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Abstract: Fuel moisture content (FMC) is a crucial variable affecting fuel ignition and rate of fire
spread. Much work so far has focused on the usage of remote sensing data from multiple sensors to
derive FMC; however, little attention has been devoted to the usage of the C-band Sentinel-1A data.
In this study, we aimed to test the performance of C-band Sentinel-1A data for multi-temporal retrieval
of forest FMC by coupling the bare soil backscatter linear model with the vegetation backscatter water
cloud model (WCM). This coupled model that linked the observed backscatter directly to FMC, was
firstly calibrated using field FMC measurements and corresponding synthetic aperture radar (SAR)
backscatters (VV and VH), and then a look-up table (LUT) comprising of the modelled VH backscatter
and FMC was built by running the calibrated model forwardly. The absolute difference (MAEr) of
modelled and observed VH backscatters was selected as the cost function to search the optimal FMC
from the LUT. The performance of the presented methodology was verified using the three-fold
cross-validation method by dividing the whole samples into equal three parts. Two parts were used
for the model calibration and the other one for the validation, and this was repeated three times.
The results showed that the estimated and measured forest FMC were consistent across the three
validation samples, with the root mean square error (RMSE) of 19.53% (Sample 1), 12.64% (Sample 2)
and 15.45% (Sample 3). To further test the performance of the C-band Sentinel-1A data for forest FMC
estimation, our results were compared to those obtained using the optical Landsat 8 Operational
Land Imager (OLI) data and the empirical partial least squares regression (PLSR) method. The latter
resulted in higher RMSE between estimated and measured forest FMC with 20.11% (Sample 1),
26.21% (Sample 2) and 26.73% (Sample 3) than the presented Sentinel-1A data-based method. Hence,
this study demonstrated that the good capability of C-band Sentinel-1A data for forest FMC retrieval,
opening the possibility of developing a new operational SAR data-based methodology for forest
FMC estimation.

Keywords: fuel moisture content; dual polarimetric Sentinel-1A; bare soil backscatter linear model;
vegetation backscatter water cloud model

1. Introduction

Fuel moisture content (FMC) is defined as the proportion of water content over dry mass, which
is a vital variable for evaluating wildfire risk since it is directly correlated to the probability of fuel
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ignition, and the rate and direction of wildfire spread [1]. In this content, spatially and temporally
accurate mapping FMC dynamics at the landscape scale is paramount to wildfire risk assessment.
To date, remote sensing techniques, providing high spatial and temporal resolution earth observation
at local to global scale, are the unique way to that end [2,3].

Studies estimating FMC from remote sensing data have mainly concentrated on utilizing optical
remote sensing data [3]. The first studies were conducted in the 1980s and the 1990s for herbaceous
species based on the positive relationships between FMC and AVHRR-derived normalized difference
vegetation index (NDVI) [4,5]. Since the launch of Terra and Aqua satellites by NASA in 1999 and
2002, the moderate resolution imaging spectroradiometer (MODIS) has attracted more attention to
monitor this variable [6–9]. With the development of optical sensor technology, the medium spatial
resolution sensors, represented by thematic mapper (TM, Landsat 4, 5), enhanced thematic mapper
(ETM+, Landsat 7) and operational land imager (OLI, Landsat 8) have also been wildly applied to
estimate FMC [10,11]. Strong correlations between grasslands FMC and optical remote sensing data
have been reported in previous research [12–16]. However, the weaker correlations over shrublands
and forest have made the estimation of FMC for these areas challenging. Bowyer et al. [17] theoretically
demonstrated that, on the basis of optical remote sensing data, a greater accuracy level is expected
when estimating FMC over grasslands than shrublands and forests, due to the fact that the latter land
cover suffers from greater confounding influences from variables such as leaf area index (LAI) and
fraction of vegetation cover. In addition, the weather conditions (such as cloudy coverage) largely
limit the application of optical remote sensing for FMC retrieval because of the limited penetration
capacity of the optical signal. Alternatively, microwave remote sensing provides a new opportunity for
FMC estimation due to its high sensitivity to surface moisture [18–20], as well as its unique capacity to
work in cloudy areas.

Recently, active microwave remote sensing technique, represented by the polarimetric synthetic
aperture radar (SAR), has attracted much attention for surface variables estimation [21–25]. Satellites
equipped with a SAR sensor include L-band ALOS-2, C-band Radarsat-1/2 and Sentinel-1A/B, and
X-band TerraSAR-X, TanDEM-X, TecSAR, RISAT-1/2, and SeoSAR [18,26–30]. L-band microwave
response results from an interaction of the electromagnetic radiation with the canopy-soil and the
backscatter directly from the soil while C-band and X-band microwave interact more with the upper
vegetation canopy [31]. Consequently, C-band and X-band radars are considered more suitable for
retrieving vegetation canopy properties. Among the C-band and X-band SAR existing datasets,
the global time-series dual polarimetric C-band Sentinel-1 A/B data has been freely available since
October 2014 and provides a favorable opportunity for long-term monitoring of surface variables.
However, to date and to our knowledge, C-band Sentinel-1 A/B data has not been yet used for
FMC estimation.

The estimation of surface variables from active microwave remote sensing data is still challenged
since distinguishing between backscatters from vegetation and bare soil is difficult [21,23,25]. Over
the past few decades, researchers have proposed several bare soil and vegetation backscatter models
to depict these backscatters from these two aspects. For bare soil, the bare soil backscatter model
can be classified into: (i) Empirical models, such as the linear model [32–34], Oh model [35–38],
and the Dubois model [39,40]; (ii) the semi-empirical models, such as the Shi model [41,42] and the
Baghdadi model [43]; and (iii) theoretical models, such as the integral equation model (IEM) and
advanced IEM [44–46]. These models have been successfully applied to estimate the backscatter of
bare soil in the process of surface parameters retrieval, such as soil moisture [21–23,47,48] and leaf
area index [32,49]. On the other hand, vegetation backscatter models generally include the ratio
method [50–52], the water cloud model (WCM) [53], the Roo model [54], the Michigan microwave
canopy scattering model [55–57], the Saatchi model [58,59], and the Tor Vergata model [60,61]. Among
these bare soil and vegetation backscatter models, the bare soil backscatter linear model and vegetation
backscatter WCM have often coupled for surface variables estimation due to their effectiveness and
conciseness for modeling the surface backscatters [31].
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This study aims to assess the performance of C-band Sentinel-1A data for forest FMC estimation.
The overarching objective is to contribute to the development of an operational system that can assist
in wildfire risk early prescription, suppression and response, as well as improved awareness of wildfire
risk to life and property. To adequately verify the methodology presented in this study, the estimated
results of forest FMC were, on one hand, compared with these obtained using the optical Landsat 8
OLI data and empirical partial least squares regression (PLSR) method, and on the other hand were
validated through the field forest FMC measurements taken in Texas, USA.

2. Methodology

In this study, the empirical bare soil backscatter linear model and the semi-empirical vegetation
backscatter WCM were coupled to link the observed backscatter from the dual-polarimetric Sentinel-1A
data directly to forest FMC. The performance of the presented method was adequately verified using
the three-fold cross-validation method. In addition, to further test the performance of the presented
Sentinel-1A data-based method for forest FMC estimation, our results were compared to those obtained
using the Landsat 8 OLI data and the PLSR method. A flowchart of the presented method for forest
FMC estimation from dual polarimetric Sentinel-1A data is given in Figure 1.
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Figure 1. Methodological flowchart showing the process for forest fuel moisture content (FMC)
estimation from dual polarimetric C-band Sentinel-1A data.

2.1. Data

2.1.1. Field Forest FMC Data

In this study, the field forest FMC measurements used for the calibration and validation of the
presented method were downloaded from the National Fuel Moisture Database (NFMD), which is a
web-based query system that enables users to view time-series of measured FMC information in USA
(https://www.wfas.net/nfmd/public). This system utilizes a database that is routinely updated by fuels
specialists who monitor, sample and calculate FMC from 2006 to date.

Since the Sentinel-1A data in the USA was only available after 2016, and to reduce the effect of
local radar incidence angle, only the FMC measurements sampled in CNTX_McCl_TX site (31◦19’48”N,
97◦28’12”W, with 21 measurements taken in Texas, shown in Figure 2) were selected to verify the
performance of the methodology presented in this study. The selected site has a greater number of

https://www.wfas.net/nfmd/public
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forest FMC measurements and available Sentinel-1A images compared with the other sites included
in this database. The FMC data were measured every 30 days from May 2016 to January, 2018 (see
Appendix A, Table A1). The vegetation species in this site are heterogeneous and mixed with Bluestem,
Juniper, Redberry and Oak. The sampling area is about 5 acres, and the sampling plots were relatively
homogeneous distributed in terms of species composition, canopy cover, aspect, and slope steepness.
About 5 to 15 samples per species within the site were collected and weighed immediately, then dried
at least 24 h at 100◦C in the laboratory and then weighed again. The average FMC of all sampled
species was used to characterize the FMC level of the sampling site. For a more detailed description
of FMC sampling protocols, please refers to the Fuel Moisture Sampling Guide provided by NFMD
(https://www.wfas.n/nfmd/references/fmg.pdf).
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Figure 2. Geographical location of the selected field forest FMC measurement site. The background is
a pseudo-color composited Sentinel-1A image (VV, VH and VV corresponding to R, G and B) on April
17, 2016.

2.1.2. Sentinel-1A Data

The Sentinel-1A is the first satellite of ESA’s Copernicus plan. It was launched in April 2014 [62]
and its global time-series dual polarimetric (VV and VH) observations have been accessible and freely
downloadable since October 2014. The Sentinel-1A is equipped with a C-band (~ 5.405 GHz) SAR
sensor, which is operated in four imaging modes including interferometric wide swath mode, strip
map mode, extra wide swath mode, and wave mode with four polarimetric combinations (VV, HH,
VH and HV), with the revisit period in 12 days (for details, please refers to the Sentinel-1A Handbook:
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-1-sar).

In this study, only the time-series of dual polarimetric Level-1 ground range detected (GRD)
Sentinel-1A data with interferometric wide swath mode was selected and used due to its radiation
stability. The images covering the in-situ FMC measured dates includes 46 scenes in the ascending
orbit from April, 2016 to January, 2018 with a temporal resolution of 12 days. The range of incidence
angle of acquired Sentinel-1A data is from 30.68◦ to 46.56◦.

The preprocessing of the Sentinel-1A data includes radiometric correction, speckle noise filtering
using refined Lee filter [63], geometric correction with Range–Doppler terrain correction, projection
transformation, and resampling to 30 m to reduce the effect of local spatial heterogeneity, which was
conducted using the SNAP software 6.0 (https://step.esa.int/main/toolboxes/snap/) provided by ESA.
Due to the mismatch between the acquired date of Sentinel-1A and the forest FMC measured date
(shown in Figure 3), a cubic spline interpolation method [64] was used to interpolate the original
Sentinel-1A data to resolve the backscatter on the forest FMC measured date. Then the Savitzky–Golay
smooth filter [65] was applied to smooth the interpolated Sentinel-1A data to eliminate the influence
of the time-series noise caused by weather condition and SAR sensor. Both steps were implemented
using the built-in function (interp1 and sgolayfilt functions) in Matlab software 2018a. The original,

https://www.wfas.n/nfmd/references/fmg.pdf
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interpolated and smoothed time-series dual polarimetric Sentinel-1A data for this site is shown in
Figure 4.
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The radar incidence angle has a significant impact on the observed backscatter and thus directly
affects the accuracy level of surface variables estimation. To reduce its effect, the theoretical correction
method proposed by Ulaby et al. [55], which is based on Lambert’s law [66] for optics, was used to
normalize the interpolated and smoothed Sentinel-1A data:

σo
θre f

= σo
θ ×

cos2θre f

cos2θ
(1)

where θre f is the reference radar incidence angle, θ is the measured radar incidence angle, σo
θre f

and

σo
θ

represent the VV and VH backscatters at corresponding angle, respectively. The reference radar
incidence angle was set as the central angle (43.91◦) of acquired Sentinel-1A data.

2.2. FMC Estimation from Sentinel-1A Data

2.2.1. Model Selection and Coupling

The first order radiative transfer model, WCM, was used to retrieve the forest FMC in this study.
WCM is a semi-empirical vegetation backscatter model proposed by Attema et al. [53] in 1978, and
normally used to simulate the total radar backscatter (σo

can) from surface vegetation and bare soil [23].
The formulation of this model is expressed as follows (in dB unit):

σo
can = σo

veg + σ
o
veg+soil + τ

2σo
soil (2)
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σo
veg = AV1cosθ

(
1− τ2

)
(3)

τ2 = exp
(
−2BV2

cosθ

)
(4)

where σo
veg is the direct backscatter contribution of surface vegetation layer, σo

veg+soil is the double-bounce
backscatter component between surface vegetation and bare soil, and σo

soil is the direct bare soil
backscatter contribution double attenuated by surface vegetation. τ2 is the two-way attenuation of the
surface vegetation layer. θ is the reference radar incidence angle (43.91◦ in this study). V1 and V2 are
the scattering and attenuation characters of vegetation layer, respectively. A and B are model empirical
coefficients that depend on the vegetation structure type and SAR sensor configuration. Traditionally,
the σo

veg+soil is negligible since its influence on the total backscatter is relatively weak compared with
the bare soil and surface vegetation components [47,51]. Therefore, the WCM can be reformulated as:

σo
can = AV1cosθ

(
1− τ2

)
+ exp

(
−2BV2

cosθ

)
σo

soil (5)

In this study, the direct bare soil backscatter contribution double attenuated by vegetation layer,
σo

soil, was modelled using the empirical bare soil backscatter linear model proposed by Prévot et al. [32],
which considers that the backscatter of bare soil can be directly calculated through a linear function of
its surface soil moisture as:

σo
soil = Cθs + D (6)

where θs is the surface soil moisture expressed in volumetric units, C and D are surface
roughness-dependent parameters and be determined experimentally for a given SAR sensor. C depends
on the sensitivity of the microwave signal to soil moisture and D represents the backscatter contribution
of dry soil [32]. Here, it should be noted that the σo

soil in the bare soil backscatter linear model
(Equation (6)) is expressed in dB units while that in the WCM (Equations (2) and (5)) is expressed in
linear units, and therefore transformation between these two units was required. From the statistical
analysis of the observed backscatter of acquired C-band Sentinel-1A data, we found that backscatter
expressed in the dB unit had a strong linear relationship with that expressed in linear unit over a small
variation range (shown in Figure 5). Consequently, we used this strong linear relationship (described
in Figure 5) to reduce the model complexity introduced by exponential and logarithm forms when
coupling the bare soil backscatter linear model into the WCM. Therefore, WCM can be transformed as:

σo
can = AV1cosθ

(
1− exp

(
−2BV2

cosθ

))
+ exp

(
−2BV2

cosθ

)
(Pθs + Q) (7)

where A, B, P and Q are model empirical coefficients and optimized by the least square method, V1

and V2 are both parameterized by surface vegetation parameter (i.e., the FMC in this study).
The surface soil moisture (θs) in Equation (7) is sensitive to the total radar backscatter σo

can and
therefore it can introduce high uncertainty when the coupled model comes to retrieve forest FMC in
this study. However, this variable is unknown in the FMC measurement site and to date, there is no
reliable satellite product or measurements available to parameterize it. Therefore, to reduce the effect
of this variable (θs), the VV and VH dual polarimetric Sentinel-1A data were combined in Equation (7)
to eliminate the θs by:

σo
VV = AVVFMCcosθ

(
1− exp

(
−2BVVFMC

cosθ

))
+ exp

(
−2BVVFMC

cosθ

)
(PVVθs + QVV) (8)

σo
VH = AVHFMCcosθ

(
1− exp

(
−2BVHFMC

cosθ

))
+ exp

(
−2BVHFMC

cosθ

)
(PVHθs + QVH) (9)
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where σo
VV and σo

VH represent the VV and VH backscatters, respectively. AVV, BVV, PVV, QVV and AVH,
BVH, PVH, QVH are model coefficients corresponding to VV and VH polarimetric mode. Thus, the final
coupled model for forest FMC retrieval can be expressed as:

σo
VH = AVHFMCcosθ

(
1− exp

(
−2BVHFMC

cosθ

))
+

exp
(
−2BVHFMC

cosθ

)
PVH

σoVV−AVVFMCcosθ
(
1−exp

(
−2BVVFMC

cosθ

))
exp

(
−2BVVFMC

cosθ

) −QVV

PVV
+ QVH


(10)
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2.2.2. Model Calibration and Validation

The eight model empirical coefficients (AVV, BVV, PVV, QVV and AVH, BVH, PVH, QVH in
Equation (10)) were optimized using the non-linear Levenberg–Marquardt [67] algorithm. To avoid
the local optimal solutions produced by the non-linear least square method, 5000 sets of random
parameter combinations were used to initialize the model, and the fitting parameters corresponding to
the minimum root mean square error (RMSE) between the modelled and measured VH backscatter
were regarded as the global optimal solution to retrieve FMC.

In addition, from the perspective of statistical analysis, an insufficient number in the training
sample may result in an overfitting problem when using the non-linear least square method, which
may lead to poor predictions [23]. Therefore, to determine the optimal number for the training sample
and avoid the overfitting problem, different number of training sample were selected to calibrate the
coupled model, and the RMSE between the modelled and measured VH backscatters was selected
to evaluate the performance of the model calibration. As is showed in Figure 6, the RMSE showed
an upward trend with an increased number in the training sample up to 14; then the RMSE of the
model calibration stabilized around 0.32 dB, indicating that the overfitting problem was alleviated.
Consequently, a three-fold cross-validation method was presented to fit Equation (10) and validation
of retrieved FMC by dividing all the measurements taken at the study site into equally three samples
(i.e., each sample comprised 7 FMC measurements). Two samples (i.e., the training sample) were used
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for the model calibration (Equation (10)), and the other sample (i.e., the testing sample) was used for
the validation. The process was repeated for three times to adequately test the performance of the
presented Sentinel-1A data-based method.
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Figure 6. RMSE (dB) between modelled and measured VH backscatters corresponding to different
numbers in the training sample.

2.2.3. Look-up Table (LUT) Building and FMC Retrieval

Due to the complexity of Equation (10), an analytical solution of FMC cannot be directly derived
from the VV and VH backscatters. Consequently, a LUT methodology was used to obtain the optimal
FMC from the observed backscatters. The LUT was built by running the calibrated coupled model
(Equation (10)) forward with two inputs (FMC and VV backscatter), and then the corresponding output,
the modelled VH backscatter, was generated. The range of FMC in LUT was set based on field forest
FMC measurements (70 %–150 %), and the VV backscatter was directly obtained from the Sentinel-1A
data in the testing sample.

Once the LUT was built, FMC was retrieved using a cost function to search the best fitted VH
backscatter in the LUT from the observed Sentinel-1A VH backscatter. In this study, MAEr, defined
as the absolute difference of the modelled and measured VH backscatters, was selected as the cost
function and defined as:

MAEr =
∣∣∣µmod − µobs

∣∣∣ (11)

where µmod and µobs represent the modelled and measured VH backscatters.
However, the LUT inversion method is generally hampered by the ill-posed inversion problem,

meaning that different input parameter combinations (i.e., FMC and VV backscatter) may correspond
to almost identical output (i.e., VH backscatter), and would dramatically decrease the accuracy level of
retrieved parameters (i.e., forest FMC) [11,68]. For instance, Figure 7 shows an example of the ill-posed
inversion problem where two minimum FMC values (green points with 121 % and 147 %) can be
obtained with the lowest MAEr between the modelled and measured VH backscatters. The ground
measured FMC is 149 % (red point), which is closer to the green dot on the right (FMC = 147 %), than
the green dot on the left (FMC = 121 %) and the mean of both green dots (blue point, FMC = 134 %).
This phenomenon seriously raises the question about how to choose the final solution to the inversion
from these solutions.
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Previous studies showed that the use of prior knowledge (such as the ranges of free parameters and
their distributions from field measurements or remote sensing products, and the vegetation canopy type
structure) is an efficient way to alleviate the ill-posed inversion problem [68]. In this study, we found
that the time-series FMC measurements of this study site in 2015, 2016 and 2017 showed a strongly
seasonal phenological feature of high and low FMC values among different periods (Figure 8). Thus,
this feature was introduced into the retrieval procedure to alleviate the ill-posed inversion problem:
for the high-FMC periods (spring and summer), the higher FMC value corresponding the lowest
MAEr was selected as the optimal retrieved FMC, and for the low-FMC period (autumn and winter),
the lower FMC value corresponding the lowest MAEr was selected as the optimal retrieved FMC.
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Figure 8. The strongly seasonal phenological feature of the FMC measurements at the study site.

2.3. FMC Estimation from Landsat 8 OLI Data

The presented Sentinel-1A data-based methodology for forest FMC retrieval was compared with
the retrievals using optical Landsat 8 OLI data and the empirical PLSR method since both data have
similar spatial resolution (Sentinel-1A data: 5 × 20 m for azimuth and range resolution; Landsat 8 OLI
data: 30 m), which will reduce the effect of spatial heterogeneity.

Optical Landsat 8 OLI surface reflectance data in the study site was extracted using the Google
Earth Engine tool [69]. To resolve the optical Landsat 8 OLI reflectance data on field forest FMC
measurements date, the extracted time-series Landsat 8 OLI data were similarly interpolated and
smoothed by the cubic spline interpolation method [64] and the Savitzky-Golay smooth filter [65].
Then, the reflectance data on field forest FMC measurements date was used to estimate FMC using the
PLSR method following Quan et al. [70]. To adequately compare with the results using the presented
Sentinel-1A data-based methodology, the empirical PLSR model was also trained and tested using the
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three-fold cross-validation method described in Section 2.2.2. Two of these three parts were used for
training the PLSR model and the other one part for testing, and this was repeated three times.

PLSR is a statistical method that bears relation to principal components regression. Instead of
finding hyperplanes of maximum variance between the response and independent variables, it finds a
linear regression model by projecting the predicted variables and the observable variables to a new
space. This technique reduces a large number of measured variables to a few non-correlated latent
variables while maximizing co-variability to the variable(s) of interest. PLSR is particularly suited
when the matrix of predictors has more variables than observations [11,71]. The aim of PLSR is to
build a linear model such as the following:

Y = Xβ+ E (12)

where Y is the vector of the response variable (i.e., forest FMC), X is the predictor matrix (i.e., Landsat
8 surface reflectance data, Band 2 to 7, since visible and infrared bands are sensitive to FMC [11]), β is
the model coefficients matrix, and E is the residuals matrix. In principle, PLSR is closely associated
with the principal component analysis regression (PCAR), but PCAR performs the decomposition on
the predictor matrix (X) alone. PLSR uses the vector of response variable during the decomposition
process and performs the decomposition on both the predictor matrix (X) and response variable vector
(Y) simultaneously. This procedure can reduce the number of X and Y to a few independent variables.

3. Results

3.1. FMC Estimated Results from Sentinel-1A Data

Figure 9 shows the scatterplots between modelled and measured VH backscatters using the
three-fold cross-validation method. It can be found that the VH backscatter of training sample was
correctly modelled by the presented coupled model as illustrated by a low RMSE value when compared
to the measured VH backscatter (0.33 dB (sample 1), 0.34 dB (sample 2) and 0.35 dB (sample 3)),
indicating that the calibrated coupled model (Equation 10) can well simulate the backscatter situation of
surface. A LUT was then generated by running the model forwardly, and the observed VH backscatter
of the testing sample was used to retrieve forest FMC. Figure 10 shows the scatterplots between
estimated and measured forest FMC using the three-fold cross-validation method. Overall, it can be
concluded that the forest FMC measurements at the study site were accurately estimated, with RMSE
between measured and estimated forest FMC of 19.53% (Sample 1), 12.64% (Sample 2) and 15.45%
(Sample 3). Figure 11 shows the time-series distribution of estimated and measured forest FMC of
the study site. Although the estimated FMC may be higher or lower than the measured forest FMC,
the time-series trend of measured forest FMC is reproduced well by the estimated FMC.
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Figure 9. Scatterplots between modelled and measured VH backscatters.
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Figure 10. Scatterplots between estimated and measured FMC.
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3.2. FMC Estimated Results from Landsat 8 OLI Data

As a comparison, the Landsat 8 OLI data was also used to retrieve forest FMC using the PLSR
method in the study site. Figure 12 shows the scatterplots between estimated and measured forest
FMC using the three-fold cross-validation method, and Table 1 lists the corresponding RMSE of PLSR
model training and testing. From Figure 12 and Table 1, it is obvious that although the accuracy level
of PLSR model training is satisfactory (RMSE of three training samples are less than 10% and the
corresponding scatterplots are distributed around the 1:1 line), the estimated results using the testing
sample were not acceptable with a higher RMSE (approximately 24%) and the seriously deviated
scatterplots with regard to the 1:1 line.
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Table 1. Root mean square error (RMSE) between measured and estimated FMC.

Samples Training Testing All

sample 1 9.52% 20.11% 13.97%

sample 2 8.69% 26.21% 16.71%

sample 3 8.69% 26.73% 16.99%

Compared with the forest FMC estimated results using the presented Sentinel-1A data-based
method (Figures 9 and 10), FMC was poorly estimated using the Landsat 8 OLI data and the PLSR
method, with the RMSE between estimated and measured forest FMC being 20.11% (Sample 1), 26.21%
(Sample 2) and 26.73% (Sample 3). Figure 13 shows the time-series distribution of estimated and
measured forest FMC. It was found that the time-series trend of estimated forest FMC was not well
fitted along with the measured one when compared with Figure 11.Remote Sens. 2019, 11, x FOR PEER REVIEW 12 of 17 

 

20

60

100

140

180

15/01/201819/09/201717/05/201719/01/201713/09/201617/05/2016

Sample 3Sample 2

F
M

C
 (

%
)

Date (dd/mm/yyyy)

 Measured FMC
 Estimated FMC

Sample 1

 

Figure 13. The time-series trend of estimated and measured FMC. 

4. Discussion 

Current studies so far for forest FMC retrievals are generally based on the optical remote sensing 
data from multiple sensors since the vegetation liquid water has strong absorption character in the 
near-infrared and shortwave-infrared bands [3,17]. In this content, Jurdao et al. [2] utilized the PRO-
GeoSail RTM and MODIS data to retrieve forest FMC, obtaining RMSE between estimated and 
measured forest FMC of 27.7% over the Mediterranean and 28.7% over the Eurosiberian regions. 
Similar errors (RMSE = 26.28%) was also found by Yebra et al. [7] over an Oak forest using the MODIS 
data and PROSAILH RTM. Quan et al. [11] coupled the PROSAIL and PRO-GeoSail RTMs to retrieve 
forest FMC from Landsat 8 OLI data, with an RMSE of 32.35% in the Sichuan province, China. 
Caccamo et al. [6] calibrated an empirical statistical model based on the normalized difference 
infrared index-band 6 (NDII6) and the maximum-minimum normalization of visible atmospherically 
resistant index (VARI) from MODIS data to monitor FMC of three vegetation types, including 
shrubland, heathland and sclerophyll forest, in south-eastern Australia, and provided a good results 
for forest FMC estimation. Adab et al. [72] estimated forest FMC from Landsat 7 data and MODIS 
data using multiple linear regression (MLR) and artificial neural network (ANN) method in the 
northern Iran (Northeastern Hyrcanian forests), providing good results for forest FMC estimation 
(RMSE = 24.4% (MLR + Landsat 7), 15.6% (ANN + Landsat 7), 50.2% (MLR + MODIS) and 48% (ANN 
+ MODIS)). In this study, the empirical bare soil backscatter linear model was coupled into the semi-
empirical vegetation backscatter WCM to retrieve forest FMC from time-series of dual polarimetric 
(VV/VH) C-band Sentinel-1A data, and its performance was validated using the field forest FMC 
measurements taken in Texas, USA. We obtained an RMSE between estimated and measured FMC 
of 19.53% (Sample 1), 12.64% (Sample 2) and 15.45% (Sample 3), that were within the range of RMSE 
region reported in these previous literatures. Additionally, as a comparison, the optical Landsat 8 
OLI data was implemented to estimate the forest FMC in the same field FMC measurements site 
using the empirical PLSR method, achieving a higher RMSE between estimated and measured forest 
FMC (20.11% (Sample 1), 26.21% (Sample 2) and 26.73% (Sample 3)). Consequently, in this study, we 
demonstrated a huge potential usage of C-band Sentinel-1A data for forest FMC estimation in 
comparison with the previous research that used optical remote sensing data.  

Studies focused on FMC estimation using SAR data were still rarely reported at present. Leblon 
et al. [24] analyzed the relationship between measured FMC and SAR backscatter for white spruce 
from C-band ERS-1 data in the Mackenzie River basin, northwest Canada, and obtained a coefficient 
of determination R2 between observed backscatter and measured FMC of 0.461. Tanase et al. [25] used 
the linear regression method to estimate FMC from L-band airborne SAR data in the Murrumbidgee 
catchment, Australia, obtaining R2 and RMSE between estimated and measured FMC of 0.34–0.70 
and 10 %–15 %, respectively. These two studies based on SAR data made use of an empirical model 
that linked the field FMC measurements to the SAR backscatter. However, the completed empirical 

Figure 13. The time-series trend of estimated and measured FMC.

4. Discussion

Current studies so far for forest FMC retrievals are generally based on the optical remote sensing
data from multiple sensors since the vegetation liquid water has strong absorption character in the
near-infrared and shortwave-infrared bands [3,17]. In this content, Jurdao et al. [2] utilized the
PRO-GeoSail RTM and MODIS data to retrieve forest FMC, obtaining RMSE between estimated and
measured forest FMC of 27.7% over the Mediterranean and 28.7% over the Eurosiberian regions.
Similar errors (RMSE = 26.28%) was also found by Yebra et al. [7] over an Oak forest using the
MODIS data and PROSAILH RTM. Quan et al. [11] coupled the PROSAIL and PRO-GeoSail RTMs to
retrieve forest FMC from Landsat 8 OLI data, with an RMSE of 32.35% in the Sichuan province, China.
Caccamo et al. [6] calibrated an empirical statistical model based on the normalized difference infrared
index-band 6 (NDII6) and the maximum-minimum normalization of visible atmospherically resistant
index (VARI) from MODIS data to monitor FMC of three vegetation types, including shrubland,
heathland and sclerophyll forest, in south-eastern Australia, and provided a good results for forest
FMC estimation. Adab et al. [72] estimated forest FMC from Landsat 7 data and MODIS data using
multiple linear regression (MLR) and artificial neural network (ANN) method in the northern Iran
(Northeastern Hyrcanian forests), providing good results for forest FMC estimation (RMSE = 24.4%
(MLR + Landsat 7), 15.6% (ANN + Landsat 7), 50.2% (MLR + MODIS) and 48% (ANN + MODIS)).
In this study, the empirical bare soil backscatter linear model was coupled into the semi-empirical
vegetation backscatter WCM to retrieve forest FMC from time-series of dual polarimetric (VV/VH)
C-band Sentinel-1A data, and its performance was validated using the field forest FMC measurements
taken in Texas, USA. We obtained an RMSE between estimated and measured FMC of 19.53% (Sample 1),
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12.64% (Sample 2) and 15.45% (Sample 3), that were within the range of RMSE region reported in these
previous literatures. Additionally, as a comparison, the optical Landsat 8 OLI data was implemented
to estimate the forest FMC in the same field FMC measurements site using the empirical PLSR method,
achieving a higher RMSE between estimated and measured forest FMC (20.11% (Sample 1), 26.21%
(Sample 2) and 26.73% (Sample 3)). Consequently, in this study, we demonstrated a huge potential
usage of C-band Sentinel-1A data for forest FMC estimation in comparison with the previous research
that used optical remote sensing data.

Studies focused on FMC estimation using SAR data were still rarely reported at present. Leblon
et al. [24] analyzed the relationship between measured FMC and SAR backscatter for white spruce
from C-band ERS-1 data in the Mackenzie River basin, northwest Canada, and obtained a coefficient of
determination R2 between observed backscatter and measured FMC of 0.461. Tanase et al. [25] used
the linear regression method to estimate FMC from L-band airborne SAR data in the Murrumbidgee
catchment, Australia, obtaining R2 and RMSE between estimated and measured FMC of 0.34–0.70
and 10 %–15 %, respectively. These two studies based on SAR data made use of an empirical model
that linked the field FMC measurements to the SAR backscatter. However, the completed empirical
model may have the shortcoming of being site-specific and sensor-dependent. Compared with these
two above studies, the forest FMC estimation method presented in this study, coupled the empirical
bare soil backscatter linear model and the semi-empirical vegetation backscatter WCM, is expected
to be more reproducible and robust since it introduces the physical mechanism of surface vegetation
microwave backscatter to establish the total surface backscatter model [32,73].

One of the critical obstacles hampering the accurate retrieval of forest FMC in this study was the
ill-posed inversion problem. To alleviate this effect, the seasonal phenological feature of FMC was
introduced as the prior information to constrain the inversion result. However, this prior information
depended on the seasonal phenological feature in terms of local FMC conditions that may lack
generality. Therefore, a more reasonable and reproducible strategy to alleviate the ill-posed inversion
problem should be furtherly explored. Hosseini et al. [31] adopted surface soil moisture as a priori
knowledge to obtain the optimal LAI form C-band Randarsat-2 data and L-band airborne SAR data
over an agricultural region located in Canada. Fan et al. [18] found that FMC had a positive correlation
with surface soil moisture since the main effects of surface soil moisture deficit on plant condition were
exerted through the plant water potential, which in turn affected the relative water of plant tissue.
Nolan et al. [74] also found that the live FMC for Mediterranean mixed forest in Catalonia, Spain,
were most reliant on shallow soil water. Therefore, the introduction of surface soil moisture may be an
alternative effective strategy to improve the performance of the model presented here, which will be
furtherly explored in the near future.

To our knowledge, the dual-polarimetric C-band Sentinel-1A data is the only free satellite SAR
product to date, and it has been downloadable since October 2014, however, only the VV & VH
polarimetric modes are available freely. Tanase et al. [25] discussed the statistical relationship between
field FMC measurements and radar backscatters of different polarimetric modes (HH, HV and VV)
in semiarid environments using L-band airborne SAR data. Their study demonstrated the statistical
relationship between FMC and radar backscatter of different polarimetric modes is different since the
microwave signal with different polarimetric modes reflects different scattering characteristic of the
ground object. Therefore, if more polarimetric data (i.e., VV, VH, HV and HH) can be available freely
in time-series, the performance of the presented SAR data-based method for forest FMC estimation can
be furtherly explored.

5. Conclusions

In this study, a methodology using dual polarimetric C-band Sentinel-1A data for forest
FMC retrieval was presented by coupling the empirical bare soil backscatter linear model and the
semi-empirical vegetation backscatter WCM. To alleviate the ill-posed inversion problem, the seasonal
phenological feature of field forest FMC measurements was used as the effective prior information
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to constrain the inversion process. The three-fold cross-validation method was adopted to verify the
performance of the presented method for forest FMC retrieval. Compared with the field forest FMC
measurements, the results using the Sentinel-1A data-based method presented in this study showed a
good accuracy level, with RMSE between estimated and measured forest FMC of 19.53% (Sample 1),
12.64% (Sample 2) and 15.45% (Sample 3), that is within the range of accuracy reported in previous
literature for forest FMC retrieval. In addition, to adequately verify the effectiveness of the presented
Sentinel-1A data-based method for forest estimation, the Landsat 8 OLI data and empirical PLSR
method was also adopted. The results show that the presented Sentinel-1A data-based method well
reproduced the time-series trend of measured forest FMC and performed a better accuracy level than
Landsat 8-based method with RMSE of 20.11% (Sample 1), 26.21% (Sample 2) and 26.73% (Sample 3).
These results show the possibility of developing an operational method based on satellite SAR data to
estimate forest FMC and provides good prospects to develop an operational framework for global
scale FMC mapping.
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Appendix A

Table A1. The time-series field FMC measurements in CNTX_McCl_TX site.

No. Date(dd/mm/yyyy) FMC (%) No. Date(dd/mm/yyyy) FMC (%)

1 15/05/2016 127.5 12 20/04/2017 125.0
2 15/06/2016 130.5 13 17/05/2017 132.0
3 19/07/2016 107.5 14 12/06/2017 134.0
4 16/08/2016 142.5 15 11/07/2017 118.0
5 13/09/2016 122.5 16 17/08/2017 102.5
6 19/10/2016 115.5 17 19/09/2017 91.5
7 17/11/2016 112.0 18 17/10/2017 89.5
8 13/12/2016 109.0 19 15/11/2017 94.0
9 19/01/2017 103.0 20 14/12/2017 81.0

10 23/02/2017 99.5 21 15/01/2018 100.5
11 21/03/2017 110.0 - - -
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