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Abstract: Postclassification Comparison (PCC) has been widely used as a change-detection method.
The PCC algorithm is straightforward and easily applicable to all satellite images, regardless of whether
they are acquired from the same sensor or in the same environmental conditions. However, PCC is
prone to cumulative error, which results from classification errors. Alternatively, Change Vector
Analysis in Posterior Probability Space (CVAPS), which interprets change based on comparing the
posterior probability vectors of a pixel, can alleviate the classification error accumulation present in
PCC. CVAPS identifies the type of change based on the direction of a change vector. However, a change
vector can be translated to a new position within the feature space; consequently, it is not inconceivable
that identical measures of direction may be used by CVAPS to describe multiple types of change.
Our proposed method identifies land-cover transitions by using a fusion of CVAPS and PCC. In the
proposed algorithm, contrary to CVAPS, a threshold does not need to be specified in order to extract
change. Moreover, the proposed method uses a Random Forest as a trainable fusion method in order
to obtain a change map directly in a feature space which is obtained from CVAPS and PCC. In other
words, there is no need to specify a threshold to obtain a change map through the CVAPS method and
then combine it with the change map obtained from the PCC method. This is an advantage over other
change-detection methods focused on fusing multiple change-detection approaches. In addition,
the proposed method identifies different types of land-cover transitions, based on the fusion of CVAPS
and PCC, to improve the results of change-type determination. The proposed method is applied to
images acquired by Landsat and Quickbird. The resultant maps confirm the utility of the proposed
method as a change-detection/labeling tool. For example, the new method has an overall accuracy
and a kappa coefficient relative improvement of 7% and 9%, respectively, on average, over CVAPS
and PCC in determining different types of change.

Keywords: land-cover change; Change Vector Analysis in Posterior Probability Space (CVAPS);
Postclassification Comparison (PCC); fusion

1. Introduction

Remote sensing can be used to detect ‘land-use/land-cover’ (LULC) changes [1].
Generally, digital remote sensing change-detection methods can be classified into two types [2,3]: (1)
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methods based on classification results; and (2) methods based on algebraic expressions. Change-detection
methods based on classification results, such as Postclassification Comparison (PCC) [4] and Change
Vector Analysis in Posterior Probability Space (CVAPS) [5], do not need the remotely sensed data to
be acquired in the same season or from the same remote sensor [2], an improvement over the latter
methods (i.e., methods based on algebraic expressions), such as Change Vector Analysis (CVA) [6,7].
Therefore, PCC and CVAPS are selected for further investigation in this study.

The PCC method overlays multitemporal coincident land-cover maps in order to recognize
changes between them. The PCC technique is a widely used technique for a range of different
applications [8]. However, the PCC method is affected by map-production difficulties and can be prone
to cumulative error, which results from classification errors [2]. On the other hand, CVAPS extracts
change by comparing the posterior probability vectors of each pixel, instead of thematic maps; this can
alleviate the classification error accumulation present in PCC effectively [8]. The type of change can be
determined by using the direction information of a change vector, but CVAPS does not consider that a
change vector can be translated to a new position within the feature space. Consequently, it is not
inconceivable that identical measures of direction may be used to describe multiple types of change,
limiting the ability of CVAPS as a land-cover-transition labeling method.

Recently, some attempts have been made with the purpose of using more than one change-detection
method to improve LULC change-detection results. For instance, Waske and van der Linden produced
prior change maps from Synthetic Aperture Radar (SAR) and optic images, and then used Support
Vector Machine (SVM) and Random Forest (RF) methods to fuse the resultant change maps [9].
The results demonstrated that the RF-based fusion method outperformed other decision fusion
methods. In addition, Du et al. proposed the use of decision-level fusion to improve change-detection
results [10]. Moreover, Zheng et al. fused two difference images and then used k-means clustering to
detect changed areas [11]. Fusion of change-detection methods was further explored by Jia et al. [12].
They first fused the wavelet kernels of two difference images, and then used a classification method
to produce the final change map. Recently, Singh and Singh fused spectral change information and
a similarity index, and then used a classifier to detect changes [13]. Moreover, Luo et al. detected
urban change by first obtaining multiple change maps using different change-detection methods,
and then applied Dempster–Shafer theory to fuse the results, based on a segmentation object map [14].
These examples demonstrate how the fusion of change-detection methods may be an effective way to
improve the results of LULC change detection.

Fusion of CVAPS and PCC may make feasible the extraction of different types of ‘from–to’ classes,
since combining different change-detection methods may give a better output than a single one.
Therefore, our study presents a change-detection method to determine the from–to classes, based on
the fusion of CVAPS and PCC. In the proposed fusion algorithm, CVAPS and PCC change maps do
not need to be obtained in order to extract changed pixels. In other words, there is no need to specify
a threshold to obtain a change map through the CVAPS method and then combine it with the change
map obtained from the PCC method. The proposed method uses RF as a trainable fusion method
to obtain a change map directly in a feature space which is obtained from CVAPS and PCC. This is
an advantage over other change-detection methods focused on fusing multiple change-detection
approaches. In addition, since both CVAPS and PCC are based on classification results, the proposed
method makes the best use of the information that is available at present to improve the performance
of CVAPS and PCC in change-type recognition.

2. Materials and Methods

The CVAPS method consists of three main steps: (1) estimating the posterior probabilities of
images acquired on two different dates by a supervised classifier; (2) generating change vectors and
applying a threshold on their magnitude to detect changed pixels; and (3) determining the types of
change based on the direction of change vectors. The theoretical framework of the CVAPS [5] method
is described below.
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The change vector of a pixel, ∆P, is given by the equation

∆P = P(T2) − P(T1), (1)

where P(T1) =
[
p(T1)

1 , p(T1)
2 , . . . , p(T1)

n

]
and P(T2) =

[
p(T2)

1 , p(T2)
2 , . . . , p(T2)

n

]
are the posterior probability

vectors of the pixel for n classes on the dates T1 and T2, respectively. We can extract the changed pixels
by setting a threshold for the magnitude of ∆P.

In the CVAPS method, ∆P of a pure pixel (one that changed from a land-cover class to another class)
is denoted as a ‘base change vector’. A group of base change vectors is defined to identify different
types of LULC trajectories. The inner product of a base change vector and ∆P can be considered to be a
measure of their similarity. As all elements in the group of base change vectors have the same norm
value, the maximum of the inner product can indicate the type of change.

There are two main limitations in CVAPS: (1) setting a specific threshold to extract the changed
pixels is an important parameter, which can influence change-detection results; and (2) as ∆P can be
translated to a new position within the feature space, there is some likelihood that identical measures
of direction may be used to describe multiple types of change (see Figure 1).
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Figure 1. Representation of two change vectors (∆Pand∆Ṕ) in a posterior probability space having
the same measures of direction and magnitude, where ∆Pand∆Ṕ are change vectors with different
‘from–to’ classes, and A, B, and C represent class labels.

2.1. Proposed Method

Due to the shortcomings of the CVAPS and PCC methods, this study proposes an ensemble
of CVAPS and PCC to obtain change and from–to maps of greater accuracy than the change and
from–to maps obtained from each of them alone. As both the CVAPS and PCC methods are based
on classification results, we hypothesize that making better use of all available information should
improve overall performance.

When performing change detection using two coincident images acquired at different times,
specification of from–to information is needed. Accordingly, the proposed method is twofold,
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using change-detection and change-type recognition steps (see Figure 2). In the change-detection step,
the aim is to obtain a change map with two classes (change and no-change); the change-type recognition
step tries to determine the from–to classes.

Remote Sens. 2019, 11, x FOR PEER REVIEW 4 of 14 

 

aim is to obtain a change map with two classes (change and no-change); the change-type recognition 
step tries to determine the from–to classes. 

In the change-detection step, the proposed method highlights changed pixels, based on the use 
of RF as a trainable fusion method, to detect changed pixels directly in a feature space which is 
obtained from CVAPS and PCC. This avoids the reliance on threshold specification by classifying a 
new feature vector consisting of the magnitude of ∆𝐏, as well as the resultant classified images, to 
extract changed pixels. In the change-type recognition step, different types of change are recognized 
by the fusion of CVAPS and PCC, based on the RF. This reduces the possible change-type 
determination errors, mentioned in the second limitation of CVAPS. The details of the change-
detection and change-type recognition sections will be discussed in Sections 2.1.1 and 2.1.2, 
respectively. 

 
Figure 2. Flowchart of the proposed method. CVAPS, Change Vector Analysis in Posterior Probability 
Space; PCC, Postclassification Comparison. 

2.1.1. Change Detection 

The change-detection part consists of three main steps; first, we approximate the posterior 
probabilities as a function of reflectance, by using a supervised classifier. In the proposed method, 
the RF algorithm, an alternative method to single parametric classifiers [15], is used to produce the 
posterior probability images. As a result of offering probabilistic class memberships, the RF method 
can provide more information about the probability of change in LULC [16,17].  

Figure 2. Flowchart of the proposed method. CVAPS, Change Vector Analysis in Posterior Probability
Space; PCC, Postclassification Comparison.

In the change-detection step, the proposed method highlights changed pixels, based on the use of
RF as a trainable fusion method, to detect changed pixels directly in a feature space which is obtained
from CVAPS and PCC. This avoids the reliance on threshold specification by classifying a new feature
vector consisting of the magnitude of ∆P, as well as the resultant classified images, to extract changed
pixels. In the change-type recognition step, different types of change are recognized by the fusion
of CVAPS and PCC, based on the RF. This reduces the possible change-type determination errors,
mentioned in the second limitation of CVAPS. The details of the change-detection and change-type
recognition sections will be discussed in Sections 2.1.1 and 2.1.2, respectively.

2.1.1. Change Detection

The change-detection part consists of three main steps; first, we approximate the posterior
probabilities as a function of reflectance, by using a supervised classifier. In the proposed method,
the RF algorithm, an alternative method to single parametric classifiers [15], is used to produce the
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posterior probability images. As a result of offering probabilistic class memberships, the RF method
can provide more information about the probability of change in LULC [16,17].

A pixel-based RF classification model usually generates a ‘salt-and-pepper’ phenomenon. In this
study, the salt-and-pepper phenomenon is decreased by employing the Markov Random Field (MRF)
model, proposed in [18], on the classified images. In the MRF model, the class of a pixel is determined
by using both the spectral information and the labels of the neighboring pixels in an optimization
approach. Therefore, we employ Iterated Conditional Modes [19] as an optimization algorithm due to
its good performance for classification [18].

Secondly, we calculate the magnitude of ∆P. CVAPS calculates the magnitude of ∆P (see Equation (1)) as

‖∆P‖ =

√√ n∑
i=1

(
P(T2)

i − P(T1)
i

)2
. (2)

Suppose ∆P of a pixel on date T1, for classes A, B, and C, respectively, is [0.5, 0.4, 0.1]T1 , and
on date T2 is [0.8, 0.1, 0.1]T2 . Then, the most probable class on both dates is class A and ‖∆P‖

is
√
(0.8− 0.5)2 + (0.1− 0.4)2 + (0.1− 0.1)2 = 0.424. If we change ∆P on date T2 to [0.2, 0.7, 0.1]T2 ,

then the most probable class is class B on date T2 but ‖∆P‖ is still equal to 0.424. Therefore, in both
cases, ‖∆P‖ is equal to 0.424, but the probability of change in the latter is higher than in the former case.

We introduce a simple way to calculate ‖∆P‖ in order to solve this issue. In this method, the most
probable class on each date is recognized; then, ‖∆P‖new is calculated as

‖∆P‖new =

√√√√√ themostprobableclassondateT2∑
i=themostprobableclassondateT1

(
p(T2)

i − p(T1)
i

)2
. (3)

For the former case in the example, ‖∆P‖new is
√
(0.8− 0.5)2 = 0.3 and, for the latter, ‖∆P‖new is√

(0.2− 0.5)2 + (0.7− 0.4)2 = 0.424, so a higher probability of change is demonstrated by ‖∆P‖new in
the latter case.

Assume that the magnitude of change and the classified images are given as three-dimensional
vectors CVPC = (‖∆P‖new, classified image on date T1, classified image on date T2). Let C be
our training data set with M points and, for each point, the magnitude of change, the classified
images, and the real ‘change/no-change’ label are given. Finally, to highlight the changed areas, the RF
model (which was trained based on the training data set, C) is used to classify a newly constructed
feature vector (i.e., CVPC). This procedure improves on the CVAPS algorithm by not being reliant on
threshold selection.

2.1.2. Change-Type Recognition

If CVAPS and PCC work separately and agree on the same from–to class, then the final class
type is obvious. However, if both have different results for the type of change, then there will be
no final result. The role of fusion here is to deduce an answer by using an ensembled fusion model.
Assume that the from–to outputs of the CVAPS and PCC are given as two-dimensional vectors
FromToCVPC = [From−ToCVAPS, From−ToPCC], where From−ToCVAPS is the type of change indicated
by CVAPS and From− ToPCC is the type of change indicated by PCC. In the proposed method, in order
to determine land-cover change trajectories, the outputs of CVAPS and PCC are combined, using RF
as a trainable combining method. Let C be our training data set with M points and, for each point,
the from–to outputs of the CVAPS and PCC and the real from–to label are given. An RF model is
trained based on the training data set (i.e., C). After the RF model has been trained, the combiner
(i.e., the RF model) is ready to operate on the FromToCVPC vectors.
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3. Description of Data Sets and Experiments

Experiments were conducted on Landsat and Quickbird data sets with different thematic changes,
to confirm the efficacy of the proposed method.

3.1. Experiment I

3.1.1. Study Area and Data

The first study area was the city of Prince George located in northern British Columbia, Canada.
A pair of Landsat TM/ETM+ data (440× 620 pixels), with six spectral bands, of this area was used in
order to assess our method. The images were collected in August 1990 and September 1999. This area
is well known for the logging activities that occurred there (see Figure 3).
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3.1.2. Data Processing

To obtain classified images, an RF model with 500 trees was used as a classifier, which was
followed with MRF to reduce the salt-and-pepper phenomenon (Figure 4). A total of 700 pixels,
with known labels obtained through accurate visual interpretation, were utilized as the training set in
the RF model.
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To define a reference change map (Figure 5a) and a reference LULC type-of-change map (Figure 6a),
the data set was accurately interpreted, which was time-consuming. In order to extract the changed
pixels, first ‖∆P‖new was calculated, according to Equation (3). Then, CBPC = (‖∆P‖new, classified
image on date T1, classified image on date T2) was classified by RF with 500 trees to detect the changes
(Figure 5e).
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In order to recognize the types of change, first, the LULC type-of-change maps of CVAPS and
PCC were generated. Then, FromToCVPC = (From− ToCVAPS, From− ToPCC) was classified by RF with
500 trees (Figure 6e).
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3.1.3. Accuracy Assessment

The results of the proposed method were compared with those of PCC, CVAPS, and a Naïve Bayes
fusion method [20]. Considering that both PCC and CVAPS are based on classification results, an RF
model with 500 trees was used as a classifier. The same training set utilized for the proposed algorithm
was also utilized for PCC and CVAPS. As the change magnitude was not a normal distribution, the
Otsu method [21] was used to set a threshold value for the CVAPS method. A Naïve Bayes method
was used to fuse CVAPS and PCC results at a decision level. We randomly selected 3504 pixels for
validation. Overall accuracy (OA), kappa coefficient (KC), producer’s accuracy, and user’s accuracy
were used as accuracy measurements to compare CVAPS, PCC, Naïve Bayes, and the proposed method.
The accuracy assessments of the change-detection results in Experiment I obtained using CVAPS, PCC,
Naïve Bayes, and the proposed method are summarized in Table 1. As Table 1 shows, the proposed
method had an OA of 85% and a KC of 0.70, while CVAPS, PCC, and Naïve Bayes achieved OAs
of 81.9%, 83.2%, and 83.2%, and KCs of 0.63, 0.66, and 0.66, respectively. The proposed method
performed better than CVAPS, PCC, and Naïve Bayes on the Experiment I data set. A more accurate
change-detection decision was expected by using RF as a trainable combining method to obtain a
change map directly in the feature space which was obtained from CVAPS and PCC.
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Table 1. Accuracy assessment of change detection in Experiment I.

Method User’s Accuracy Producer’s Accuracy Overall Accuracy Kappa

Changed Unchanged Changed Unchanged

CVAPS 80.7% 83.3% 84% 79.9% 81.9% 0.63
PCC 85.2% 81.4% 80.4% 86.1% 83.2% 0.66

Naïve Bayes 85.2% 81.4% 80.4% 86.1% 83.2% 0.66
Proposed 80.6% 89.4% 88.4% 82.2% 85% 0.70

Table 2 summarizes the OAs and the KCs of the LULC type-of-change maps, obtained using
CVAPS, PCC, Naïve Bayes, and the proposed method. As Table 2 shows, the proposed method had an
OA of 71.2% and a KC of 0.67, while CVAPS, PCC, and Naïve Bayes achieved OAs of 69.8%, 65.4%,
and 64%, and KCs of 0.64, 0.60, and 0.58, respectively. The proposed method also achieved a better
type-of-change map than CVAPS, PCC, and Naïve Bayes for the Experiment I data set. This result has
further strengthened our hypothesis that change-type recognition performance can be improved by
fusion of CVAPS and PCC, based on using RF as an ensemble combiner.

Table 2. Accuracy assessment of LULC type-of-change identification in Experiment I.

Method Overall Accuracy Kappa

CVAPS 69.8% 0.64
PCC 65.4% 0.60
Naïve Bayes 64% 0.58
Proposed Method 71.2% 0.67

3.2. Experiment II

3.2.1. Study Area and Data

The second data set is made up of two Quickbird subimages (474 × 561 pixels) with four spectral
bands, taken in December 2004 and January 2005 over Indonesia, before and after the 2004 Indian
Ocean tsunami (Figure 7).
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3.2.2. Data Processing

The same process described in Section 3.1.2 was followed to classify the data set. The classification
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The Quickbird data set was visually interpreted to obtain a reference change map (Figure 9a) and
a reference LULC type-of-change map (Figure 10a).
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Figure 10. LULC type-of-change maps obtained from the Experiment II data set.

The same process described in the implementation of Experiment I was followed to extract
changed areas (Figure 9e) and obtain a LULC type-of-change map (Figure 10e).

3.2.3. Accuracy Assessment

The accuracy assessment of the resultant change maps in Experiment II was obtained using a set
of 3515 test pixels, through the same procedure as mentioned in Section 3.1.3. The accuracy assessment
of the resultant change maps shows that the proposed method had an OA of 98.4% and a KC of 0.96,
while CVAPS, PCC, and Naïve Bayes achieved OAs of 97.6%, 97.3%, and 97.3%, and KCs of 0.95, 0.94,
and 0.94, respectively (Table 3). Similar to the results of Experiment I, the Experiment II results also
validate that the proposed method performed better than CVAPS, PCC, and Naïve Bayes.

Table 4 compares the accuracy assessment of the LULC type-of-change maps obtained using
CVAPS, PCC, Naïve Bayes, and the proposed method. As presented in Table 4, the proposed method
had an OA of 89.1% and a KC of 0.87, while CVAPS, PCC, and Naïve Bayes achieved OAs of 82.6%,
80%, and 83.8%, and KCs of 0.80, 0.77, and 0.81, respectively. These results support the idea that the
proposed change-detection method can lead to increased robustness in change-type recognition due to
the fusion of CVAPS and PCC.
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Table 3. Accuracy assessment of change detection in Experiment II.

Method User’s Accuracy Producer’s Accuracy Overall
Accuracy Kappa

Changed Unchanged Changed Unchanged

CVAPS 96.9% 98.4% 98.4% 96.8% 97.6% 0.95
PCC 96.2% 98.4% 98.3% 96.3% 97.3% 0.94

Naïve Bayes 96.2% 98.4% 98.3% 96.3% 97.3% 0.94
Proposed 99.2% 97.7% 97.7% 99.1% 98.4% 0.96

Table 4. Accuracy assessment of LULC type-of-change identification in Experiment II.

Method Overall Accuracy Kappa

CVAPS 82.6% 0.80
PCC 80% 0.77
Naïve Bayes 83.8% 0.81
Proposed Method 89.1% 0.87

4. Conclusions

This study has presented a change-detection method, based on CVAPS and PCC fusion in a
trainable ensemble, to detect changes and determine from–to classes. Given that both the CVAPS
and PCC methods are based on classification results, the main idea of the proposed method is to
make better use of all available information in order to improve overall performance. The proposed
method was applied to images acquired by Landsat and Quickbird. The results of the proposed
method were compared with those of CVAPS, PCC, and a Naïve Bayes fusion method. The resultant
maps confirm the utility of the proposed method as a change-detection/labeling tool. For example,
the new method had an overall accuracy and a kappa coefficient relative improvement of 7%
and 9%, respectively, on average, over CVAPS and PCC in determining different types of change.
Furthermore, it should be noticed that the proposed fusion method performed better than Naïve
Bayes as a fusion method. Therefore, the proposed method exhibits a good potential in fusion of
change-detection methods based on classification results, specifically in fusion of CVAPS and PCC.
Moreover, contrary to CVAPS, the proposed method does not require setting a specific threshold to
determine whether a pixel has changed or not, since the proposed method uses RF as a trainable
fusion method to detect changed areas directly in a feature space which is obtained from CVAPS and
PCC, an advantage over other change-detection methods focused on fusing multiple change-detection
approaches, which need to achieve change maps first and then fuse them to achieve the final change
map. Furthermore, the uncertainties of change-type recognition can be reduced by the fusion of CVAPS
and PCC. Meanwhile, the selection of the training data is an essential step in change-detection methods
based on classification results, including CVAPS, PCC, and the proposed method. This study has
shown RF, as a trainable fusion method, to be useful for combining CVAPS and PCC. Future studies
should examine other ensemble methods to combine CVAPS and PCC. Furthermore, this study only
focused on combining CVAPS and PCC; other change-detection methods based on classification results
can also be combined, using the same trainable fusion approach as in the proposed method.
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