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Abstract: Emergence of new state-of-the-art technologies has enabled an unprecedented amount of
high spatial resolution satellite data having great potential for exploitation of extracted time series for
a vast range of applications. Despite the high temporal resolution of time series, the number of real
observations of optical data that can be utilized is reduced due to meteorological conditions (such as
cloud or haze) prevailing at the time of acquisition. This fact has an effect on the density of the
retrieved time series and subsequently on a number of coincidental observations when comparing the
similarity of time series from two different data sources for which the simultaneous acquisition date is
already scarce. Classical tools for assessing the similarity of such time series can prove to be difficult
or even impossible because of a lack of simultaneous observations. In this paper, we propose a simple
method in order to circumvent this scarcity issue. In the first step, we rely on an interpolation in order
to produce artificial time series on the union of the original acquisition dates. Then, we extend the
theory of the correlation coefficient (CC) estimator to these interpolated time series. After validation
on synthetic data, this simple approach proved to be extremely efficient on a real case study where
Sentinel-2 and PlanetScope NDVI time series on parcels in The Netherlands are compared. Indeed,
compared to other methods, it reduced the number of undecided cases while also improving the
power of the statistical test on the similarity between both types of time series and the precision of the
estimated CC.

Keywords: scarce time series; agriculture; environment; monitoring; CAP; PlanetScope; Sentinel-2;
JEODPP; Earth Observation; interpolation

1. Introduction

Time series consist of repeated observations of the same quantity of interest over time. Often,
these quantities are sampled on a regular time step (e.g., every minute/hour/day/week/month/year)
so that one can define the notion of “next observation” or “previous observation” within the time
series. While classical time series analysis and time series model generally assume these particular
and optimal conditions [1]; such conditions are not always encountered in real-world applications,
e.g., in remote sensing. Remote sensing time series are generally built with images acquired at very
specific dates that depend on the revisit time of the sensor. There is often a trade-off between spatial
resolution and revisit time so the issue is particularly seen for high (HR) and very high resolution (VHR)
images [2,3]. In addition, it is also quite common for some of the observations to be discarded because
of the poor data quality (e.g., cloud cover, haze). Finally, as Earth Observation (EO) scientists generally
rely on different sensors, multivariate time series analyses can rapidly become complicated because
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not only are the acquisition dates not equidistant within each time series, but it is also unlikely to
have a match between the different sets of acquisition dates. In particular, this has important practical
impacts when we want to measure the similarity between time series.

The classical tool for quantifying the similarity between time series is to estimate the temporal
structure of the time series through their empirical autocorrelation function and their empirical
cross-correlation function [4]. In both cases, the idea is to estimate the correlation coefficients (CC)
between observations distant of a given time lag. For irregularly sampled time series, one can rely
on slotting methods that consist of grouping pairs of observations in classes of time distance [5].
The same approach is used for the estimation of covariograms and semivariograms for spatial data [4].
Unfortunately, these approaches generally require at least 30 pairs of observations in each of the classes
in order to obtain reliable estimations [6]. This is a major limitation for their application in the context
of scarcely sampled time series. Alternatively, one would like to limit the similarity analysis on the
estimated zero-lag CC (i.e., the classical CC). In any case, this is still sometimes beyond reach because of
the lack of simultaneous observations. Another alternative that is inspired from speech recognition [7]
is dynamic time warping (DTW). It consists in warping the time axis for an optimal alignment of the
time series. It is possible to constrain the warping to consider only pairs of observations that are not
too far from each other, e.g., the Sakoe–Chiba band [8]. The resulting time series share the same length
but consist of padded sequences of the same values (when the time series are stretched) so the actual
number of genuine observations is smaller. Recently, it has been applied to remote sensing applications
as well, mainly in image classification (e.g., [8] or [9]). DTW does not directly provide an index of
similarity. For that purpose, one can compute the CC between the aligned time series.

In this paper, we proposed to overcome the scarcity of the time series with a simple linear
interpolation approach. The motivation is to obtain two time series with identical acquisition dates,
so that the classical estimation of the CC is possible. We rely here on the CC because we are interested in
the similarity between the time series (i.e., exhibiting the same patterns) compared to the more specific
objectives of other existing indexes such as the index of agreement [10–12] where the values between
the time series must be comparable in absolute terms (e.g., same average, same standard deviation, . . .
). While the resulting time series are a mix of genuine observations and synthetic values, we think that
an interpolation between two consecutive dates is a valid and natural approach at least for continuous
processes (e.g., vegetation/crop monitoring). Indeed, it directly translates the cognitive mechanisms
that the analyst uses when one visually compares the two time series on the same graph. We opted for
linear interpolations in order to keep the method as simple as possible. However, experimental results
showed that using a shape-preserving piecewise cubic interpolation did not bring significant changes
(results not shown here). Alternatively, choosing more advanced interpolation methods (e.g., splines)
might also be an option but there is a risk of adding artifacts in the interpolated time series [13].

After a short reminder of the theoretical characteristics of the CC estimator, the proposed approach
is first tested on simulated time series with limited simultaneous observations. The results confirmed
that our method provides accurate estimations of the CCs while overcoming the scarcity of the time
series. The method is further illustrated on the comparison of real NDVI time series from Sentinel-2
and PlanetScope in The Netherlands, with the same results as found in the synthetic examples. Indeed,
the two sets of time series were found to be very correlated, as expected (the average estimated CC
was found to be equal to 0.93), while drastically reducing the number of undecided cases due to the
lack of simultaneous observations (from 385 to 14 out of 1670).

2. Methodology

2.1. The Correlation Coefficient

The correlation coefficient (or Pearson’s correlation coefficient) can be used for assessing the
similarity between the two time series [10]. For paired observations (i.e., each observation is a pair of
both quantities), the CC is generally estimated using the following estimator



Remote Sens. 2019, 11, 1527 3 of 11

ρ̂ =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
, (1)

where (xi, yi) are the paired observations, x and y are the observed averages of the time series and n is
the number of observed pairs.

The precision of this estimator is generally evaluated using Fisher’s transformation [14]

λ̂ = 0.5 ln
(

1 + ρ̂

1− ρ̂

)
, (2)

and its inverse transformation

ρ̂ =
e2λ̂
− 1

e2λ̂ + 1
. (3)

The main advantage of this transformation is that λ̂ is approximately following a normal
distribution with a mean equal to λ = 0.5 ln

( 1+ρ
1−ρ

)
(where ρ the true unknown CC) and a variance

approximately equal to
σ2
λ = (n− 3)−1. (4)

One can thus build the (1 − α) confidence interval for λ with λ̂ ±
z1−α/2
√

n−3
and use the inverse

transformation in order to get the confidence interval for ρ

CIρ =

 e2λ̂L − 1

e2λ̂L + 1
;

e2λ̂U − 1

e2λ̂U + 1

, (5)

where λ̂L = λ̂−
z1−α/2
√

n−3
, λ̂U = λ̂+

z1−α/2
√

n−3
and where z1−α/2 is the quantile of level

(
1− α

2

)
of the standard

normal distribution. Figure 1 shows how the estimated confidence intervals change with different
values of ρ̂ (namely –0.99, –0.9, –0.75, –0.5, 0, 0.5, 0.75, 0.9 and 0.99) and n (namely 5 and 10). One can
see that the confidence intervals are not centered around ρ̂ (except for ρ̂ = 0) and that they are bounded
to the [−1; 1] interval.
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More generally, any quantile of level 𝑝 can be estimated through Fisher’s transformations of 
Equations (2) and (3) with 

Figure 1. Comparison of the estimated confidence intervals for different correlation coefficients (CCs,
horizontal lines) around the estimated CCs (plain dots) and for different values of the sample size:
(a) n = 5; (b) n = 10.

More generally, any quantile of level p can be estimated through Fisher’s transformations of
Equations (2) and (3) with



Remote Sens. 2019, 11, 1527 4 of 11

ρ̂p =
e2λ̂p − 1

e2λ̂p + 1
, (6)

where λ̂p = λ̂+
zp
√

n−3
and zp is the quantile of level p of the standard normal distribution.

Using Equation (6), one can build any test on the true CC or estimate the probability that the CC
exceeds a given threshold.

2.2. Generalization to Scarcely Sampled Time Series

When comparing two time series, one needs to have both time series sampled at the same dates.
Unfortunately, this is a rare case. Most of the time, the time series come from different sources
(e.g., two different satellite sensors) so that actual pairs of observations (i.e., on the same dates)
are exceptions.

The general situation is thus two time series with n1 and n2 observations with nI simultaneous
observations where nI ≤ min(n1, n2). Figure 2 shows a synthetic example of two time series from two
different sources (e.g., two different satellite sensors observed on the same agricultural parcel). In this
example, each of the time series has 20 observations out of which only two dates coincide.
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Figure 2. (a) Typical example of two time series observed by two different satellite sensors on the same
area. The vertical dashed lines represent the two simultaneous observations. (b) The same curves after
interpolation on the union of the dates (hollow circles and squares). The number of pairs increased to 38.

As could be seen from the synthetic example of Figure 2, one would typically conclude that the
two time series are similar. However, as only two dates coincide, it is not even possible to compute the
CC (Figure 2a). In order to circumvent this data issue, we propose to fill the gaps by interpolating each
of the time series at the observed dates of the other time series (i.e., the union of the observed dates;
Figure 2b). This simple approach has many advantages:

1. It is a straightforward generalization of the particular case where all the dates coincide;
2. It is simple to implement (a linear interpolation is the simplest solution but others exist, e.g., cubic

interpolation or splines);
3. It preserves the time dimension of the observations (i.e., values interpolated at new dates directly

depend on the proximity to the observed dates);
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4. It somewhat translates the intuitive visual comparison of the time series (as can be seen in the
example of Figure 2).

At this point, it is worth mentioning that the resulting time series do not constitute a genuine
sample as some of the values are computed with the interpolation. Consequently, the general formula
for the estimation of the variance of the estimation is not valid (i.e., we cannot take the union of the
dates as n in the variance formula). There is an equivalent effective size n′ for the interpolated time
series. Several different options were considered for the value of n′. In the next section, we show,
using simulations, that taking

n′ = min(n1, n2), (7)

(i.e., the number of dates in the shortest time series) is a good empirical rule-of-thumb for substituting
the value of n in Equations (4)–(6).

2.3. Comparison of the Methods

For the comparison of the two methods of estimation (i.e., with the simultaneous observations
only or with the interpolation), we rely on the observed bias

Biasρ̂ =
1
N

N∑
i=1

(ρ̂i − ρ), (8)

the observed root mean square error (RMSE)

RMSEρ̂ =

√√√
1
N

N∑
i=1

(ρ̂i − ρ)
2, (9)

the observed percentage of missing estimation and the observed 95% central interval (i.e., estimated
with the empirical quantiles), where ρ is the true CC.

In a second step, we want to verify that the variability is correctly estimated using the definition
of n′ in Equation (7) as a substitute of n in Equations (2)–(6). In particular, we would like to compare
this option against two alternatives:

1.
√

n1n2 (i.e., the geometric mean of the observed sample sizes)
2. (n1 + n2)/2 (i.e., the arithmetic mean)

For this purpose, we compute the success rate of the different estimated 95% confidence intervals,
i.e., the percentage of times that the true CC is contained in the estimated 95% confidence intervals
(see Equation (5)).

In order to have a basis of reference, we also defined a control method that corresponds to the
situation where both time series are observed on the union of both extracted sets of dates. As this
control method is supposed to be the optimal situation (since the set of observed dates is the largest and
there is no interpolation needed), we can build a confusion matrix between the estimated confidence
intervals of the control method and the interpolation method with different criteria for n′. The overall
accuracy (OA) can be computed using the number of agreement cases.

3. Results

3.1. Validation using Simulations

The proposed methodology is tested here using simulated time series. The main advantage of
simulations is that all the information is known (in our case, the target CC between the two time series)
and repeated simulations allow us to derive observed bias and variability of the estimators.

In this test, we relied on a three-step simulation algorithm. First, we simulate two time series over
a year (i.e., their length is equal to N = 365) with two sinusoidal functions and superposed them with
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white noise. Then, in order to simulate two scarce time series, we randomly select two numbers in the
interval [10;20] and assign the values to variables n1 and n2 (i.e., the respective number of observations
of the two time series). Finally, both time series are randomly subsampled for variables n1 and n2,
which represent a number of observation dates, thus a known sample size for each time series. As the
actual observed dates are completely accidental, the number of simultaneous observations varies.
We repeat this simulation algorithm 500,000 times. One can prove that this number of simultaneous
observations is a random variable following a hypergeometric distribution with n1 draws from N
objects with n2 success states. Using the conventions above, there is between 91% and 99% chance that
the number of simultaneous observations is strictly smaller than three, which is the worst condition for
the estimation of a CC based only on simultaneous dates.

Among the multitude of potential curves, here we show two example cases: (i) with a small negative
CC and (ii) with a strong positive CC. For each of the simulated pairs of time series, we estimate five
CCs: (i) using the proposed methodology, (ii) using a slotting method with three different bin size (three,
seven and 14 days), (iii) DTW with a Sakoe–Chiba band of 45 days (following [8]) and, when possible,
using the simultaneous observations only. Figure 3 shows the observed distributions of these estimators.
One clearly sees that the proposed method provides better estimations. All the statistics (e.g., the observed
bias, the root mean square errors, the estimated quantiles) point in favor of our proposed method (see
Table 1 for the details). Finally, as anticipated, the coefficients could be estimated for only 3% of the
simulations when using the simultaneous observations only, contrary to the proposed method where
a 100% success rate was observed. The success rate of the slotting method lies between those of the
simultaneous and our proposed method. Providing a reliable estimation even in extreme cases where
the simultaneous observations are scarce is clearly the main advantage of our method.
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Figure 3. Observed distribution of estimated CCs for the three methods: the proposed method based
on interpolation (plain purple line), the method based on the simultaneous observations only (dashed
blue line), dynamic time warping (DTW) with a Sakoe–Chiba band of 45 days (dotted-dashed red
line), and the slotting method with a bin size of ±7 days (dotted yellow line). The vertical dotted line
represents the true CC. (a) The small negative correlation and (b) the strong positive correlation.
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Table 1. Descriptive statistics of the CC estimators for the simultaneous observations, the slotting
method with three different bin sizes, DTW with a Sakoe–Chiba band of 45 days, and the interpolation
method and for both examples.

Method True Correlation Bias RMSE % Missing Number 95% Central Interval

Simultaneous –0.29 0.05 0.68 97% [–0.99;0.99]
Slotting 3d –0.29 0.04 0.59 19% [–0.99;0.99]
Slotting 7d –0.29 0.02 0.42 1% [–0.94;0.75]

Slotting 14d –0.29 0.00 0.31 0% [–0.80;0.41]
DTW 45d –0.29 0.19 0.37 2% [–0.57;0.86]

Interpolation –0.29 –0.09 0.18 0% [–0.67; –0.04]
Simultaneous 0.85 –0.09 0.43 97% [–0.73;1.00]

Slotting 3d 0.85 –0.07 0.37 20% [–0.59;0.99]
Slotting 7d 0.85 –0.04 0.23 1% [0.22;0.99]

Slotting 14d 0.85 –0.03 0.14 0% [0.47;0.97]
DTW 45d 0.85 –0.04 0.27 2% [–0.28;0.96]

Interpolation 0.85 0.00 0.07 0% [0.68;0.94]

Besides the estimation of the CCs, we also introduced a method for estimating the precision of the
estimator (see Equations (4)–(6) for details). For that purpose, we proposed to substitute n (i.e., the
number of paired observations) with n′, which is the effective sample size. Three alternatives are tested:
(i) the minimum of the sample sizes, (ii) the geometric mean of the sample sizes, and (iii) the arithmetic
mean of the sample sizes.

As described in Section 2.3, we computed the success rates of the estimated 95% confidence
interval for each of the three criteria above (see Table 2). For each of the three criteria, the success
rate was larger than the objective 95%. This indicates that the confidence intervals are larger than
expected, hence that each of them overestimate the variability. Such overestimated success rates were
also observed for the control method (i.e., where no interpolation was needed). Thus, it does not
invalidate the proposed method and the tested criteria for n′.

As a second metric of comparison, the observed overall accuracy with the control method was
slightly larger for the “minimum of the sample sizes” criterion.

Table 2. Comparison of the success rates of the estimated 95% confidence interval for the correlation
coefficient and overall accuracy with the control method for the three different criteria of effective
sample size n′.

Criteria for the
Value of n

′

True
Correlation

Success Rate of
Control Method

Observed
Success Rate

Overall Accuracy with
Control Method

min(n1, n2) –0.29 99.48% 98.95% 98.72%
√

n1n2 –0.29 99.48% 98.45% 98.33%
(n1 + n2)/2 –0.29 99.48% 98.40% 98.28%
min(n1, n2) 0.85 99.39% 98.56% 98.35%
√

n1n2 0.85 99.39% 97.95% 97.86%
(n1 + n2)/2 0.85 99.39% 97.89% 97.80%

3.2. Case Study: NDVI Time Series from Sentinel-2 and PlanetScope on Arable Cropland in The Netherlands

In this section, we show how the proposed method performs on real data.
For the definition of geometric boundaries of agriculture parcels, we used the Geospatial Aid

Application (GSAA) dataset information publicly available through The Netherlands open geo-data
infrastructure (http://www.nationaalgeoregister.nl). NDVI time series were retrieved from two different
image data sources; Sentinel-2 MultiSpectral Instrument (MSI) and PlanetScope imagery. The signal
extraction from the Copernicus Sentinel-2 MSI was performed using the product type Level-2A (i.e., bottom
atmosphere reflectance) acquired by both twin satellites, Sentinel-2A and Sentinel-2B. As far as the
PlanetScope image data is concerned, a comparable product was selected as the analytic ortho scene SR

http://www.nationaalgeoregister.nl
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(surface reflectance). In this particular application, we expect a large majority of similarity between pairs
of time series since (i) pairs of time series are extracted for the same parcel, (ii) they are extracted over the
same period of time, and (iii) Sentinel-2 and PlanetScope products have similar spectral bands.

The time series of the 1670 parcels were processed by applying the same estimation methods as
for the simulated examples. For the majority of the cases, all the methods performed correctly, having
similar results (see Figure 4). However, as expected, the estimation when using the simultaneous
observations only could not be computed for 23% of the parcels (see Table 3). For comparison,
this occurred for only 0.8% when using the interpolation method. For each of the 14 cases, there
were less than three Sentinel-2 images available, thus the CCs could not be computed. On average,
when using the interpolation method, the estimated CCs were higher (0.93 against 0.87) and the
observed range of the estimations is narrower (minimums are -0.32 versus -0.97). In addition, the
statistical test on the hypothesis “H0 : ρ ≤ 0.5” with the alternative hypothesis “H1 : ρ > 0.5” based on
Equation (6) was accepted for only 78 cases when using the interpolation method against 432 when
using the simultaneous observations. This shows again that the proposed method circumvents most of
the limitations of the classical estimation of the CC.
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Figure 4. Illustration of four different cases when comparing Sentinel-2 (squares) and PlanetScope
(circles) time series: (a) Excellent match for all the tested methods; (b) excellent match for the
interpolation and the slotted methods only; (c) estimation not possible for the simultaneous method;
(d) poor results for all of the methods because of a lack of repeated observations. The slotting method
with the different bin sizes produced similar results, thus only the seven-day bin size is shown here.
The filled circles and squares represent the observations while the hollow circles and squares are the
interpolated values. The dashed lines represent the simultaneous observations.

Table 3. Comparison of the occurrences of missed estimations, of the average and standard deviation
of the CCs, and occurrences of accepted hypothesis “H0 : ρ ≤ 0.5” against the alternative hypothesis
“H1 : ρ > 0.5” for the 1670 parcels.

Methods Not
Computed

Average of
Correlation
Coefficients

Observed Range
of Correlation

Coefficients

Accepted Tests
“H0:ρ≤0.5” against

“H1:ρ>0.5”

Simultaneous 385 (23%) 0.87 [–0.91;0.99] 432 (25.9%)
Slotting 3d 16 (0.8%) 0.94 [–0.82;0.99] 83 (5.0%)
Slotting 7d 14 (0.8%) 0.92 [–0.34;0.99] 61 (3.7%)

Slotting 14d 14 (0.8%) 0.87 [–0.48;0.99] 73 (4.4%)
DTW 45d 14 (0.8%) 0.86 [–0.26;0.99] 259 (15.5%)

Interpolation 14 (0.8%) 0.93 [–0.32;0.99] 78 (4.7%)

4. Discussion

The results presented in the previous section show that the proposed method brings significant
improvements when comparing severely scarcely sampled time series (i.e., less than 20 acquisition
dates). It is based on the idea that gaps between observed dates can be interpolated in order to
artificially increase the number of observations. Even though this is a very simple idea, it proved to be
both valid and a natural translation of a visual interpretation of the time series. The CCs that were
computed using this interpolation method were coherent with their visual interpretation counterparts.

As noted in the synthetic case study, we observed that the constructed 95% confidence intervals
actually contained more than 99% of the true simulated CC even when no interpolation was performed
(i.e., what we called the control method). However, we also validated in parallel (results not shown
here) that Equation (4) is correct for uncorrelated series (i.e., Xi and Yi are correlated but the Xi and
the Yi are not correlated together). This is a clear indication that the presence of trends in the series
tends to decrease the actual variability of the estimated CCs compared to Equation (4). Nevertheless, if
this is a limitation, it is related to the use of the CC itself, not on the use of the interpolation strategy.
While this brings doubts of the validity of Equation (4) in the context of time series, it does not
invalidate our proposed approach. Moreover, since the variability is overestimated, the constructed
confidence intervals and equivalent statistical tests are more conservative (i.e., if the null hypothesis
“H0 : ρ ≤ 0.5” is rejected, it is very likely that it is a true rejection). In other words, the type I error
is smaller than expected. The opposite case of an underestimated variability is riskier because the
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alternative hypothesis “H1 : ρ > 0.5” would then be accepted too easily (i.e., we believe that the test is
at 95% but it is actually at a smaller percentage).

On the real data example, the estimations were consistently high for the large majority of the
parcels. The only cases where the CCs were estimated as small corresponded to obvious lack of data in
a crucial period of the crop season, such that no trend could actually be seen in the Sentinel-2 time
series. On the contrary, in such conditions, we may expect a lower similarity between the time series
because of this lack of information. For instance, in Figure 4, one could argue that the slotting method
is actually overestimating the similarity.

The precision of the estimations was also significantly improved. The number of accepted
“H0 : ρ ≤ 0.5” hypotheses significantly decreased when using the interpolation method. Indeed,
more information were taken into account than merely using the simultaneous observations.
The interpolation step translates the temporal evolution of the time series more adequately. The slotting
method also showed some advantages, but it requires at least 20 observations in order to perform
correctly. The DTW was able to bring some improvements but not as much as the slotting or
interpolation methods.

Finally, the proposed interpolation method proved to be very efficient against the lack of
simultaneous observations between the two time series. In the Dutch example, we observed a quasi
disappearance of the cases where the CCs could not be computed (from 385 to only 14). This is
a clear benefit of the proposed method since it drastically reduces the number of undecided cases
(i.e., where there is not enough information for a conclusion). The slotting method proved to be an
alternative but the results highly depend on the density and spread of the acquisition dates and on the
bin size. Comparatively, the interpolation approach correctly brings added temporal information and
helps fill the sampling gaps without requiring any parameters. Clearly, this benefit is less obvious for
long time series observed on a regular time step with few missing data.

5. Conclusions

In this paper, we presented a simple method to quantify the similarity between scarce remotely
sensed time series. The index is based on the Pearson’s correlation coefficient (CC) between the two
time series. As we are interested in the similarity between the time series, the CC is computed on
the raw time series (i.e., without removing the trends). The use of an interpolation step enables us to
circumvent the issue of the scarcity of the time series. The theory of CC estimation was also extended
to the estimation based on a mix between genuine observations and interpolated values.

The proposed method was tested both on simulated and real application data. It proved to be
very efficient and specifically useful when the number of simultaneous observations is limited. Indeed,
in such conditions, neither the cross- and autocorrelation functions nor a simple CC between the true
pairs of observations can be accurately estimated. In many cases, the estimator cannot be computed at
all. Limiting the computation to the zero-lag bin of the cross-correlation function is a possible alternative
but at the cost of larger bin sizes, which might risk diluting the actual similarity with dissimilar pairs
of observations. On the contrary, the interpolation step adequately brought the temporal information
in order to cope with both the temporal gaps and the lack of simultaneous observations.

In our context, the objective was to evaluate the similarity between two time series for which the
CC is a sufficient quantitative index. However, one could also extend the analysis to more complex
indexes. After the same interpolation step, one can generalize the approach by replacing the CC
with other types of indexes such as Spearman’s rho or Kendall’s tau [15], an index of agreement [10],
or mutual information [16]. This approach thus opens interesting avenues for the analysis of scarce
remotely sensed time series.
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