1 + (8×GDDt), (3)

where GDDt is the growing degree-days for compositing period (t is an integer ≥ 1), Tmax,t and Tmin,t

are the highest and lowest LST values from available MODIS observations from both Aqua and
Terra during the compositing period, assuming that AGDD0 = 0. Since the compositing period is 8
days, we multiplied the GDD by 8 to achieve a proportional accumulation of GDD for each of the 46
composites per year.

3.1.3. Convex Quadratic Model

We fitted the EVI2 time series as a quadratic function of AGDD (Equation (4)) using the process
described in [18]:

EVI2 = α+ β×AGDD− γ×AGDD2, (4)

where α, β, and γ (alpha, beta, and gamma, respectively) are the parameter coefficients to be fitted.
Alpha—a constant component—directly regulates the peak EVI2 value over the growing season, as a
changing value of alpha solely would move the fitted curve up or down along the EVI2-axis. Beta—a
linear component—affects the position of the peak on the thermal time axis (timing of peak growth), as a
changing value of beta solely would move the fitted curve in an upward quadratic pattern. Changing
the value of gamma—a quadratic component—would make the fitted quadratic curve become thinner
or fatter (how fast values on the two sides depart from the peak). The negative sign on gamma in
Equation (4) indicates that we accepted only a fitted curve that is downward arching, since the EVI2
values will rise, peak, and then decrease over the growing season. From each fitted model, we derived
a suite of 17 variables to be used in the LULC classification, including fitted parameter coefficients,
derived phenological metrics, and model fit statistics (Table 1).

Table 1. Variables derived from the Convex Quadratic Model.

Parameters Meaning

α, β, γ Fitted parameter coefficients of CxQ model (Equation (4))
TTPCxQ Thermal time to peak (AGDD at the max fitted EVI2) (TTP = –β/2×γ)
PHCxQ Peak height EVI2 (max fitted EVI2) (PH = α − β2/4×γ)
HTV Half-Time Value is value of EVI2 at half-TTP (HTV = α + β×TTP/2 + γ×TTP2/4)
ymax Highest observed EVI2 value

R2 Coefficient of determination of the fitted model
lpos, rpos Observation index of start and end of the fitting window

o_all The total number of “good” observations
o_fit Number of observations used to fit the CxQ model

o_per Ratio between “o_fit” and “o_all”
minx, maxx AGDD at left and right ends of the fitted curve in the first quadrant

peaks Number of high EVI2 values (≥0.8*ymax) outside the fitting window
jumps Number of times that ∆EVI2 ≥ 0.2
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3.1.4. Hybrid Piecewise Logistic Model

The Hybrid Piecewise Logistic Model (HPLM) [22] is an improvement of the widely-used logistic
model that formed the basis for the MODIS Land Cover Dynamics product (MCD12Q2) before
Collection 6 [34]. During the growing season, plants can suffer from water stress or other impacts
leading to a different greenness trajectory compared to one under favorable weather conditions. A key
advance in the HPLM was the incorporation of alternative conditions for vegetation growth—favorable
or stressed. To determine whether the plant is under favorable or stressed conditions, the two functions
of Equation (5) were fitted to the EVI2 time series and the function with a higher agreement index
was chosen.

EVI2 =


c1

1+ea1+b1t + EVI2b
c2+dt

1+ea2+b2t + EVI2b
, (5)

where t is time in the day of year (DOY), a is related to the vegetation growth time, b is associated
with the rate of plant leaf development, c is the amplitude of EVI2 variation, d is a vegetation stress
factor, EVI2b is the background EVI2 value, and the subscripts 1 and 2 refer to parameters for favorable
and stressed conditions, respectively. From each fitted model, we derived a suite of 14 variables to be
used in LCLU classification, including timings of vegetation growth and corresponding EVI2 values
(Table 2). Note that fitted parameter coefficients from the HPLM were not used directly in classification
(as with the CxQ) because the EVI2 time series at each pixel were fitted with multiple logistic curves.

Table 2. Variables derived from the Hybrid Piecewise Logistic Model.

Parameters Meaning

gri, vi_gri DOY and EVI2 of green-up start
gre, vi_gre DOY and EVI 2 of green-up end

grMD, vi_grMD Middle of gri and gre and its corresponded EVI2
sei, vi_sei DOY and EVI 2 of senescence start
see, vi_see DOY and EVI 2 of senescence end

se_MD, vi_seMD Middle of “sei” and “see” and its corresponded EVI2
DPHPLM, PHHPLM DOY with the highest fitted EVI2 and its EVI2

3.2. Spectral Variables

From the ARD and HLS surface reflectance, we generated three sets of annual spectral variables,
including the 20th, 50th, and 80th percentiles of blue (B), green (G), red (R), near infrared (NIR, band
8A in HLS), shortwave infrared 1 (SWIR 1 - S1), and SWIR 2 (S2). For each set of percentiles, twelve
normalized band ratios were computed, including: (G − R)/(G + R); (NIR − R)/(NIR + R); (NIR −
B)/(NIR + B); (NIR − G)/(NIR + G); (S1 − R)/(S1 + R); (S1 − B)/(S1 + B); (S1 − G)/(S1 + G); (S1 −NIR)/(S1
+ NIR); (S2 − R)/(S2 + R); (S2 − B)/(S2 + B); (S2 − G)/(S2 + G); and (S2 − NIR)/(S2 + NIR). The 20th
and 80th percentiles were used to reduce sensitivity to shadows and residual cloud and atmospheric
contamination effects. Similar variables were used previously to produce the NLCD-like land cover map
for North America using WELD data (a monthly composited Landsat surface reflectance product) [35].
In total, 42 spectral variables were generated for each 30 m pixel location. Those variables were named
using the following convention: “percentile_band (normalized ratio)” (e.g., “P50_S2R” is a normalized
ratio between the 50th percentile of SWIR-2 and Red bands).

3.3. Land Use/Land Cover Classification Using Random Forest Classifier

The Random Forest Classifier (RFC) [36] is an ensemble of decision trees—each created with a
random subset of training samples and variables—and allows them to vote for the most popular class.
By growing a “random forest” of multiple trees, N, RFC creates a set of classification rules with high
variance but low bias. The size and design of sample data have been found to affect RFC models [37,38].
To better understand these influences in our study, we performed land cover classifications using
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different scenarios: (1) Sample pools—different ways to build sample pools from the CDL; (2) sample
sizes—different sizes of sample datasets selecting from the pool. In addition, we examined RFC models
arising from various sets of input variables. We generated 12,800 RFC models in total—50 trials × 2
years × 2 input data sources × 4 sample pools × 4 sample sizes × 4 sets of input variables— using the
“scikit-learn” library in Python [39]. A “trial” is a test of RFC performance under a certain combination
of “year × input data source × sample pool × sample size × set of input variables” (e.g., RFC model
for 2016 ARD data using the C1S pool with each sample dataset covering 0.25% of the study area,
denoted as P25). For each trial, a new sample dataset was randomly selected from the CDL data pool.
All sample datasets were class-balanced (same proportional distribution of cover types to the CDL)
and divided into half for training and half for testing.

3.3.1. Sample pool scenarios

Although RFC is not very sensitive to mislabeled pixels in the sample dataset [40,41], it was still
critical to improve land cover accuracy in our sample data as they contained considerable error. First,
the overall accuracy of the agriculture class for the 2016 and 2017 CDL are only 89.3% and 81.7%,
respectively, and it is likely worse for non-agricultural classes. In addition, CDL pixels are not perfectly
co-aligned with ARD and HLS pixels due to differences in their original data and projections and,
thus, may lead to incorrect land cover information when selecting the sample dataset. To improve
the accuracy of the land cover information, we used sample selection by selecting only core pixels
from the CDL, i.e., pixels surrounded by pixels of the same type, to avoid misclassification, which
can occur more frequently at the edge, and off-sets between CDL and ARD/HLS pixels. Another way
to increase accuracy of the sample data is to compare land cover types of the same pixel between
different years (here 2016 and 2017); a pixel presenting the same cover type for two or more years is
more likely to be classified correctly. Improvement in land cover accuracy of the sample dataset may
reduce the predictive power of RFC models (despite their good accuracy metrics), since complex spatial
characteristics of particular cover types may be excluded through this selection process. In addition,
selecting only core pixels may lead to a higher degree of spatial autocorrelation in the sample dataset,
thereby inflating accuracy metrics [42]. To find a good balance between accuracy and representativeness
of the sample dataset, we examined land cover classifications arising from four sample pool scenarios
as described in Table 3.

Table 3. Sample pool scenarios.

Acronym Procedure

C1S Only keep pixels surrounded by 8 of the same neighbors. C1: 1 pixel
away from the focal pixel; S: Land cover of a single year.

C1M C1 and matched (M) land cover in 2016 and 2017. M: Only keep pixels
with the same CDL class in both 2016 and 2017.

C2S Only keep pixels surround by 24 of the same neighbors. C2: 2 pixels
away from the focal pixel; S: Land cover of a single year.

C2M C2 and matched (M) land cover in 2016 and 2017.

3.3.2. Sample Size Scenarios

Random Forest Classifiers perform better with larger sample datasets [43,44]. Tradeoffs for
better performance include higher cost in data collection and longer computational time. Although
previous studies have suggested that the sample dataset should represent about 0.25% of the total study
area [18,37], it remains unclear how smaller sample datasets might affect classifications. To explore this
issue, we examined the performance of RFC models using sample datasets at four different sizes of the
total county area: 0.01% (P01), 0.05% (P05), 0.15% (P15), and 0.25% (P25).
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3.3.3. Input Set Scenarios

We examined the performance of RFC model using four sets of input variables (Table 4) to
understand how well phenometrically-based and spectrally-based variables could be used in land
cover classification individually and in combination.

Table 4. Input variables for Random Forest Classifier (RFC) modeling.

Name Practice

CxQ Use only the 17 phenometrics from the Convex Quadratic model
HPLM Use only the 14 phenometrics from the Hybrid Piecewise Logistic Model

SPL Use only the 42 spectrally-based variables
CMB Use the combination of 73 variables from CxQ, HPLM, and SPL

3.4. Accuracy Assessment and Feature Importance of Random Forest Classifier

We evaluated RFC model accuracy assessment (model AA) using multiple metrics, including
producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA) [24], and two alternatives to
Cohen’s kappa, namely, kappa for location (k_L) and kappa for quantity (k_Q) [25]. Given fixed sizes for
all cover classes (or fixed proportional distribution), a higher k_L indicates larger areas of matched land
covers (or larger overlap between the predicted map and the reference). Given a fixed matched land
cover area, a higher k_Q indicates the more similar proportional distributions of the predicted map and
the reference. All accuracy metrics are reported for each tested scenario as average values of multiple
RFC models. In addition to the mean accuracy metrics, a nonparametric Mann–Whitney U test and an
equivalence test using two one-sided procedure (TOST) were performed to support cross-comparison
of RFC performance under different scenarios. For the TOST test, we chose an indifference zone,
measured by Cohen’s d, of (−0.35, 0.35). The chosen effect size lies between Cohen’s suggested values
for a small effect size of 0.2 and a medium effect size of 0.5 [45]. To understand the contribution of each
variable to the classification, the sum of Gini Importance (GI) was computed for each variable from
12,800 RFC models. A higher summation value of GI indicated a more important variable.

3.5. Ensemble Land Cover Maps from Multiple RFC Models

A total of 12,800 RFC predicted land cover maps were generated and divided into fourteen major
groups for comparison, including four types of sample pools, four types sample sizes, and six types of
input variable sets. Each major group was also separated by year (2016 or 2017) and source of input
data (ARD or HLS), resulting in 56 smaller groups. In each smaller group, the number of times a
particular cover type appeared at each pixel was counted (referred to as Count). Next, an ensemble
land cover map was generated for each group by assigning land cover for a particular pixel with
the cover type that had the highest count. We then compared those ensemble land cover maps with
the CDL.

3.6. Cross Comparison between Predicted Maps and the CDL

In addition to the accuracy assessment of the RFC output, we compared the predicted land
cover maps with the reclassified CDL. The cross-comparison was reported as the map accuracy
assessment (map AA). Although the CDL’s accuracy ranged from higher for commodity crops to lower
for non-agricultural classes, the CDL remains one of the more reliable land cover datasets for the
US. Thus, cross-comparison between our predicted maps and the reclassified CDL should provide
a good indicator of the accuracy of the ensemble land cover maps generated by the RFC. Note that
ARD, HLS predicted land cover maps, and the reclassified CDL are in different projections and/or
data. To allow cross-comparison, pixels from those datasets were co-registered to match perfectly
with each other. Because off-sets between the CDL and ARD in latitude and longitude directions are
small, co-registration between the two layers was just simple pixel snapping; ARD pixels were moved
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to match the CDL pixels in the nearest direction. For cross-comparison between the CDL and HLS
data, we examined four different adjustments to HLS pixels, moving the raster half pixel in up–right,
down–right, up–left, and down–left directions. The up–right adjustment, which yielded the highest
number of matched pixels between the CDL and HLS, was reported.

4. Results

4.1. Accuracy Assessment of RFC Models

Overall accuracy and kappa indices for the location and quantity of the 2016 RFC models are
summarized by sample pools and sizes in Table 5. The pairwise comparison of accuracy metrics
using the Mann–Whitney U and the TOST equivalence tests appear in Tables S3 and S4, respectively.
Generally, RFC models using C2 sample pools (2 pixels away from the evaluated pixel; C2S, C2M) had
significantly higher accuracy metrics than those using C1 sample pools (C1S, C1M) for all combinations
of year and data source. Sample pools that matched 2016 and 2017 land covers (M) yielded more
accurate RFC models than those based on land cover from only a single year (S). For all combinations
of year and data source, RFC models using larger sample size had significantly higher accuracy metrics.
We observed the largest improvements in accuracy metrics from P01 to P05 RFC models, with relative
increases of 4.1%, 1.7%, and 6.4% for OA, k_L, and k_Q, respectively. Larger increases in k_Q compared
to k_L indicated that improvement in model accuracy was mostly due to better quantity agreement of
P05 compared to P01 RFC models. In other words, proportional distributions of land cover classes
in P05 RFC models were generally closer to the CDL than those of P01 RFC models. P05 samples
were five times larger than P01 samples, which enabled better description for all classes, especially
minor cover types. Accuracy improvement from P05 to P15 RFC models was moderate, with relative
increases of 1.7%, 1.1%, and 1.8% for OA, k_L, and k_Q, respectively. Relative differences in accuracies
of P15 and P25 RFC models were minor, less than 0.6% for all three metrics. Among RFC models using
different input datasets, models using phenometrics (CxQ and HPLM) had the lowest accuracy metrics.
There was no obvious choice between the 2016 RFC models using CxQ versus HPLM; the HPLM
RFC models performed better on ARD data and the CxQ RFC models better on HLS data. For 2017
data, the HPLM RFC models slightly edged CxQ RFC models with less than 1% higher OA (Table S2).
Although differences in 2017 OA between CxQ and HPLM RFC models were statistically significant in
the Mann–Whitney U tests, the TOST equivalence tests indicated that the differences were within a
user-defined indifference zone (i.e., the two models were equivalent). Spectrally-based RFC models
(SPL) were more accurate than the phenometrically-based RFC models, with approximately 3% higher
OA, relatively. Unlike the sample size scenarios, improvement in SPL RFC models mostly came
from better location of pixels (small change in proportional distribution) shown by a higher relative
increase in k_L (approximately 5%) compared to k_Q (approximately 1.7% and –3.2% in 2016 and
2017, respectively), indicating that locations of land covers were described more accurately using
spectral information. More importantly, RFC models with combined variables (CMB) consistently
outperformed RFC models using solely spectral variables (SPL) or phenometrics (CxQ or HPLM).
Similar results were found for the 2017 data (Table S2).
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Table 5. Overall accuracy (in percent) and kappa indices for location and quantity of 2016 RFC models
summarized by sample pools, sample sizes, and input variables. A particular scenario (current row)
was compared to a scenario right above it (above row) using the nonparametric Mann–Whitney U test
and the TOST equivalence test. The null hypothesis of the U test is that a random accuracy metric
of the first scenario (above row) will be less than a random accuracy metric of the second scenario
(current row). Significance levels of the U test are indicated by ***, **, and * for p-values of less than
0.001, 0.01, and 0.05, respectively. NS stands for “not significant”. Results of the TOST equivalence test
are highlighted in light blue for “not equivalent” and light yellow for “equivalent”. Full pairwise
comparisons are provided in Tables S3 and S4.

ARD HLS
Scenario

OA k_L k_Q OA k_L k_Q

Sample
Pool

C1S 88.8 0.904 0.917 86.8 0.884 0.906
C1M 90.7 *** 0.923 *** 0.926 *** 88.7 *** 0.904 *** 0.914 ***
C2S 90.4 NS 0.921 NS 0.924 NS 89.4 *** 0.909 ** 0.921 ***
C2M 91.8 *** 0.935 *** 0.932 *** 90.7 *** 0.922 *** 0.927 ***

Sample
Size

P01 87.1 0.906 0.877 84.8 0.883 0.862
P05 90.5 *** 0.919 *** 0.929 *** 89.0 *** 0.903 *** 0.922 ***
P15 91.8 *** 0.927 *** 0.944 *** 90.6 *** 0.914 *** 0.940 ***
P25 92.3 *** 0.931 * 0.949 *** 91.2 *** 0.919 ** 0.945 ***

Input Set

CxQ 86.8 0.879 0.914 86.0 0.871 0.911
HPLM 88.6 *** 0.900 *** 0.919 NS 85.2 NS 0.867 NS 0.898 NS

SPL 92.2 *** 0.943 *** 0.927 *** 91.0 *** 0.928 *** 0.925 ***
CMB 94.1 *** 0.961 *** 0.938 *** 93.4 *** 0.953 *** 0.936 ***

Table 6 and Table S5 show producer’s and user’s accuracies for the RFC models using C1S and
C2M sample pools (the worst and the best sample pool scenarios based on the results in Table 5 and
Table S2). Between C1S and C2M RFC models, relative differences in both producer’s and user’s
accuracies were less than 2.5% for corn, soybean, and water classes. Those three classes were also higher
accuracy classes. C2M RFC models had relatively higher producer’s and user’s accuracies than C1S
RFC models in all other classes, including wheat (4.6–12.5%), alfalfa (11.4–16.3%), barren/developed
(6.7–18.4%), wetland (16.6–20.4%), and other crops (90–356%). Compared to corn, soybean, and water,
the other cover types have more complicated aggregates of phenological and spectral characteristics
that make mapping more difficult. For example, barren/developed includes both vegetated (lawn,
garden) and non-vegetated (barren, impervious surface) land covers. In addition, minor crops and
non-agriculture classes are likely to have lower accuracy in the CDL compared to corn and soybean
(commodity crops) or to open water (distinct spectral characteristics), resulting in lower accuracy in
the training and validating data. Nevertheless, all improvements from C1S and C2M RFC models
were statistically significant (Table S6). However, differences in PA/UA of corn, soybean, water and
barren/developed were generally within the indifference zones (or no obvious improvements were
observed for those classes).
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Table 6. Producer’s and user’s accuracies (in percent) of 2016 RFC models using C1S and C2M sample
pools. Significance levels of the U test (C1S < C2M) across rows are indicated by ***, **, and * for p-values
of less than 0.001, 0.01, and 0.05, respectively. NS stands for “not significant”. Results of the TOST
equivalence tests across rows are highlighted in light blue for “not equivalent” and light yellow for
“equivalent”.

Producer’s Accuracy (%) User’s Accuracy (%)

ARD HLS ARD HLSLand Cover

C1S C2M C1S C2M C1S C2M C1S C2M

Corn 94.6 95.7 *** 91.2 92.6 *** 94.8 95.9 *** 89.8 91.5 ***
Wheat 75.4 78.6 *** 70.2 74.4 *** 84.4 90.2 *** 82.0 89.1 ***
Alfalfa 73.5 82.6 *** 69.3 79.9 *** 83.7 91.2 *** 79.8 89.6 ***
Soybean 95.4 96.6 *** 90.3 92.1 *** 93.6 95.2 *** 90.4 92.2 ***
Other Crops 11.2 50.9 *** 15.3 55.0 *** 35.8 70.2 *** 46.6 71.0 ***
Water 97.4 98.3 *** 96.2 98.2 *** 97.5 97.6 *** 96.3 96.9 ***
Barren/Dev. 55.1 60.9 *** 47.4 56.1 *** 77.0 79.0 *** 72.4 75.9 ***
Forest 87.7 94.0 *** 84.3 94.5 *** 86.7 91.1 *** 84.8 92.4 ***
Grassland 93.0 94.9 *** 93.6 96.1 *** 84.9 88.6 *** 85.6 90.4 ***
Wetland 66.8 79.2 *** 73.9 87.7 *** 74.2 84.4 *** 76.3 87.5 ***

Between the least accurate and the most accurate sample size scenarios (P01 versus P25 RFC
models), relative differences in water were less than 2.3% (Table 7, Table S7), likely due to very distinct
spectral responses of water compared to other covers. Relative improvements in PA/UA of major
classes (corn, soybean, and grassland) were also minor (less than 5%), as there were already many
training pixels in each class even with the smallest sample size. However, increases in both PA and
UA of those classes were statistically significant (Table S6). Both producer’s and user’s accuracies
improved significantly for minor crops and non-agricultural cover types (10–70% relative higher
PA/UA), including wheat, alfalfa, other crops, wetland, and barren/developed. Considering that minor
cover types have mixed spectral and phenological characteristics, larger sample sizes would allow
those classes to be described more thoroughly in the training, thereby improving accuracies.

Table 7. Producer’s and user’s accuracies (in percent) of 2016 RFC models using P01 and P25 sample
sizes. Significance levels of the U test (P01 < P25) across rows are indicated by ***, **, and * for p-values
of less than 0.001, 0.01, and 0.05, respectively. NS stands for “not significant”. Results of the TOST
equivalence tests across rows are highlighted in light blue for “not equivalent” and light yellow for
“equivalent”.

Producer’s Accuracy (%) User’s Accuracy (%)

ARD HLS ARD HLSLand Cover

P01 P25 P01 P25 P01 P25 P01 P25

Corn 94.1 96.2 *** 89.8 93.6 *** 93.0 96.7 *** 87.4 92.6 ***
Wheat 58.1 87.4 *** 49.6 85.0 *** 84.5 90.2 NS 80.6 89.0 NS

Alfalfa 61.9 87.9 *** 55.0 86.5 *** 75.2 92.9 NS 69.9 92.0 NS

Soybean 94.6 96.8 *** 88.5 92.8 *** 92.2 96.1 *** 87.9 93.6 ***
Other Crops 7.1 48.3 *** 9.1 55.9 *** 7.0 84.7 *** 9.0 89.5 ***
Water 97.5 98.5 NS 97.0 97.9 NS 97.4 97.8 NS 96.1 96.8 NS

Barren/Dev. 49.6 64.2 *** 38.8 58.9 *** 72.5 81.7 ** 66.0 78.9 ***
Forest 86.6 93.4 NS 84.5 92.8 NS 85.3 91.6 NS 84.7 91.6 NS

Grassland 92.6 94.7 *** 93.7 95.7 *** 83.7 88.5 *** 84.8 90.1 ***
Wetland 64.8 77.6 *** 74.5 84.5 *** 72.8 83.5 *** 74.6 86.3 ***

Table 8 and Table S8 show the PA/UA of RFC models using different sets of input variables. SPL
RFC models generally performed better than CxQ and HPLM RFC models in most classes, including
the three dominant cover types, which were corn, soybean, and grassland. However, only increases in
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non-crop types were significant (Table S9). Compared to phenometrically-based models, SPL RFC
models were much more accurate in barren/developed, forest, and wetland. On the other hand, CxQ
and HPLM RFC models yielded higher PA/UA values for wheat and other crops. Among all scenarios,
RFC models that consistently used a combined set of variables had the highest accuracy metrics.
The CMB RFC models overcame weaknesses of both SPL RFC models (wheat and other crops) and
phenometrically-based RFC models (barren/developed) (Table 8 and Tables S8, S10, S11).

Table 8. PA/UA in percent (%) of 2016 RFC models summarized by sets of input variables. A certain
scenario (current column) was compared to a scenario on the left (left column) using nonparametric
Mann–Whitney U and TOST equivalence tests. The null hypothesis of the U test is that a random
accuracy metric of the first scenario (left column) will be less than a random accuracy metric of the
second scenario (current column). Significance levels of the U test are indicated by ***, **, and * for
p-values of less than 0.001, 0.01, and 0.05, respectively. NS stands for “not significant”. Results of TOST
equivalence tests are highlighted in light blue for “not equivalent” and light yellow for “equivalent”.

ARD HLS
Metrics

CxQ HPLM SPL CMB CxQ HPLM SPL CMB

PA_Corn 93.0 93.8 *** 96.0 *** 98.0 *** 89.5 90.0 *** 93.2 *** 95.6 ***
PA_Wheat 79.3 75.5 NS 66.1 NS 89.1 *** 75.6 71.8 NS 60.0 NS 83.2 ***
PA_Alfalfa 63.6 87.0 *** 80.8 NS 84.0 *** 61.1 85.0 *** 77.6 NS 79.9 ***
PA_Soybean 93.2 95.2 *** 97.3 *** 98.5 *** 87.0 88.4 *** 94.2 *** 95.7 ***
PA_Other Crops 36.2 34.2 NS 14.1 NS 32.6 *** 34.9 36.7 NS 31.3 NS 36.6 **

PA_Water 94.5 98.8 *** 99.6 *** 99.5 NS 93.7 97.3 *** 99.6 *** 99.5 NS

PA_Barren/Dev. 40.2 48.3 *** 73.2 *** 72.6 NS 37.3 40.6 *** 64.6 *** 62.5 NS

PA_Forest 82.8 89.2 *** 95.9 *** 96.4 * 80.3 88.7 *** 95.2 *** 95.5 NS

PA_Grassland 91.1 92.5 *** 95.8 *** 96.3 *** 93.7 92.6 NS 96.1 *** 97.4 ***
PA_Wetland 68.4 67.7 NS 77.5 *** 78.9 *** 84.0 64.6 NS 86.0 *** 89.4 ***
UA_Corn 92.0 94.3 *** 97.1 *** 98.1 *** 86.0 87.2 *** 94.4 *** 95.6 ***
UA_Wheat 88.4 88.5 * 82.1 NS 92.6 *** 88.5 84.7 NS 77.6 NS 92.3 ***
UA_Alfalfa 79.5 88.8 NS 89.4 *** 93.7 *** 78.3 87.8 NS 87.5 *** 89.5 ***
UA_Soybean 92.4 95.4 *** 93.1 NS 97.2 *** 89.3 91.4 *** 90.4 NS 94.8 ***
UA_Other Crops 52.9 59.3 *** 42.4 NS 62.7 *** 56.2 58.4 NS 59.7 *** 64.3 *

UA_Water 93.3 97.7 *** 99.8 *** 99.7 NS 92.3 94.3 *** 99.7 *** 99.4 NS

UA_Barren/Dev. 61.1 67.1 *** 93.0 *** 92.1 NS 56.3 62.1 *** 89.9 *** 88.2 NS

UA_Forest 83.6 85.1 *** 93.5 *** 94.5 ** 83.0 85.2 *** 92.9 *** 94.2 ***
UA_Grassland 83.6 84.4 *** 89.5 *** 89.5 NS 88.1 83.1 NS 90.2 *** 91.2 ***
UA_Wetland 73.2 73.2 NS 84.4 *** 87.5 *** 79.6 72.6 NS 86.5 *** 90.1 ***

4.2. Variable Importance

Table 9 presents the top ten important variables for the phenometrically-based RFC models.
For CxQ RFC models, the three fitted parameter coefficients, HTV, and minx were consistently in
the top six most important variables. All three CxQ parameter coefficients (α, β, γ) contributed
significantly to the classification, as the entire EVI2 pattern of the growing season can be described
with these three values. The three fitted parameter coefficients of the CxQ model followed the same
rank order (α→ β→ γ, in order of decreasing importance) for all four combinations of year and data
source, indicating that phenological characteristics did not contribute equally to the classification.
Alpha (α) was consistently ranked as the most important variable among three parameter coefficients
as well as all other CxQ variables, indicating that peak fitted EVI2 is a main driver of this classification.
Note that α, PHCxQ, and ymax—which represent, respectively, the constant component of the quadratic
curve, the max fitted EVI2, and the max observed EVI2—are correlated to each other, because these
variables all refer to the highest EVI2 value over the growing season. Thus, the contribution of
one variable to classification lowers the contributions of the other variables. Nevertheless, PHCxQ

and ymax also consistently appeared in the sixth and seventh places. The second-ranked important
phenological property was the rate of green-up controlled by beta (β), the fitted parameter coefficient
value. Both HTV and minx—the EVI2 value at half TTP and the AGDD value at the left end of the fitted
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curve in the first quadrant—were measurements on the first half of the growing season, indicating a
strong influence of the variables related to the initial green-up phase of seasonal growth.

Table 9. Top 10 most important variables of CxQ and HPLM RFC models. Variables highlighted in
light yellow are those that consistently appear in the top 6 most important variables (at least three

times over four-year data combinations). Bolded items are variables related to the initial green-up
phase of the seasonal growth.

CxQ RFC Models HPLM RFC Models
2016 2017 2016 2017#

ARD HLS ARD HLS ARD HLS ARD HLS

1 α α α α gri gri giMD giMD
2 β β HTV HTV giMD PHHPLM gre gri
3 HTV ymax r2 minx gre vi_sei gri gre
4 minx minx minx β PHHPLM giMD PHHPLM see
5 ymax HTV β r2 vi_gre vi_gre vi_gri PHHPLM
6 γ PHCxQ γ γ vi_sei vi_gri see vi_gri
7 PHCxQ o_fit ymax PHCxQ see gre DPHPLM vi_sei
8 r2 γ PHCxQ ymax vi_gri see vi_sei DPHPLM
9 TTPCxQ r2 o_per TTPCxQ seMD seMD vi_see vi_gre

10 o_fit o_all TTPCxQ o_per DPHPLM vi_seMD vi_gre seMD

For HPLM RFC models, PHHPL, gri, vi_gri, giMD, and gre—representing, respectively, the highest
fitted EVI2, DOY of green-up start, EVI2 at gri, DOY in the middle of green-up start and end, and DOY
of green-up end—were consistently in the top six most important variables. Similar to the CxQ RFC
models, the modeled peak EVI2 value is an important variable for HPLM RFC models. Moreover, gri,
vi_gri, giMD, and gre were also timings in the first half of the growing season, confirming the strong
influence of variables related to the initial green-up phase found with the CxQ RFC models.

In the spectrally-based RFC models, the contribution of SWIR-2 (S2) was striking; it appeared
twelve times (out of 20) in the top five most important variables (Table 10). Even though SPL RFC
models tended to perform slightly better than CxQ and HPLM RFC models (Table 5, Table 8), more
phenometrically-based variables were considered important for classification in the CMB RFC models
(Table 10). The LSP-related variables from CxQ (α, β, γ, HTV, minx) and HPLM (gri, giMD) consistently
appeared in the top ten most important variables in the CMB models. Together, phenometrics from
CxQ and HPLM appeared 31 times (out of 40) in the top ten most important variables. Consistent
appearances of HTV, minx, gri, and giMD as highly ranked important variables in the CxQ and HPLM,
as well as in the CMB RFC models, indicated that classification is driven by variables related to the
initial green-up phase of seasonal growth.
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Table 10. Top 10 important variables of SPL and CMB RFC models. In the SPL RFC models, spectral
variables in the top 5 that involved SWIR-2 bands are highlighted in light yellow . In the CMB RFC

models, spectral variables are highlighted in light blue and phenometrics from the CxQ and HPLM

are highlighted in light orange and light green , respectively. Bolded items are variables related to
the initial green-up phase of the seasonal growth.

SPL RFC Models CMB RFC Models
2016 2017 2016 2017#

ARD HLS ARD HLS ARD HLS ARD HLS

1 P20_S1 P20_B P20_S1 P20_B P20_S1 α P20_S1 α

2 P20_S2 P80_S2 P80_S2 P20_S2N giMD P20_B α giMD
3 P80_S2 P80_N P20_S2 P80_S2 α β P20_S2 HTV
4 P20_S2R P80_S2G P80_S2G P20_R gri minx HTV minx
5 P80_S2G P20_G P20_N P80_S2G P20_S2 γ minx gre
6 P80_N P20_R P50_S2N P20_N β o_fit giMD β

7 P20_N P50_NR P20_R P20_G minx HTV gre P20_B
8 P20_S2G P50_NB P20_S2N P80_S2R HTV gri β gri
9 P80_S2R P80_S2R P50_S2 P20_S2R γ ymax γ P20_R

10 P50_NB P20_S2R P20_S2G P50_NR P20_S2R P20_G gri γ

4.3. Cross-Comparison between Predicted Land Cover Maps and the CDL

Table 11 and Tables S12–S15 show results of pixel-based comparisons between predicted land
cover maps and the CDL for different sample pools and sizes. The map OA are much lower than the
model OA (~80% versus ~90%). This result makes sense because, in the model AA, each RFC model
was optimized to a specific sample dataset (that likely does not fully describe characteristics of all
land cover classes). Then, each of these models was used to predict land cover for the much larger
area (the entire study area was about 800-20,000 times larger than the training data). Unlike model
AA, the pixel-based comparison between predicted land cover maps and the CDL (map AA) revealed
that the C1S RFC map agreed more with the CDL than the C2M RFC map. The cross-comparison
indicated that, even if we built excellent models from the sample data, we could expect considerable
“differences” in predicted land cover map compared to the “reference” cover map. RFC models trained
with larger sample sizes did yield better land cover prediction. Although improvement of OA in the
map AA (about 2% to 3% for ARD and HLS data, respectively) were not as large as those in the model
AA (about 6%), this result was expected because many more predictions were made to create the land
cover map (the entire study area) than in model AA (up to 0.25% of study area). Even a small increase
of the map OA (e.g., 0.1%) translates into a large area. A higher k_Q compared to k_L in all scenarios
indicated that the proportional distribution of predicted maps was quite close to the CDL and the
majority of classification errors came from misallocation of pixels.

Table 11. Pixel-based comparison between 2016 predicted land cover maps and CDL, summarized by
sample pools and sample sizes.

ARD HLS
Scenario

OA% k_L k_Q OA% k_L k_Q

Sample
Pool

C1S 80.8 0.820 0.878 77.9 0.782 0.875
C1M 80.4 0.819 0.868 77.4 0.777 0.871
C2S 80.4 0.819 0.867 77.4 0.779 0.866
C2M 80.1 0.817 0.863 77.0 0.780 0.857

Sample
Size

P01 78.9 0.808 0.853 75.5 0.776 0.828
P05 80.1 0.817 0.866 77.2 0.776 0.868
P15 80.7 0.821 0.872 78.0 0.783 0.874
P25 81.0 0.823 0.876 78.3 0.786 0.876
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Generally, SPL land cover maps had higher agreement with the CDL than the
phenometrically-based maps (Table 12 and Table S16). Similar to model AA, the SPL RFC map
clearly improved the accuracy regarding the barren/developed class but was not as accurate as CxQ and
HPLM RFC maps when it came to wheat. The land cover map created from CMB RFC models had higher
agreement with the CDL than those created with only spectrally-based or phenometrically-based
RFC models. Among all ensemble maps, CMB RFC maps were consistently the most accurate.
Compared to phenometrically-based and SPL, CMB maps improved PA and UA for both wheat and
barren/developed classes. It is also important to note that the barren/developed areas estimated from
the phenometrically-based maps were closer to CDL compared to values from the spectrally-based
maps. However, both PA and UA of barren/developed from the phenometrically-based maps were
lower, thus resulting in fewer correctly assigned pixels (Table 12, Figure 3).

Table 12. Pixel-wise comparisons between 2016 predicted land cover maps and CDL, summarized by
input variables. Land cover area is in km2.

ARD HLS
Land Cover Info. CDL

CxQ HPLM SPL CMB CxQ HPLM SPL CMB

Corn Area 662 674 636 613 641 701 699 615 644
UA 83.8 89.0 93.3 93.0 76.9 78.6 88.3 88.2
PA 85.4 85.5 86.5 90.1 81.6 83.1 82.0 85.8

Wheat Area 103 86 93 135 121 81 92 132 107
UA 81.9 80.0 48.9 69.1 79.6 75.0 45.4 71.9
PA 68.7 72.5 64.2 81.2 62.6 67.6 58.3 74.7

Alfalfa Area 45 29 36 33 31 28 37 34 33
UA 73.5 67.2 66.8 74.3 67.2 61.4 59.2 65.9
PA 47.5 54.5 48.3 51.9 41.7 49.9 45.0 47.9

Soybean Area 746 693 687 780 731 663 646 769 729
UA 87.2 91.1 85.0 90.7 83.3 87.0 81.2 86.2
PA 81.0 83.9 88.8 88.9 74.1 75.3 83.7 84.2

Other Crops Area 13 1 1 0 0 0 1 0 0
UA 0.0 61.2 0.0 0.0 0.0 60.8 0.0 0.0
PA 0.0 4.3 0.0 0.0 0.0 6.9 0.0 0.0

Water Area 154 122 120 126 121 124 125 131 126
UA 92.8 94.8 97.0 97.5 89.8 90.6 93.4 94.5
PA 73.2 74.1 79.5 76.9 72.5 73.6 79.6 77.4

Barren/Dev. Area 131 69 66 59 60 81 56 53 56
UA 25.5 29.2 52.9 50.6 19.9 23.4 43.5 39.8
PA 13.5 14.6 23.9 23.1 12.4 10.0 17.5 17.1

Forest Area 64 49 65 70 68 41 66 74 68
UA 57.2 56.4 64.8 65.6 58.7 54.3 56.4 60.2
PA 43.2 57.3 70.7 69.6 36.9 55.5 65.1 63.2

Grassland Area 761 872 903 886 916 899 931 917 940
UA 74.5 73.8 75.7 74.5 72.3 70.5 72.0 72.0
PA 85.5 87.6 88.2 89.7 85.5 86.4 86.7 88.9

Wetland Area 262 347 333 239 251 322 286 216 239
UA 35.9 35.3 56.1 53.1 40.9 36.9 58.1 54.5
PA 47.5 44.8 51.1 50.8 50.2 40.2 47.9 49.7

OA 74.6 76.4 79.1 80.8 71.7 72.4 75.5 77.7
k_L 0.748 0.775 0.806 0.821 0.718 0.726 0.763 0.782
k_Q 0.857 0.850 0.862 0.875 0.837 0.837 0.849 0.870
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The overall accuracies of ARD maps were greater than those of HLS maps by 1% to 3% (Table 11,
Table 12). A possible reason for the lower agreement between HLS and CDL is the difference in
projection of the two datasets. While HLS data was produced in the UTM projection for zone 14N
using Sentinel’s pixel geometry, both the CDL and ARD data were produced in the AEA projection
using Landsat’s pixel geometry. Although CDL and ARD pixels were not perfectly aligned (due to
re-projections while creating those products), offsets were only about 3 m in both the latitude and
longitude directions. On the other hand, offsets between HLS and CDL data were 15 m in each
direction. Re-projection and pixel co-registration to allow pixel-based comparison would negatively
affect cross-comparison between the CDL and HLS-based maps more than cross-comparison between
the CDL and ARD-based maps. The large offset between HLS and CDL pixels was observed in the
kappa indices for location and quantity. Compared to ARD-based maps, HLS-based maps had similar
k_Q but lower k_L values, especially in the more accurate maps, i.e., C1S, P25, and CMB (cf. Table 11,
Table 12), indicating that the proportional distributions of the two maps were similar, but HLS-based
maps had less accurate pixel allocation.

5. Discussion

5.1. Convex Quadratic Versus Hybrid Piecewise Logistic Modeling of LSP for Land Cover Classification

The hybrid piecewise logistic model (HPLM) was first designed to detect vegetation phenology
from MODIS time series [34]. The HPLM has a well-refined fitting algorithm, but strict requirements
regarding numerical and temporal distributions of observations [22,34]. On the other hand, the convex
quadratic model (CxQ) has recently characterized seasonal patterns of vegetated surfaces by
incorporating the use of MODIS LST 8-d composites at 1 km spatial resolution [11,46,47]. The fitting
algorithm and data requirements for the CxQ are more flexible than for the HPLM, due to fewer
parameter coefficients to estimate [18]. When data requirements were satisfied, the HPLM could fit
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the observed EVI2 pattern more precisely than the CxQ, leading to a higher classification accuracy.
However, when fewer observations were available, e.g., outside the Landsat sidelap zones, the CxQ
model could serve as a back-up algorithm in this temperate climate where temperatures constrain
the initiation and tempo of spring growth. The fundamental challenge for both CxQ and HPLM is
dealing with gaps in observations during the growing season, arising from few good observations
available in some years and/or over some areas. Although many observations were available for the
study area in both years (Figure S4), a lower minimum number of observations (at least ten) was
required to fit the HPLM in this study (compared to the fitting for MODIS data in [34] and for AVHRR
(Advanced Very High Resolution Radiometer) data in [35]) to generate a map without gaps. Even
within the Landsat sidelap zones, we were not always able to retrieve sufficient observations to fit
the LSP model [18]. However, the temporal density of observations could be increased by bringing
together complementary sensors. For example, our results show that Sentinel-2 data can be used with
Landsat ARD in a phenometrically-based classification. An alternative feasible solution may be to
leverage very high spatiotemporal but low spectral resolution data from a small satellite constellation
to fill any gaps [48].

5.2. Phenometrically-Based Versus Spectrally-Based Classification

Our hypothesis was that phenometrically-based RFC models would be more accurate than
the spectrally-based RFC models in vegetated cover types, at least for crops. However, the results
showed that the spectrally-based classification yielded slightly higher accuracy metrics (compared
to the phenometrically-based classifications) for most classes, including corn and soybean (Table 8).
One possible reason for this result is that both spectral and phenometric variables have their own
strengths in classification. Compared to spectrally-based RFC models, phenometrically-based RFC
models have an advantage of containing the seasonal information or timing of vegetation growth,
thus mapping wheat more accurately. However, the phenometrically-based RFC relied on vegetation
growth, as represented by the EVI2 time series calculated from the red and NIR bands. On the other
hand, spectral variables in spectrally-based RFC models contain far more spectral information from
multiple bands and normalized ratios that give the spectrally-based classification an edge in feature
separation. The rich information from input variables could help spectrally-based models to perform
better for most classes, including some vegetated covers (e.g., corn, soybean, wetland, and grass)
(Table 8 and Table S8). Analysis of important variables (Tables 9 and 10) also helps to explain the better
performances of spectrally-based models compared to phenometrically-based models. Both CxQ and
HPLM RFC classifications were strongly driven by the maximum fitted EVI2, as shown by the consistent
appearance of α as the most important variable in the CxQ RFC models (Table 9) and the appearance
of PHHPLM in the top five HPLM RFC models (Table 10). In the study area, all vegetated covers
can be classified effectively without seasonal information, except for wheat. A comparison between
phenometrically-based and spectrally-based classifications in an area with more complicated cropping
patterns (e.g., the wheat-fallow system used in the western Great Plains) might better demonstrate the
relative strengths and weakness of these complementary approaches. Nevertheless, the combination
of spectral and phenometric variables yielded the most accurate land use/land cover map.

5.3. Impact of Sample Size on Classification Accuracy

Our results confirmed previous findings that larger sample sizes would lead to better classification
and a sample size covering 0.25% of the study area would be adequate for a classification study [18,37].
However, in case of data scarcity, smaller sample sizes covering 0.15% and at least 0.05% of the study
area might provide acceptable results (cf. Table 5, Tables S7, S14, S15; [41]). Note that RFC models’
accuracy metrics and predicted land cover maps in this study were an ensemble of multiple RFC
models. In the case of having a single sample dataset for training and testing, classification may have
fairly higher or lower accuracy metrics than the expected value (Figures S1–S3).
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5.4. Trade-Offs between Randomness and Accuracy in Sample Dataset

Accuracies of sample pool scenarios in the model AA and the map AA are in opposite orders
(Tables 5 and 11). In model AA, C1S and C2M RFC models performed the worst and the best,
respectively. On the other hand, C1S RFC models displayed higher accuracy metrics than C2M RFC
models in map AA. To some extent, this result is reasonable. C2M RFC models have higher accuracy
metrics in model AA due to more accurate land cover information and higher spatial autocorrelation,
but they may have lower predictive power (lower OA in map AA), as some actual characteristics were
excluded at the edges. Although it might be necessary to improve the accuracy of the sample datasets
to compensate for the low accuracy of some CDL classes and the spatial offsets between HLS, ARD,
and CDL data, our results suggest that only minimum corrections (namely, the C1S sample pool) are
needed, since there was no improvement in accuracy of the predicted land cover map using sample
pools with higher levels of correction.

6. Conclusions

The focus of this study was to evaluate classification accuracy using different sets of input variables
derived from either Landsat ARD or HLS time series, including phenometrics generated from two land
surface phenology models (CxQ and HPLM), spectral variables, and the combined set of phenometrics
and spectral variables. Between the two phenometrically-based classifications, HPLM RFC models
exhibited slightly better accuracy but absolute differences in OA were minor (<1%), mostly due to
more precise pixel allocation of land cover. Compared to the phenometrically-based RFC models, the
spectrally-based RFC models yielded more accurate land cover maps, especially for non-crop cover
types. However, the spectrally-based RFC models could not classify wheat accurately. As hypothesized,
the most accurate RFC models were retrieved when using both phenometrics and spectral variables
as inputs. The combined-variable RFC models overcame weaknesses of both phenometrically-based
classifications (low accuracies for non-vegetated covers) and spectrally-based classifications (low
accuracies for wheat). The analysis of important variables indicated that classifications of the study
area were strongly driven by variables related to the initial green-up phase of seasonal growth and
highest EVI2 over the growing season.

We explored land use/land cover classification under different sample pool and sample size
scenarios. First, to improve the land cover accuracy of the sample data, both spatial and temporal
filters were applied to compensate classification errors of the CDL and offsets between input datasets.
The results indicated that a sample pool with a minimum correction of land cover information yielded
the most accurate predicted map. Next, land cover classification was also tested with different sample
sizes. Although previous findings suggested that a sample size should cover at least 0.25% of the
study area to achieve an accurate (OA ≥ 0.90) land cover map, smaller datasets would be acceptable
for classification, but should not smaller than 0.05% of the study area, since classification accuracy
would decrease rapidly below that threshold.

Land surface phenology modeling requires a substantial number of good quality observations
over a year [49]; thus, it may be less suitable for areas with persistent cloud cover if only optical data
are available to characterize the LSP. However, the prospect of using phenometrics to enhance
land use/land cover classification is very promising. First, our results proved that the use of
phenometrics and spectral variables together yielded the most accurate classification and overcame
limitations of both phenometrically-based and spectrally-based classifications. Second, seasonality
information from all spectral band and ratio time series could be extracted to enhance classification
accuracy (e.g., [50]). Finally, the temporal resolution of satellite data can be improved by using
comparable sensor datastreams, e.g., Landsat and Sentinel-2, but substantial pre-processing is required
to achieve compatibility.



Remote Sens. 2019, 11, 1677 20 of 23

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/14/1677/s1.

Author Contributions: Conceptualization: L.H.N and G.M.H.; data curation and analysis: L.H.N; writing—draft:
L.H.N and G.M.H.; writing—review and editing: L.H.N and G.M.H.

Funding: This research was supported, in part, by NASA Land Cover Land Use Change program project
NNX14AJ32G, the Geospatial Sciences Center of Excellence at South Dakota State University, and the Center for
Global Change and Earth Observations at Michigan State University.

Acknowledgments: We would like to thank Xiaoyang Zhang and Jianmin Wang, Geospatial Science Center of
Excellence, South Dakota State University, for assistance with the HPLM fitting.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

AA Accuracy Assessment
AEA Albert Equal Area
AGDD Accumulate Growing Degree-Days
ARD Analysis Ready Data
CDL Cropland Data Layer
CxQ Convex Quadratic
DOY Day of Year
ETM+ Enhanced Thematic Mapper plus
EVI2 2-band Enhanced Vegetation Index
HLS Harmonized Landsat Sentinel-2
HPLM Hybrid Piecewise Logistic Model
LULC Land Use/Land Cover
LSP Land Surface Phenology
LST Land Surface Temperature
MODIS MODerate resolution Imaging Spectroradiometer
MSI MultiSpectral Instrument
NAD83 North American Datum 1983
NASS National Agricultural Statistics Service
NBAR Nadir-BRDF Adjusted Reflectance
NDVI Normalized Difference Vegetation Index
NLCD National Land Cover Database
OA Overall Accuracy
OLI Operational Land Imager
PA Producer’s Accuracy
RFC Random Forest Classifier
SR Surface Reflectance
TM Thematic Mapper
UA User’s Accuracy
USDA United States Department of Agriculture
UTM Universal Transverse Mercator
WGS84 World Geodetic System 1984
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