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Abstract: Differences between the wavelength band specifications of distinct sensors introduce
systematic differences into the values of a spectral vegetation index (VI). Such relative errors must be
minimized algorithmically after data acquisition, based on a relationship between the measurements.
This study introduces a technique for deriving the analytical relationship between the VIs from two
sensors. The derivation proceeds using a parametric form of the soil isoline equations, which relate
the reflectances of two different wavelengths. First, the derivation steps are explained conceptually.
Next, the conceptual steps are cast in a practical derivation by assuming a general form of the
two-band VI. Finally, the derived expressions are demonstrated numerically using a coupled leaf and
canopy radiative transfer model. The results confirm that the derived expression reduced the original
differences between the VI values obtained from the two sensors, indicating the validity of the derived
expressions. The derived expressions and numerical results suggested that the relationship between
the VIs measured at different wavelengths varied with the soil reflectance spectrum beneath the
vegetation canopy. These results indicate that caution is required when retrieving intersensor VI
relationships over regions consisting of soil surfaces having distinctive spectra.

Keywords: spectral vegetation index; multiple sensors; intersensor; VI relationship; soil isoline
equation

1. Introduction

Environmental studies often require data records spanning several decades of time intervals
to validate a research hypothesis. Because the designed lifespan of an Earth observation satellite
is generally about five years, long-term data records usually comprise multiple datasets acquired
using several Earth observation satellites. Therefore, intersensor calibrations among the past, current,
and future satellite sensors play an important role [1] in determining the quality of such data.

A primary purpose of intercalibration processes is to minimize biases caused by differences in
the sensor specifications, such as, but not limited to, the spectral response functions [2–5], the spatial
resolution [6–9], and the illumination geometries [10,11], in addition to differences in the absolute
calibration of the systems [12], algorithms used for parameter retrievals, and atmospheric correction
schemes [13]. Significant efforts have been devoted to understanding the mechanisms underlying such
complex processes [14,15].

The intercalibration of radiances and/or reflectance spectra obtained from two similar instruments
has been conducted [16–18], and several techniques have been proposed to minimize certain bias
variations among the sensors [2,4,18]. The differences among reflectance spectra obtained from different
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sensors have been examined using images acquired nearly simultaneously [19–21]. The outputs from
one sensor have been plotted against the corresponding outputs from other sensors to characterize
the biases to some extent [22,23]. These studies often reach similar conclusions, for example, that the
relationship (or, rigorously, the coefficients that describe the relationship) between two spectral
vegetation indices (VIs) vary from site to site [17,21,24].

Recently, a series of intensive studies [25–28] and comprehensive review [29] regarding intersensor
calibration methods for VIs have been reported. These studies addressed clearly the importance of
resolving land cover dependencies upon intersensor calibration from a theoretical point of view.
Most remarkable was Fan et al. (2014) introducing and employing a theory of radiative transfer and
showing its potential as a feasible approach for intercalibration among multiple sensors [25,28,30,31].
Their work inspired us to further investigate the issue of land cover dependency over the intersensor
VI-to-VI relationships. This study mainly took an analytical approach to better understand the
dependency mechanism.

Several intercalibration studies in the land characterization discipline have selected VIs as an
example of satellite data products [28,32–37]. Because the VI has been used as a proximity measure of
biophysical parameters, the impacts of systematic errors due to differences in the band configuration
may be further propagated into the downstream data records. In fact, widely used indices, such as
the Normalized Difference Vegetation Index (NDVI) [38], can contribute to such biases [39–42]. Thus,
the selection of a VI, as an example, provides an initial and meaningful step toward tackling bias
reduction in data using complex algorithms.

Limiting our discussion to the investigation of the relationship between the VI values of different
sensors, one difficulty in this investigation involves the selection (and often identification) of a model
that provides a set of reflectance spectra under any desirable conditions. In any investigation based on
a numerical model, this selection depends simply on the parameter range covered by a model. On the
other hand, the availability of analytical and convenient models is very limited. One possibility is
to use the analytical relationship between two reflectances of different wavelengths, known as the
isoline equations [43–46]. The “soil isoline equatio”’ introduced in a previous study [47] is one such
choice [27,29].

Soil isolines introduce several advantages into investigations of the VI relationships, as discussed
elsewhere [48–50]. One advantage to this approach is that it can clarify the influences of the pure soil
reflectance spectrum on the intersensor VI relationship. Because the soil isoline is a set of reflectance
spectra obtained from canopies with a constant soil content, any relationships along a soil isoline
can be purely attributed to a specific soil spectrum. Another advantage is that the use of the isoline
enables the derivation of the relationship between two VI values obtained from different sensors.
Two VIs may be related directly by eliminating the reflectance variables from a system of equations.
One such example has been introduced elsewhere [51]. Soil isolines are good candidate measures for
examining sensor-to-sensor variability. The advantages of the soil isoline equations may provide a new
perspective on the intersensor calibration of VIs, to which this study contributes.

The purpose of this study is to clarify the influences of the soil reflectance spectrum on the biases
that exist when two sensors capture the same target spectra at different wavelengths. To this end,
we set three objectives: First, we derived a relationship between two VI values measured from different
sensors based on the recently introduced soil isoline equations. Second, we validated the derived
results using a radiative transfer model to describe the coupling between the vegetation canopy and
leaf reflectance. The third objective was to identify the dependencies of the derived relationships on
the soil reflectance spectra obtained using both analytical and numerical approaches.

The use of the soil isoline for the intercalibration of VI data has been examined briefly in
pilot studies [52–55], which indicated that the soil isoline equation may provide good insights into
the intersensor spectral differences. This study attempts to further advance the derivation and
numerical validation studies. The theoretical background will be explained in Section 2. Then,
we introduce the derivation steps conceptually without using any numerical models in Section 3.
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Some practical considerations are provided in Section 4. The results of numerical experiments are
presented in Section 5. Finally, the discussion and conclusions summarize our findings in Sections 6
and 7, respectively.

2. Background

A soil isoline is defined as a set of reflectance spectra, primarily in the red and near-infra red
(NIR) reflectance subspaces, obtained by assuming fixed soil surface conditions beneath a vegetation
canopy. Such isolines may be simulated using a radiative transfer model of the vegetation canopy,
e.g., PROSAIL [56–58]. The conditions assumed during the simulation comprise a fixed soil spectrum
that creates a set of spectra considered to be an isoline. Soil isoline equations comprise a system
of equations that describe the relationship between the red and NIR reflectances, along with a soil
isoline [47,59]. A formal derivation of the soil isoline has been described in previous studies [47].
Below, we simply summarize the derived isoline equation.

2.1. Soil Line Concept in the Red-NIR Reflectance Subspace

The isoline derivation requires a soil line [60], which is a well-established concept. A soil line is
essentially a zero-vegetation isoline [61] and is often represented using a linear form of the relationship
between the red (Rsr) and NIR reflectances (Rsn) of the soil surface,

Rsn = s0 + s1Rsr, (1)

where s1 and s0 are the slope and offset, respectively. The slope of a soil line is used as information for
calculating the parametric representation of soil isoline equations, which is mentioned below. Here,
the angle is defined.

θ = arctan(s1). (2)

2.2. Soil Isoline Equation in the Red-NIR Reflectance Subspace

According to the derivation steps described in Taniguchi et al. [47], the form of the soil isoline is
expressed as a parametric representation between two reflectances. Through this study, reflectance
vector ρρρ stores red (ρr) and NIR (ρn) reflectance spectra. The derivation process of parametric
representation for soil isolines is summarized in Appendix A. The final form is expressed as a product
of a matrix and vector:

ρρρ = Sρρρ′n , (3)

where S represents a matrix whose elements are functions of soil brightness, and ρρρ′n represents a vector
whose elements are series of a parameter ρ′n, which is a transformed NIR reflectance. The above
equation is equivalent to following form:

ρρρ =
(

ccc0, ccc1, · · · ccci, · · ·
)


1
ρ′n
...

ρ′in
...

,


(4)
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where the vector ccc for the ith order terms, ccci, in matrix S is constructed as two coefficients, namely αi
and βi (ccci = (αi, βi)

t), which are defined as(
αi
βi

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
pi
δ1i

)
+

(
0

s0δ0i

)
, (5)

with the Kronecker delta δ. The coefficients pis are obtained from a series of numerical simulations
carried out using canopy radiative transfer models. The pis depend only on the soil surface reflectance.
Because the red and NIR reflectances of the soil surface assumed during the derivation and numerical
simulation can be described by the soil line represented in Equation (1), the only parameter that
characterizes the pi values is either Rsr or Rsn in Equation (1) in this study. The details of the derivation
are summarized in Appendix A.

The derivation of the intersensor VI relationships introduced in this study depends on the
parameter ρ′n. Although ρ′n is simply a parameter in the soil isoline equations (Equation (4)), its meaning
in the derivation of the soil isoline equations was explained in our previous study [47]. The definition
of ρ′n is equivalent to the difference VI (DVI) [62] or, more rigorously, to the weighted DVI (WDVI),
fully accounting for the soil line slope and offset [63].

2.3. A General Form of the Assumed VI Model

A general form of the VI equation was employed in this study to cover a variety of two-band VI
models. We employed a form expressed as the ratio of two linear sums of the red and NIR bands with
a constant term. This form may be expressed by

v = F(QQQ, ρρρ) (6)

= q0
qqqUρρρ + qU

3

qqqDρρρ + qD
3

, (7)

where v represents a VI value, and a vector QQQ is composed of seven coefficients specific to each VI
model. Note that the row vector qqqz = (qz

1, qz
2) with index z meaning U or D is defined to simplify

its representation. The coefficients are determined by the specific choice of VI, such as the NDVI;
hence, these values characterize the performances of the VIs. The derivation of the intersensor VI
relationships will be introduced based on this general form. Although this form cannot cover all
two-band VIs, some of the used two-band VIs may be represented by choosing the coefficients of QQQ.
Several examples of well-known VIs are summarized in Table 1.

Table 1. The seven coefficients of QQQ provide a generalized form of the ratio-based two-band vegetation
indices (VIs). Note that the vector qqqz = (qz

1, qz
2) of Equation (7) (where z represents U and D) is defined

to simplify the VI representation.

v q0 qU
1 qU

2 qU
3 qD

1 qD
2 qD

3

NDVI 1 −1 1 0 1 1 0
DVI 1 −1 1 0 0 0 1
SAVI 1.5 −1 1 0 1 1 0.5
EVI2 1.5 −1 1 0 2.4 1 1

3. Derivation Steps for Obtaining the Intersensor VI Relationships

This section symbolically describes the derivation steps applied to obtain the intersensor VI
relationships based on the soil isoline equations. The derivation involves the non-unique choice of
variables and relationships and the consideration of several terms in the derivations of individual
cases. A variety of choices during the derivation can decrease the clarity of the model. These choices
may be avoided by implementing the symbolic form introduced in this section.
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This study assumed that the sensor differences were attributed only to the wavelengths during
the derivation and numerical simulations. Our intention was to eliminate the influences of the spatial
resolution, the viewing and illumination geometries, and so on, from the influences of the sampling
wavelength. Similar approaches have been explored in our pilot studies [52–55].

The first step of the derivation involves the elimination of one of the two reflectances. This step
assumes that an intersensor VI relationship may be obtained from each soil isoline. In other words,
we are attempting to characterize the relationship along a soil isoline. This approach enables us to
use the relationship between the red and NIR reflectances expressed by Equation (4). This first step is
explained in the following subsection.

3.1. Relationship between the VI and ρ′n

In this subsection, we derive the VI along with a single soil isoline as a function of the parameter
ρ′n. This derivation may be performed simply by substituting the soil isoline equations, Equation (4),
into the red and NIR reflectances of the general form of the VI model equation, Equation (6). As a result,
Equation (6) becomes

v = Fv(QQQ, ρ′n). (8)

3.2. Symbolic Form of the Intersensor VI Relationship

In this subsection, we explicitly differentiate two sensors, denoted sensor A and sensor B. The VI
model equation, Equation (8), is applied to two sensors, indicated by the subscripts A and B throughout
this study. Two definitions of the VI model equations are used here:

vA = FvA(ρ
′
nA), (9)

vB = FvB(ρ
′
nB), (10)

where the vector QQQ is omitted for brevity.
Our goal is to directly relate vA and vB, defined by Equations (9) and (10). To this end, we will

require one condition in addition to Equations (9) and (10). From a physical point of view, the required
relationship is one that relates the variables of the two sensors. Our choice of condition is the
relationship between the parameters of sensor A (ρ′nA) and sensor B (ρ′nB), represented by

ρ′nB = fAB(ρ
′
nA). (11)

In summary, three relationships, Equations (9)–(11), were the key to the derivation of the
relationship between vA and vB.

Equation (9) was solved for vA symbolically,

ρ′nA = F−1
vA (vA). (12)

The relationship between vA and vB was given by

vB = FvB ◦ fAB ◦ F−1
vA (vA), (13)

where the circle “◦” represents the composition of functions. Equation (13) describes the relationship
between vA and vB, which is one objective of this study. This form may be further modified to relate
vB to the spectrum of the original sensor ρρρA by inserting Equation (6) into Equation (13),

vB = FvB ◦ fAB ◦ F−1
vA ◦ F(ρρρA). (14)
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Note that Equation (14) directly relates the reflectance spectrum of the original sensor (ρρρA)
to a VI value of the destination sensor (vB), which enables us to understand the derivation steps.
These derivation steps are summarized in the flowchart shown in Figure 1.
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Figure 1. Flowchart of the derivation steps used to obtain the intersensor vegetation index (VI)
relationships based on the soil isoline equations.

4. Practical Consideration of the Intersensor VI Relationship

The derivation explained symbolically in the previous section involves the inversion of one of
the functions, FvA. Thus, the analytical approach is restricted by the choice of function in practical
applications. Specifically, although FvA may be approximated using a geometric series, the order
of the polynomial is limited to a small number. Practical considerations must be addressed to
ensure model accuracy while limiting the order of the polynomial to relatively low values, preferably,
to first-order polynomials. This section addresses several points that should be treated carefully for
practical applications.

4.1. Treatment of Higher-Order Terms of Soil Isoline Equations

We used a simple analytical approach to achieve the derivation of the intersensor VI relationship.
The approach is based on an operation that separates linear and non-linear terms of soil isoline
equations. Let us redefine soil isoline equations as

ρρρ =
(

ccc0, ccc1

)
ρρρ′n,L +

(
ccc2, ccc3, · · ·

)
ρρρ′n,H , (15)

where ρρρ′n,L = t( 1, ρ′n ) and ρρρ′n,H = t( ρ′2n , ρ′3n , · · · ). One can concatenate tρρρ′n,L with tρρρ′n,H to
yield tρρρ′n.

In order to derive the soil isoline-based VI relationship, the present study deals with the
higher-order terms as a residual term.

εεε =
(

ccc2, ccc3, · · ·
)

ρρρ′n,H . (16)
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Because it is considered as a residual vector, the above higher-order term is included in the zeroth-order
term of the isoline equations.

ρρρ =
(

ccc0 + εεε, ccc1

)
ρρρ′n,L. (17)

Equation (17) can be interpreted as an implicit form of Equation (3), which is a matrix-vector
representation of soil isoline equations in the red-NIR reflectance subspace.

Subsequently, one can yield an equation corresponding to Equation (8) from Equations (6) and (17):

v = q0
γU∗

0 + γU
1 ρ′n

γD∗
0 + γD

1 ρ′n
, (18)

where

γz
i = qqqzccci + qz

3δ0i, (19)

γz∗
0 = qqqzεεε + γz

0. (20)

Recall that the vectors q0 and qqqz = (qz
1, qz

2) are both vegetation index model parameters. The former
variable is a scaling factor of the vegetation index, while the latter vector contains two elements,
with index z meaning U or D as its numerator and denominator part, respectively. The coefficients γz∗

0
are not generally constant due to the non-linear effect of ρ′n in the residual term against the variability
of the pixel condition.

Note that the second- and higher-order terms included in the zeroth-order term could be computed
numerically for the original sensor (sensor A) from the physical definition of the parameter ρ′n, which is
discussed in our previous work [47],

ρ′n = − sin(θ)ρr + cos(θ)(ρn − s0). (21)

Furthermore, the value of ρ′n obtained from the destination sensor, ρ′nB, could be estimated from the
known variable ρ′nA based on the relationship between ρ′nA and ρ′nB, as represented by the function
fAB of Equation (11).

Equation (18) is applicable to both sensor A and sensor B; however, the coefficients represented by
the γs are unique to each sensor because both coefficients are actually functions of the coefficients pi
and, hence, the values of αi and βi in the soil isoline equations, Equation (4). Therefore, Equation (18)
should be distinct from the equation obtained from the other sensors, as achieved using the subscripts
A and B for sensor A and sensor B, respectively. We now have

vA = FvA(ρ
′
nA) = q0

γU∗
0A + γU

1Aρ′nA
γD∗

0A + γD
1Aρ′nA

, (22)

vB = FvB(ρ
′
nB) = q0

γU∗
0B + γU

1Bρ′nB
γD∗

0B + γD
1Bρ′nB

. (23)

The inverse of FvA may be simply defined by solving Equation (22) for ρ′nA,

ρ′nA = F−1
vA (vA) =

−γD∗
0AvA + q0γU∗

0A
γD

1AvA − q0γU
1A

. (24)

This function will be used later in this section.
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4.2. Intersensor Relationship between the Parameter ρ′n

Our next step is to prepare the relationship between ρ′nA and ρ′nB, represented by the function fAB.
In this study, the relationship is represented as a polynomial with s separation of linear and residual
components. These assumptions on linkage between parameter ρ′n in soil isoline equations in red-NIR
space permits the following equations:

fAB(ρ
′
nA) =

∞

∑
i=0

uiρ
′i
nA (25)

= u0 + u1ρ′nA + εu (26)

= u∗0 + u1ρ′nA, (27)

where εu represents the second and higher order term, and u∗0 is defined by

u∗0 = u0 + εu. (28)

Recall that the relationship between the red and NIR reflectance spectra measured by a specific
sensor may be approximated by a soil isoline equation for a soil spectrum that remains constant
throughout the numerical simulations. The coefficients ui of Equation (25) depend on the soil spectrum
because ρ′n is defined along with a soil isoline whose coefficients show variation with the changes
of the soil spectrum. This analogy suggests that the accuracy of Equation (25) may be improved by
expressing the coefficients as functions of the soil spectrum.

4.3. Intersensor VI Relationship

According to the above two subsections, one can yield an intersensor VI relationship via the
composition of three functions shown in Figure 1. Before the description of the practical derivation
step, we introduce and define a list Gε to represent three residual terms, namely, vectors εεεA and εεεB
and a scalar εu. The vectors εεεA and εεεB represent residual terms of εεε in Equation (16) for sensor A and
B, respectively. The scalar εu is the residue in Equation (28). The definition of the list is represented
by Gε = (εεεA, εu, εεεB) throughout this study. Note that Gε is not a vector with a fixed length or having
a certain order of components. Rather, Gε simply represents a combination of the three residual terms.

From Equations (23), (24) and (27), the intersensor VI form is derived as a fractional form with
four functions of the residual list Gε:

vB = q0
ψUD∗(Gε)vA − q0ψUU∗(Gε)

ψDD∗(Gε)vA − q0ψDU∗(Gε)
, (29)

where four ψxy∗ functions with x and y for indices of U or D are written as the following expression.

ψxy∗(Gε) = γ
y
1A(γ

x∗
0B + γx

1Bu∗0)− γx
1Bu1γ

y∗
0A (30)

The residual terms in list Gε are implicitly included in γz∗
0A, γz∗

0B, and u∗0 . One can discriminate the
resultant function ψxy∗(Gε) into two types of variables. One type includes pure soil-dependent
variables, while another corresponds to reflectance-dependent variables. In other words, the latter is
the effect of higher-order terms in soil isoline equations in the intersensor VI relation model, which are
mathematically defined as elements of Gε in Equation (30). The effect in the VI relation model is
unavoidable factors propagated from soil isoline non-linearity under a separating operation for soil
isoline equations proposed in this study.

There are several characteristics in the derived VI relationship. The residual-based VI relationship
keeps its rational function under the condition that all the residual terms in Gε are zero. The finding
shows that the nonlinearity of the intersensor VI relationship obtained from soil isoline equations
without higher-order terms holds from a mathematical point of view. In contrast, such nonlinearity
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doe not occur for VI models whose coefficients is qqqD = 000. The VI group is the so-called distance-based
index, such as DVI, which meets ψDD∗(Gε = 000) = 0 from its definition.

It is the case that ψDD∗(Gε) is constant zero for the DVI; nevertheless, the other three coefficients
retain their unique isoline parameters. Therefore, it is worth noting that the potential for analysis of
relationships between distance-based indices derived from distinct sensors also remains, as well as
ratio-based indices such as NDVI.

4.4. Intersensor VI Relationship after Approximation of Gε

As the goal of the present study, we finally examine the effect on the approximation of higher-order
terms in soil isoline equations. The effect can be easily investigated by introducing an operation that
replaces residues, Gε with a function of ρ′nA. The operation may lead to a practical form of the
intersensor VI relationship. During the replacement of residues for sensor B (εεεB), it is necessary
to further replace ρ′nB as ρ′nA because we cannot use any product derived from reflectances of the
destination sensor B in operational cases.

When translation from observed data from sensor A to that from sensor B is performed,
residual sets need to be approximated as functions of ρ′nA. In this study, we deal with three types of
residual terms in ψxy∗(Gε) as introducing truncation orders N1 for soil isoline equations of Equation (4)
and N2 for a relationship between ρ′n in Equation (25). Appendix B is allocated for details on
their treatment.

The intersensor VI relationship after replacement of Gε with functions of ρ′nA is obtained as
the following:

v̂B = q0

ψUD
(N1,N2)

(ρ′nA)vA − q0ψUU
(N1,N2)

(ρ′nA)

ψDD
(N1,N2)

(ρ′nA)vA − q0ψDU
(N1,N2)

(ρ′nA)
, (31)

where

ψ
xy
(N1,N2)

(ρ′nA) = γ
y
1A((γ

x
0B + f x

εεεB(N1,N2)
(ρ′nA)) + γx

1B(u0 + fεu(N2)
(ρ′nA)))− γx

1Bu1(γ
y
0A + f y

εεεA(N1)
(ρ′nA)).

The derivation steps for three residual terms approximated by ρ′n,A, that is, f x
εεεB(N1,N2)

, fεu(N2)
, and

f y
εεεA(N1)

are described in Appendix B.

A special case is the relationship for N1 = N2 = 1. The scenario means that ψ
xy
(1,1)(ρ

′
nA) is

equivalent to ψxy∗(Gε = 000), where all four coefficients relating vA with vB are fully independent of
ρ′nA. In other words, the relationship is constructed by coefficients as a function of soil brightness,
Rs. Therefore, this drastic case has a clue to explaining the dependency of soil on the intersensor VI
relationship, which is an issue that the present study attempts to address.

5. Results of Numerical Simulations

This section demonstrates the validity of the relationships derived and introduced in this study.
All uncertainties associated with the spectral acquisition were eliminated by applying the framework
to a data set calculated numerically using radiative transfer (RT) models of the vegetation canopy and
leaf layers. The validity of the derived relationships was then investigated by comparing the VI values
of the two sensors to the VI values translated from the other sensor. The translation from the VI value
of one sensor to the value of the other sensor was performed by applying the relationship derived
using the coefficients computed from the coefficients of the soil isolines. The following subsections
describe the numerical simulation conditions (parameter settings) and obtained results.

5.1. Numerical Simulations of the Inter-VI Relationships

A combined leaf and canopy RT model, PROSAIL, was employed to simulate the top-of-the-
canopy (TOC) reflectance spectra under a variety of conditions. The numerically obtained TOC
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reflectance spectra were then used to simulate the band reflectances of four hypothetical sensors by
selecting different pairs of wavelengths as the red and NIR bands (shown below). One of the four
sensors was assigned as the “original” sensor (sensor A), the VI values of which were translated
into the values of the other three sensors (sensor B), denoted as the “destination” sensors during
the derivation.

The numerical simulations were conducted by selecting three different parameters to characterize
the VI differences. The first parameter was the leaf area index (LAI), a representative biophysical
parameter. The value of the LAI varied from 0 to 4.0 at 0.5 intervals. The second parameter was the
soil reflectance spectrum, which can disrupt the VI values. The soil reflectance spectra were obtained
by linearly combining the wet and dry soil spectra stored in the PROSAIL model. The third parameter
was the wavelength, which introduced differences in the band reflectances measured by the different
sensors, thereby producing differences in the VI values as well. The other parameters in the leaf model
PROSPECT and the canopy model SAIL were held constant during the experiments.

The parameters that characterized the leaf chemical content in the PROSPECT model were fixed
at the standard (average) values reported in [47]. The leaf angle distribution, an input of the SAIL
model, was fixed at a spherical distribution. Under these assumptions, the LAI was the only parameter
of biophysical properties in this study.

The band center wavelengths of the four hypothetical sensors were set to values equal to the
band center wavelengths of the GOSAT-CAI [64], LANDSAT8-OLI [65], Suomi NPP-VIIRS [66],
and Terra-MODIS [67,68]. The wavelength pairs of the red ρr and NIR bands ρn of the four hypothetical
sensors were (ρr, ρn) = (674, 870) for sensor A, (655, 865) for sensor B1, (672, 865) for sensor B2, and (645,
869) for sensor B3, in [nm]. Figure 2 shows the reflectance spectra and soil isolines retrieved from
sensor A in the red and NIR reflectance space. The figure shows good agreement among the retrieved
soil isolines, which will be used to translate the VI values. The detailed steps used to obtain the soil
isoline retrievals have been described previously [47].

Figure 2. Plots of the soil isolines (lines) represented by Equation (4) and numerically simulated
reflectance spectra (symbols) in the red and near-infra red (NIR) reflectance space in the range of
(−0.05 ≤ ρ′n ≤ 0.3). The three types of soil brightness for simulation are wet, intermediate, and dry
conditions, which correspond to circles, asterisks, and square marks, respectively. The soil isoline
was truncated at the fourth-order term (N1 = 3). The reflectance spectra simulated at a constant soil
brightness are denoted by the same mark.
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The translation of the VI values from one sensor to another sensor was performed by regarding
the CAI-like sensor (sensor A) as the original sensor, and the other three sensors (sensor B1, B2, and B3)
were the destination sensors. We considered three translation cases from sensor A (original) to sensors
B1, B2, and B3 (destinations). We labeled these three pairs of sensors as translation case 1, case 2,
and case 3, respectively. Again, the translation process involved translating a set of reflectance spectra
(of the two bands) from sensor A (CAI-like sensor); the VI values were then translated into sensor B1
(case 1), sensor B2 (case 2), and sensor B3 (case 3). The VI translation was performed in all cases simply
by using the derived VI relationships. The validity of the derived relationship was then evaluated
based on a comparison between the simulated VIs obtained from sensor B and the translated VIs
obtained from sensor A.

5.2. Dependence of the Coefficient ψ on Soil Reflectance

We firstly investigated the effect of soil reflectances on the intersensor VI relationship. In the
context of derivation results introduced in the present work, we distinguished two types of
translation coefficients. One is residual-based translation with ψxy∗(Gε), and another is its
modification/approximation by a usable parameter ρ′n with ψ

xy
(N1,N2)

(ρ′nA). The difference between two
coefficients is investigated to evaluate the effectiveness of the derived VI relationship after modification.

δ
xy
(N1,N2)

= ψxy∗(Gε)− ψ
xy
(N1,N2)

(ρ′nA) (32)

Figure 3 shows translation coefficients as a function of soil reflectance. In the figure, results of
the four coefficients represented by ψxy∗(Gε) for NDVI relations under three sensor pairs are plotted.
Solid lines and gray x marks depict trends of linear and nonlinear components of ψxy∗(Gε), respectively.
As shown in the figure, all four coefficients varied mostly linearly with the soil brightness variations.
In addition, one can see small residual-induced variations in individual soil brightness relative to those
of changing soil brightness conditions, except for ψDD∗ in case 2.
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Figure 3. Plots of the four coefficients represented by ψxy∗(Gε) for (gray cross) a residual list Gε and
(a black line) residual free (Gε = 000) for NDVI relations under (left) case 1, (center) case 2, and (right)
case 3 conditions.
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Solid lines for the y-axis on the left depict coefficients under the special condition of a residual
Gε as zero. It means there exists the effect of only pure soil variation in the function ψxy∗. In all
panels in the figure, a single line is observed because no vegetation variable is contained in the
component. As can be seen, differences in Equation (32) at the y-axis on the right side are relatively
small compared with pure the soil-oriented effect in intersensor VI relationship at that y-axis on the
left side. The comparison result of variation ranges implies the importance of soil consideration for
intersensor VI calibration.

Various truncation scenarios are also examined (Figure 4). Figure 4 shows a plot of differences
δ

xy
(N1,N2)

in Equation (32) for a sensor pair for case 1. The figure is constructed with four panels.
The panels located at the upper-left, upper-right, lower-left, and lower-right positions correspond
to δUD, δUU, δDD, and δDU, respectively. The individual panels show results for δxy with truncation
combinations (N1, N2). The gray, red, and green plots correspond to (N1, N2) that equals (1,2), (2,1),
and (2,2), and solid and dashed lines are for LAIs of 1.0 and 3.0, respectively. In either case, we observe
higher accuracy in the case of symmetric (2,2) compared to asymmetric cases such as (1,2) and (2,1).
This is expected from the fact that the accuracy of soil isolines depends on the order of polynomials.
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Figure 4. Differences of δ
xy
(N1,N2)

in Equation (32) for a sensor pair for case 1. The four panels located

at the upper left, upper right, lower left, and lower right correspond to δUD, δUU, δDD, and δDU,
respectively. The individual panels show results for δxy with truncation combinations (N1, N2) of (gray)
(1,2), (red) (2,1), and (green) (2,2), with solid and dashed lines for leaf area indices (LAIs) of 1.0 and 3.0,
respectively.

These results indicate that the intersensor VI relationship depended on the soil reflectance beneath
the canopy layer, a representative parameter of the land surface conditions. The implication of these
results are serious (and important): Whn determining the regression coefficients without accounting
for the variations in the soil spectrum, the intersensor VI model could suffer from the variations in the
soil spectrum.

5.3. Accuracy of the Derived Translation Function

The validity of the derived relationships with truncation orders, N1 and N2, were evaluated by
comparing the VI values of the two sensors before and after the translation. The VI value translated
from sensor A to sensor B was denoted by vB, which was computed according to Equation (29).
The aim of this section is to validate the derived expressions by confirming the accuracy improvement
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of vB after the translation from vA (hence vB). The comparison between (vA − vB) and (vB − vB) was
facilitated by representing the differences as εv and εv, respectively, such as

εv = vB − vA, (33)

εv = vB − vB, (34)

where vA is the VI value of the CAI-like sensor A, and vB represents the VI value obtained from
the destination sensors, namely, OLI-like sensor B1, VIIRS-like sensor B2, or MODIS-like sensor-B3.
The values of εv and εv were negative if the VI values measured using the original sensor (vA) and
the values obtained from the translated VI values (vB) exceeded vB. The latter case also indicated that
translation by Equation (29) overestimated the value of the destination sensor.

Figure 5 summarizes the plots of εv and εv for the NDVI as a function of a LAI characterized
by one of two different soil spectra (wet or dry conditions). The calculated values of εv and εv are
indicated by the gray area and lines, respectively. The differences between the soil reflectance spectra
of the wet and dry soils are represented by the solid and dashed lines, respectively. The upper three
plots correspond to case 1 (CAI vs. OLI) and retain terms N1 up to the first-, second-, or third-order
terms of a polynomial in the soil isoline equations, while red and green lines distinguish the other
terms N2 up to the first and third orders. The middle and bottom rows of the figure show the results
obtained from case 2 (CAI vs. VIIRS) and case 3 (CAI vs. MODIS), respectively.
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Figure 5. Plots of differences before (εv) and after translation (εv) for the NDVI as a function of the LAI.
Two types of soil spectra, wet and dry, are shown in solid and dotted lines. The gray lines represent
the variables defined by Equation (33) and corresponding to the left axis, and the red and green colors
corresponding to the left axis represent the variables defined by Equation (34) with N2 values of one
and two, respectively. The results obtained from different orders of the truncation terms are organized
in columns. From left to right, the columns present the results of the first-, second-, and third-order
approximations. The results for the cases of three sensor pairs are presented across the rows.
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This figure clearly shows that the translation error εv (lines) was smaller than the original
differences εv (gray colored zones) across nearly the entire LAI range in all cases. This fact indicates
the validity of the expression derived in this study.

A comparison of overall accuracy for sensor-to-sensor NDVI translations by intersensor
relationships obtained from various orders (N1,N2) is shown in Figure 6. The bar plot visualizes
trends of the root mean square error (RMSE) for overall LAI and soil mixture conditions. From the
figure, it is revealed that the translation performance enhances with increments of higher-order terms
taken into account in the translation. Furthermore, the translation performance becomes more stable
with both orders (N1 and N2) considered as second-order terms.
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Figure 6. Bar plot of root mean square error (RMSE) in log10 scale of NDVI translations obtained from
using polynomials of different orders in the soil isoline approximations between 0 to 4 for N1 and N2

for the sensor-pair of case 1. Dashed lines display the improvement of symmetric order cases.

The trends in the other VI models were investigated by creating similar plots for the SAVI,
EVI2, and DVI, as shown in Figure 7. These trends were similar to those obtained using the NDVI,
as observed in the SAVI for soil isolines approximated using a first-order polynomial (left column) or
a third-order polynomial (second-left column). The third column and the left column plot the results
obtained from the use of the EVI2 and DVI, approximated using third-order soil isolines, respectively.
Regardless of VI types, accuracy improvement is observed in the numerical simulation environment.

Table 2 summarizes the RMSE for the four VI values over the entire range of the LAI and soil
brightness. The table shows normalized values by the original difference for the five truncation
scenarios, along with the three cases individually. These results show that the original differences (ε)
decreased significantly after the translation (ε), especially increasing the retained terms of ρ′nA, thereby
validating the derived expressions.

Finally, we examined the land cover dependence on the derived intersensor VI relationships.
Figure 8 shows the normalized RMSE of NDVI under various combinations of chlorophyll content (20,
40, and 80 µg/cm2) and leaf angle distribution (planophile, erectophile, extremophile, and uniform
distributions). Although variation of errors under various conditions inner a canopy layer, such as
for chlorophyll and leaf angle distribution (LAD), was observed here, the error decreased as the
truncation order became higher. Thus, this implies some extent of land cover dependence on
translation accuracy, but the validity of the derived relationship is consistently shown in all results.
Further comprehensive investigations will be needed to further understand the land cover dependence
on the derived relationships.
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Figure 7. The plots presented in Figure 5 were calculated for the following VIs: SAVI, EVI2, and DVI.
The left column presents the results of the SAVI calculated using a first-order term. The second, third,
and right-hand columns present results of the SAVI, EVI2, and DVI, respectively, calculated up to the
third-order term. The influence of the truncation order for the SAVI was assessed by comparing the left
and center columns. The differences between the SAVI, EVI, and DVI cases were assessed by comparing
the other three columns.

Table 2. Normalized root mean square error in the derived translation functions (in percent).

VI Combination of Orders (N1, N2)
NDVI (1,1) (1,3) (3,1) (2,2) (3,3)

Case 1 20.6 9.6 15.5 1.9 0.6
Case 2 10.9 18.3 11.7 2.2 1.2
Case 3 17.3 5.3 12.6 1.3 0.3

SAVI (1,1) (1,3) (3,1) (2,2) (3,3)

Case 1 29.5 11.1 17.9 3.3 0.9
Case 2 12.1 6.2 11.7 2.9 1.1
Case 3 22.0 7.5 13.3 1.8 0.4

EVI2 (1,1) (1,3) (3,1) (2,2) (3,3)

Case 1 34.0 13.0 20.2 4.1 1.1
Case 2 13.6 6.3 13.3 3.5 1.3
Case 3 24.6 8.7 14.3 2.2 0.5

DVI (1,1) (1,3) (3,1) (2,2) (3,3)

Case 1 30.9 14.8 18.0 5.3 1.1
Case 2 12.4 3.6 9.9 3.2 0.7
Case 3 22.0 10.1 13.5 3.0 0.6
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Figure 8. Color plots of normalized root mean square error (RMSE) for NDVI translation error in
a sensor-pair for case 1. Results for three Cab values of 20, 40, and 80 in a leaf and four leaf angle
distributions (LADs—planophile, electophile, electophafile, and uniform) are displayed in logarithmic
scale on a basis value of 10.

6. Discussion

This study explained that the intersensor VI relationship varies with the soil reflectance spectrum
beneath the canopy layer. The mechanism by which this relationship varies may be inferred from the
fact that the four coefficients of the intersensor VI relationship may all be expressed as functions of
the soil reflectance spectrum, as a parameter. This analytical result shows the following important
facts: (1) a model of the intersensor VI relationship that does not address soil surface classification may
retrieve a relationship that suffers from soil surface spectrum variations within target regions; (2) the
retrieved intersensor VI relationship across a region characterized by a specific soil spectrum cannot
be directly applicable to other regions characterized by a different soil spectrum; (3) soil spectrum
estimates using any means must be accomplished prior to intersensor calibration when the calibration
is based on formulations similar to the expressions derived in this study.

A different approach to performing the intersensor calibration may rely on cross-calibrating
similar bands, one by one, measured in two sensors. This approach is by far the simplest, although it
has several disadvantages. First, the number of bands that must be cross-calibrated equals the
number of bands required by the algorithm employed. Doing so can unfortunately be difficult for
large numbers of bands. These cross-sensor band-to-band relationships vary with the land surface
conditions, depending on the canopy and soil spectrum. These dependencies present the major
obstacles to this type of cross-calibration. Recall that the intersensor calibration is not really the same
as the absolute calibration due to differences in the band configurations (band center and width
characterized by the spectral response functions). By contrast, the approach introduced in this study
requires only the relationships between ρ′nA and ρ′nB, instead of requiring all the relationships of similar
bands measured in the two sensors. The simpler approach described here is advantageous if a product
algorithm requires a greater number of bands.

One drawback to the present approach is that the accuracy of the derived relationship may depend
on the accuracy of the model of the relationship between ρ′nA and ρ′nB. This relationship is expressed
by a polynomial of ρ′nA and must be solved for ρ′nB afterward. The use of more suitable functional
forms might improve the accuracy of the intersensor VI relationship; however, such steps would
require additional approximations at some point during the derivation. From a practical perspective,
the accompanying loss of model simplicity reduces the practicality of the model. Therefore, there is a
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trade-off between practicality and accuracy in modeling a relationship between ρ′nA and ρ′nB. The choice
of relationship must be optimized for ρ′n, which would require a significant effort beyond the scope of
the present discussion. This matter is worth investigating in a separate study.

This study focused on the influence of the soil spectrum as a source of variation. The derived VI
relationships will also be influenced by the biophysical parameters. This issue should be investigated
thoroughly in a future study.

7. Conclusions

This study introduced an analytical technique for relating the VIs measured by two sensors.
The relationship was derived using the soil isoline equation, which consists of a set of reflectance
spectra obtained under a constant soil spectrum. First, the relationship between the VIs measured
by two sensors was explained conceptually. The conceptual relationship was applied to several
realistic cases by truncating the order of the polynomials used to describe the soil isoline equations.
Finally, the derived relationships were numerically examined using common radiative transfer models.
The results validated the derived expressions and the applicability of the truncations. The derived
VI relationships and the numerical results also indicated an important fact: that the intersensor
relationship among the measured VIs can be influenced by the soil reflectance spectrum. Although this
implication may be obtained from numerical simulations, the derivations introduced in this study
confirmed this fact analytically.

Further studies are needed to enhance the practicality of the proposed method by combining
estimation processing of translation parameters (soil reflectance in this study) with isoline-based
translation functions. Such efforts should be devoted mainly to solving the inverse problem of soil
isoline equations. This investigation is left to future studies.
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Appendix A. Parametric Representation of Soil Isolines in the Red-NIR Reflectance Subspace

A vector of reflectances over red and NIR bands, ρρρ = (ρr, ρn), is modeled under an assumption of
the soil line concept. The fist step to obtain the red-NIR relationship as a soil isoline is to transform the
reflectance axis.

ρρρ′ = ϕ(ρρρ) (A1)

The transform function ϕ from ρρρ to ρρρ′ was designed, in our previous paper, as an affine transformation
whose operations are shifting and rotating. Both operations are directly related to the intercept (s0)
and angle (θ) of the soil line:

ϕ(ρρρ) = T(−θ), (ρρρ− sss0) (A2)

where sss0 = t( 0, s0 ). Its inverse transformation of ϕ can be defined as

ϕ−1(ρρρ′) = T(θ)ρρρ′ + sss0. (A3)

The inverse function leads to a parametric representation of soil isolines after some modifications on
the term ρρρ′.
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Next, transformed red and NIR reflectances (ρρρ′) on a soil isoline are modeled as polynomials.

ρ′r =
∞

∑
i=0

piρ
′i
n (A4)

Note that this study uses the PROSAIL radiative transfer model under the soil line concept to simulate
transformed spectra ρρρ′ on soil isolines and to obtain coefficients pi. Furthermore, substitution of
Equation (A4) into Equation (A3) is performed to obtain soil isolines over ρρρ with parameter ρ′n:

ρρρ = T(θ)

(
∑∞

i=0 piρ
′i
n

ρ′n

)
+ sss0 (A5)

=

(
∑∞

i=0 αiρ
′i
n

∑∞
i=0 βiρ

′i
n

)
, (A6)

where coefficients αi and βi are stored as a coefficient vector defined simply, with the Kronecker delta
δ, as

ccci =

(
αi
βi

)
(A7)

= T(θ)

(
pi
δ1i

)
+

(
0

s0δ0i

)
. (A8)

Finally, rearrangement of the polynomial forms on the parameter ρ′n leads to a matrix-vector form
of Equation (3).

ρρρ =
(

ccc0, ccc1, · · · , ccci, · · ·
)


1
ρ′n
...

ρ′in
...


(A9)

= Sρρρ′n (A10)

Appendix B. Estimation of Residues Gε

For numerical evaluations, we represent three residual terms (εεεA, εu, εεεB) in Gε as functions of ρ′nA.
Substitutions of functions of ρ′nA to the residual list Gε are simply adopted to meet an operational
condition (reflectances from sensor B cannot be utilized). The replacement steps of terms of γz∗

0A, u∗0 ,
and γz∗

0B in residual terms Gε are explained below.

Appendix B.1. Approximation of γz∗
0A

We introduce ρ′n series by a certain truncation order N from 2 as ρρρ′n,H(N) so as to approximate
polynomials with nonlinear terms of ρ′n as follows:

γz∗
0A ≈ γz

0A + qz
1

(
α2A, α3A, · · · , αN1 A

)
ρρρ′nA,H(N1)

+qz
2

(
β2A, β3A, · · · , βN1 A

)
ρρρ′nA,H(N1)

(A11)

= γz
0A +

N1

∑
i=2

qqqzccciAρ′inA (A12)

= γz
0A + f z

εεεA(N1)
(ρ′nA), (A13)
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where N1 represents orders of soil isoline equations. fεεεA(N1)
is a function of ρ′nA with newly defined

coefficient γ′zi = qqqzccci as

f z
εεεA(N1)

(ρ′nA) =
N1

∑
i=2

γ′ziAρ′inA. (A14)

Appendix B.2. Approximation of u∗0

We deal with a residual for intersensor relations between ρ′n, namely u∗0 , as follows:

u∗0 ≈ u0 +
(

u2, u3, · · · , uN2

)
ρρρ′nA,H(N2)

(A15)

= u0 + fεu(N2)
(ρ′nA), (A16)

where N2 represents truncation orders of the intersensor relationship between ρ′n. The definition of
fεεεu(N2)

is simply shown as a function of ρ′nA:

fεεεu(N2)
(ρ′nA) =

N2

∑
i=2

uiρ
′i
nA. (A17)

Appendix B.3. Estimation of γz∗
0B

Residuals of εεεB in isoline equations for sensor B in γz∗
0B are more complex than the above two

types. This term has to be rewritten as two types of polynomial forms.
We start this estimation from the polynomial form of sensor B according to the results of the

approximation of γz∗
0A.

γz∗
0B ≈ γz

0B +
N1

∑
i=2

γ′ziBρ′inB (A18)

Subsequently, we apply the intersensor ρ′n relationship on ρ′nB so as to derive a translation function
with ρ′nA.

γz∗
0B ≈ γz

0B +
N1

∑
i=2

γ′ziB

[(
u0, u1

)
ρρρ′nA,L +

(
u2, u3, · · · , uN2

)
ρρρ′nA,H(N2)

]i
(A19)

= γz
0B +

N1

∑
i=2

γ′ziB

[
N2

∑
j=0

uiρ
′j
nA

]i

(A20)

The second term on the right-hand side is further represented by a function as

γz∗
0B ≈ γz

0B +
N1

∑
i=2

γ′ziB + f z
εεεB(N1,N2)

(ρ′nA), (A21)

where

f z
εεεB(N1,N2)

(ρ′nA) =
N1

∑
i=2

γ′ziB

[
N2

∑
j=0

uiρ
′j
nA

]i

. (A22)

There are several ways to compute the above function numerically. One way is to use a recursive
relationship. For example, the polynomial coefficients obtained by expanding the brackets of the above
definition can be computed based on a recursive relation of binomial expansion [69,70]. Specifically,
the polynomial coefficients can be determined as a summation of coefficient tables such as multinomial
triangles [69] using a multinomial theorem.
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