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Abstract: This paper demonstrates the feasibility of detection and localization of multiple stationary
human targets based on cross-correlation of the dual-station stepped-frequency continuous-wave
(SFCW) radars. Firstly, a cross-correlation operation is performed on the preprocessed pulse signals of
two SFCW radars at different locations to obtain the correlation coefficient matrix. Then, the constant
false alarm rate (CFAR) detection is applied to extract the ranges between each target and the two
radars, respectively, from the correlation matrix. Finally, the locations of human targets is calculated
with the triangulation localization algorithm. This cross-correlation operation mainly brings about
two advantages. On the one hand, the cross-correlation explores the correlation feature of target
respiratory signals, which can effectively detect all targets with different signal intensities, avoiding
the missed detection of weak targets. On the other hand, the pairing of two ranges between each
target and two radars is implemented simultaneously with the cross-correlation. Experimental results
verify the effectiveness of this algorithm.
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1. Introduction

As an emerging technology, ultra-wideband (UWB) radars are widely used in the field of life
detection with the development of signal-processing technology. Especially in post-disaster rescue,
anti-terrorism, and fall detection, the non-line-of-sight, long-range, and anti-interference characteristics
make the radar an effective monitoring tool [1–10]. Therefore, it is of great practical significance to
apply the radar to the detection and localization of human targets trapped behind obstructions.

A single-frequency continuous-wave radar was first utilized for contactless detection of
human-respiration life signs in 1971 [11]. The Fourier transform is performed in [12,13] to extract
respiration-frequency information from the radar signal with period micro-Doppler modulation.
To obtain the range information of stationary human targets, UWB radars with a short pulse [14]
and linear frequency-modulation continuous waves [15] were introduced for their high range
resolution. Specifically, by performing Fourier transform along slow time, range information
between radar and human target can be obtained, along with the extraction of respiration frequency.
The stepped-frequency continuous-wave (SFCW) UWB radar has been the preferred choice in human
detection due to its high sensitivity, flexible waveform controllability, and simple system design [16–19].
To further obtain accurate location information of human targets, multichannel UWB radar systems
have increasingly been applied to human detection with two main methods. One extracts the target
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location from the target image formed by energy accumulation of multichannel target echoes [20].
The other first extracts a target range from the range Doppler (RD) plane that is formed by fast Fourier
transform (FFT)-based energy accumulation of multiperiod echoes according to each transmit–receive
channel, and then the target location is calculated by integrating two extracted target ranges of two
channels [21]. However, these two methods have certain problems in the case of multiple human
targets. First, since the two methods both depend on energy accumulation, weak target are masked by
targets with strong echo intensity, resulting in missed detections of weak targets. The difference of
echo intensity may frequently be encountered in practice due to, for example, different target ranges
or intertarget occlusion. Second, for the second method in [21] with two transmit–receive channels,
multiple target ranges are acquired in each channel, thus an additional pairing procedure is required
to sort out two-channel ranges of each target. More seriously, false targets appear accompanied with
the inevitable false pairing for some specific target locations.

To avoid the missed detection of weak targets, a single-radar correlation-based method is proposed
in [22] to substitute the energy accumulation-based method. Based on a single-channel UWB pulse
radar, the correlation coefficient of multiperiod echoes of each target is explored to identify the range
information of all targets with different echo intensity. Nevertheless, this method is only able to
obtain ranges (rather than locations) of multiple stationary human targets due to single-channel
processing. Even if this method is introduced into multichannel radars, namely the correlation
operation is performed on each channel, the pairing of extracted target ranges of a multichannel is also
indispensable for subsequent target localization. Furthermore, a weak target also disappears under
the condition of serious intertarget occlusion. With respect to a single-station one-transmitter and
two-receiver (two-channel) SFCW radar, interchannel cross-correlation was considered to improve
the detection performance in low signal-to-noise ratio (SNR) backgrounds [23]. Cross-correlation
is implemented by multiplying two-channel RD planes; in essence, it is also based on energy
accumulation. Moreover, in two RD planes, a necessary but uncommon condition for a multiplication
operation is that each target should be located in the same RD cells.

In this paper, a cross-correlation algorithm based on dual-station single-channel SFCW radars is
proposed to implement the detection and localization of multiple stationary human targets. With regard
to two single-channel radars at different stations, the respiration signals of each target in two different
channels are highly related, so the cross-correlation coefficient matrix of two-channel echoes is first
calculated as the basis of subsequent target detection. In particular, target detection is performed on
the cross-correlation coefficient matrix by a two-dimension constant false alarm rate (CFAR) detector
to achieve the ranges of multiple targets [24]. Finally, the triangulation method is utilized to convert
the extracted target ranges to the estimations of target locations. The main contributions are as follows:

1. Dual-view synchronous observation is implemented by utilizing two single-channel SFCW
radars at different stations, which brings about two major advantages. On the one hand, intertarget
shadowing occlusion (generally appeared in the case of single-view observation) is widely prevented to
ensure robust detection of multiple stationary human targets. On the other hand, favorable adaptability
is achieved for different radar locations and human-target orientations.

2. Compared with existent energy-accumulation algorithms [19,20,23] and the single-radar
correlation algorithm [22], the proposed cross-correlation algorithm of dual-station radars efficiently
deals with the problem of the missed detection of weak targets even in the case of target occlusion for
one of two radars.

3. In comparison to the two-channel processing algorithm [21] and single-radar correlation
algorithm [22], the proposed cross-correlation algorithm dispenses with the additional-range pairing
procedure, as two extracted ranges of each target for two radars are synchronously connected in the
cross-correlation process.

Based on two SFCW radar at different stations, multiple groups of experiments were carried
out to validate the superiority of the proposed cross-correlation algorithm in comparison to the
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energy-accumulation and single-channel correlation algorithms, and evaluate the performance with
different radar locations, human-target orientations, and postures.

The paper is organized as follows. Section 2 introduces the configuration of dual-station SFCW
radars. The principle of proposed cross-correlation algorithm is described in Section 3. In Section 4,
the experiment results and analyses are presented. The paper is concluded in Section 5.

2. Dual-Station SFCW Radar

The dual-station radar system consists of two single-channel SFCW radars located at different
locations, as shown in Figure 1. The detailed radar structure is provided in Section 4. Each SFCW
radar is composed of three parts: host computer, single-channel transceiver, and two antennas.
The host computer plays the role of displaying and controlling the terminal, which manages operation
parameters, and the storage and presentation of collected data. The single-channel transceiver is
responsible for the generation, transmission, reception, and sampling of SFCW signals. The two
antennas are connected to the single-channel transceiver for the radiation of electromagnetic waves
and collection of target echoes.
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Figure 1. Dual-station SFCW radars.

The application of a SFCW signal can help avoid the mutual interference of two single-channel
radars. This anti-interference ability can be interpreted as follows. The SFCW signal involves a
sequence of discrete tones whose carrier frequencies are increased by a fixed stepwise manner to cover
a wide bandwidth in the time domain. Therefore, the SFCW signal can be expressed as

s(t) =
K

∑
k=0

cos (2π( f0 + k∆ f )t) · rect

(
t− kT0 − 1

2 T0

T0

)
, (1)

where f0 is the starting carrier frequency, ∆ f is the frequency increment, T0 is the duration time
of each frequency, and K + 1 is the number of all carrier frequencies. To decrease pulse-repetition
time, single-frequency time T0 is generally limited to the microsecond level. In this paper, the T0 of
the developed single-channel radar is configured as 100 µs. Obviously, the same carrier frequency
electromagnetic wave emitted from the two radars at the same time causes mutual interference between
the radars. To prevent this interference in practical applications, two single-channel radars at different
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locations are set up to perform asynchronous observations by manual activation from corresponding
host computers. Manual activation inevitably results in millisecond levels of minor observation-time
differences for the two single-channel radars. For the millisecond-level single-frequency time, the minor
time difference brings about a significant distinction between the working carrier frequencies of two
radars. Specifically, we assume Radar 1 runs at a carrier frequency of f1 while Radar 2 works in f2

at the same time. In this case, two radars simultaneously receive target echoes with f1 and f2. Take
the case of Radar 1. The target echo of f2 is regarded as interference from Radar 2. The target echoes
of f1 and f2 are demodulated separately in the mixer with a carrier frequency of f1, correspondingly
generating the desired baseband signal and the interference signal with a frequency of | f1 − f2|. By a
low-pass filter (LPF), the desired baseband signal of Radar 1 is preserved to serve for human detection,
and the interference signal from Radar 2 is filtered out. In the same way, the interference signal from
Radar 1 could be removed in Radar 2 through demodulation and filtering. In terms of human-target
detection, the millisecond time difference is negligible for several (3–4) seconds of human respiration,
guaranteeing the high correlation of respiration signals between two radars for each human target.
As a whole, the application of the SFCW system enables effective observation of two radars without
mutual interference.

3. Dual-Station Cross-Correlation Based Detection and Localization

In this section, a dual-station cross-correlation algorithm is presented to implement the detection
and localization of multiple stationary human targets. As shown in Figure 2, with respect to the
multiperiod SFCW echo data of two radars, the presented algorithm is composed of five steps: inverse
FFT (IFFT) for generating range profiles, two-pulse cancellation for suppressing stationary background
clutters, cross-correlation between two radars for exploring the correlation feature of respiratory
signals, CFAR detection for identifying multiple targets, and triangulation localization for calculating
target locations. A detailed description of these steps is provided as follows.
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Figure 2. Detection and localization flowchart based on dual-station cross-correlation.
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3.1. Signal Model

With respect to stationary human detection, the desired characteristics are nonstationary and
quasiperiodic fluctuations of a body surface caused by respiration and heartbeat. However, in real
application situations, heartbeat fluctuations are too weak to be detected due to medium penetration
attenuation. Therefore, excluding heartbeat fluctuations, the nonstationary and quasiperiodic
fluctuations of a body surface only with respiration is approximately modeled into a narrow-band
random signal as

∆r(t) = Ab(t) sin(ωb(t)t + ϕb(t)), (2)

where Ab(t), ωb(t), and ϕb(t) denote respiration amplitude, frequency, and initial phase with slow
random variation, respectively.

To extract the quasiperiodic micromotion respiration signal, it is necessary to collect multiple
periods of SFCW echoes. More echo periods mean higher SNR and better frequency resolution,
but result in a larger processing burden and delay. As for the selection of period number, a trade-off
must be made to satisfy the practical application demand. Assume there are β stationary human
targets and N periods of SFCW echoes collected for each radar. For each period, through quadrature
demodulation, multipoint sampling and averaging in each frequency, a sequence of multifrequency
echo data are acquired as a frequency-domain data vector. Assume that there are totally K + 1
frequencies. Therefore, N periods of data vectors are combined into a N × K + 1 data matrix Sl , where
the nth row and kth column of an element can be given by

Sl(n, k) =
β

∑
λ=1

exp
(
−j2π( f0 + k∆ f )

(
rl,λ + ∆rl(tn,λ)

c

))
, (3)

where l = 1 and 2 are used to classify Radars 1 and 2, rl,λ is the average range between radar l and
torso surface of λth human target, c is the light speed, and ∆rl(tn,λ) is the range fluctuation regarded
as an invariant for all K + 1 frequencies in the nth period.

3.2. Data Preprocessing

For multiperiod multifrequency data matrix Sl , to obtain narrow pulse signals with target ranges,
IFFT-based pulse compression is performed on each period of a multifrequency data vector to generate
a period of the time-domain range profile. For example, the nth period of the range profile can be
written as

pl(n, rm) =
β

∑
λ=1

B · sinc (B (rm − 2(rl,λ + ∆rl(tn,λ)))) · exp (j2π fc (rm − 2(rl,λ + ∆rl(tn,λ)))) , (4)

where B = K∆ f and fc = f0 + K∆ f /2 separately denote the bandwidth and center frequency of
SFCW signal, and rm is the mth computational range unit. Maximum unambiguous range c/2∆ f is
divided into M computational range units through M points of IFFT. To accurately track the target
peak, the point number of IFFT, namely, the number of computational range units is generally set to be
larger than the number of physical range units, namely M > K. In other words, the echo of one target
extends to multiple computational range units.

With regard to the N periods of SFCW echoes for radar l (l = 1, 2), N periods of range profiles are
generated through IFFT on each period, forming an N×M dimension of fast–slow time data matrix Pl .
Considering that practical life detection situations are full of strong stationary clutters (such as ground,
wall, and debris echoes) and background noise, the complete fast–slow time data matrix Pl can be
expressed as

Pl = Ph,l + Pw,l + ωn,l , (5)
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where Ph,l expresses the desired human signals, Pw,l represents the stationary clutters, ωn,l denotes the
background noise, and l = 1 and 2 are used to classify Radars 1 and 2. As a result, fast–slow time data
matrices P1 and P2 are obtained through IFFT on each period of two multi-frequency data matrices S1

and S1 separately collected by Radar 1 and Radar 2.
For these two fast–slow time matrices P1 and P2, preprocessing is required to suppress the

stationary clutters in each matrix before cross-correlation operation. In this section, two instances of
pulse-cancellation filtering are utilized to reduce stationary clutters as

X1(n, m) = P1(n, m)− P1(n + 1, m)

X2(n, m) = P2(n, m)− P2(n + 1, m),
(6)

where n and m indicate the index of the matrix row (period) and column (computational range unit),
respectively. The values of n and m are n = 1, 2, · · · , N − 1 and m = 1, 2, · · · , M.

It should be noticed that, in [22], the average cancellation method is utilized for clutter suppression.
This method can effectively suppress the stationary clutter while preserving the integrity of the target
signal. However, due to the characteristic of SFCW pulse compression, the target signal is always
accompanied by a large number of side lobes. If the average cancellation is utilized, most of these side
lobes would be retained. These retained side lobes would cause large areas of high correlation to appear
as ghost interference in the results of cross-correlation operations. For this reason, two instances of pulse
cancellation are utilized in this paper for clutter suppression because side lobes could be decreased to
be submerged with the noise, although a part of the target signal is simultaneously suppressed.

3.3. Dual-Station Cross-Correlation

With regard to either matrix X1 or X2 after clutter cancellation, the existent method based on
energy accumulation performs FFT on each column of computational range unit along slow time
dimension to obtain the RD plane. Because the amplitude of respiration, micromotion is too small,
the weak respiration signals disperse to all periods across slow time in target range units, which
are accumulated to improve SNR for robustly extracting respiration frequency and range of human
target. However, in the case of multiple human targets, the FFT-based method suffers from two fatal
problems, namely, missed detections of weak targets, and pairing two extracted ranges of each target
between two radars (for subsequent target localization). To deal with these two problems, the proposed
algorithm revolves around dual-station cross-correlation of respiration life signals rather than FFT
accumulation to implement the detection and localization of multiple stationary human targets.

Based on the experiment results, it could be found that, for the same target, the slow time
respiration signals in target range units had similarity between the two radars at different stations.
Therefore, dual-station cross-correlation is proposed to explore the similarity for the purpose of
detection and localization of multiple human targets. Let x1i and x2i′ denote the sampling data of slow
time at computational range units of one target, namely, the ith and i′th column of data in X1 and X2,
which can be expressed as {

x1i = s1i + n1i
x2i′ = s2i′ + n2i′ ,

(7)

where s1i and s2i′ are the respiration signals corresponding to the two radars, respectively, and n1i
and n2i′ represent the background noise. The cross-correlation coefficient rx1ix2i′ of x1i and x2i′ can be
calculated as

rx1ix2i′ =
cov(x1i, x2i′)√

D (x1i)
√

D (x2i′)

=
E ([x1i − E (x1i)] [x2i′ − E (x2i′)])√

E
(
[x1i − E (x1i)]

2
)√

E
(
[x2i′ − E (x2i′)]

2
) ,

(8)
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where cov() represents covariance calculation, E() is statistical averaging, and D() denotes
variance computation.

Since the background noises of the two radars are not only independent from each other, but also
uncorrelated with the respiration signals, rx1ix2i′ can be expressed as

rx1ix2i′ =
cov(s1i, s2i′)√

D (s1i)
√

D (s2i′)
= rs1is2i′ . (9)

It can be perceived from Equation (9) that, between these two sets of slow-time sampling data
x1i and x2i′ in the target range units of two radars, cross-correlation coefficient rx1ix2i′ is mainly
determined by the desired respiration signals rather than the noise. Because of the similarity between
the respiration signals of the two radars, the cross-correlation coefficient is close to 1. On the contrary,
due to irrelevance between two targets or between target and noise, in the corresponding range units,
the cross-correlation coefficient of slow-time sampling data approaches 0. It can be seen that the
irrelevance of two human targets results from the independent random feature of nonstationary and
quasiperiodic respiration signals of different targets. Therefore, this correlation characteristic could be
utilized to classify and detect different targets.

To explore the correlation feature, with respect to fast–slow time data matrices X1 and X2, we
perform a cross-correlation operation for each column of X1 with each column of X2 to calculate the
cross-correlation coefficient as

R
(
i, i′
)
=

∣∣∣∑N
n=1 (x1i (n)− x1i) (x2i′ (n)− x2i′)

∣∣∣√
∑N

n=1 (x1i (n)− x1i)
2
√

∑N
n=1 (x2i′ (n)− x2i′)

2
, (10)

where x1i (n) denotes the nth data element in the ith column of X1, x2i′ (n) represents the nth data
element in the i′th column of X2, and x1i, and x2i′ are the averaging of ith column of data in X1 and i′th
column of data in X2, separately. After the correlation calculation for all data columns of X1 and X1,
an M×M dimension of correlation coefficient matrix R is generated, where R(i, i′) is the element in ith
row and i′th column standing for the correlation degree between the ith data column of X1 and the i′th
data column of X2. It is important to point out that the indices of the row and column of the coefficient
matrix represent the range information by reference to Radars 1 and 2, respectively.

According to the aforementioned analysis on correlation characteristics, in correlation coefficient
matrix R, different targets are isolated and focused on different elements. For the focused element of
each target, the indices of the corresponding row and column denote the ranges from the target to
Radar 1 and Radar 2, separately. Therefore, when the targets are detected in correlation coefficient
matrix R, two ranges between each target and the two radars are extracted simultaneously without
additional pairing.

3.4. Target Identification and Localization

In this section, the CFAR detector is utilized to identify the stationary targets in correlation
coefficient matrix R. CFAR detection is an effective automatic-detection method that calculates the
threshold corresponding to each element of the matrix R according to the deployed false alarm
probability Pf a. The basic formula for calculating the threshold is given by

τ = (Pf a
−1/Nc − 1)

Nc

∑
n=1

R(n), (11)

where Nc and R(n) denote the number and value of reference elements. The protection elements are
selected to be excluded from the threshold calculation, avoiding nearby interference. With regard to
two-dimensional correlation matrix R, a sliding rectangular window is used to facilitate the detection
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process. The rectangular window with Lc × Lc (length × width) elements is centered at the element
to be detected, which is divided into three parts: the centered detection element, reference elements,
and protection elements. The protection elements are included in another smaller Lg × Lg concentric
window. In this case, the number of reference elements and protection elements can be expressed
separately as

Ng = Lg
2 − 1

Nc = Lc
2 − Lg

2.
(12)

Consequently, for element R(i, i′) to be detected in ith row and i′th column of matrix R,
the corresponding threshold τ(i, i′) can be calculated as

τ(i, i′) = (Pf a
−1/Nc − 1)

i+Lct

∑
p=i−Lct

i′+Lct

∑
q=i′−Lct

R (p, q)− (Pf a
−1/Nc − 1)

i+Lgt

∑
p=i−Lgt

i′+Lgt

∑
q=i′−Lgt

R (p, q), (13)

where Lct = (Lc − 1)/2 and Lgt = (Lg − 1)/2. According to adaptive threshold τ(i, i′), element R(i, i′)
to be detected is reassigned to 1 or 0 by the judgment criteria as

R(i, i′) =

{
1, R(i, i′) > τ(i, i′)
0, R(i, i′) ≤ τ(i, i′)

. (14)

Through the detection of each element as Equation (14), a detection output binary matrix R is
obtained where 1 and 0 represented target existence and absence, respectively. In practical applications,
because the respiration signal of each target extends to multiple computational range units in each
period, each target takes up a connected region including a group of conterminous elements with a
value of 1 in binary matrix R. In the connected region, the centroid element is selected as representation
whose indices of the corresponding row and column are translated into two ranges of a target from the
two radars.

To obtain the target location from these two ranges, a coordinate system is established where the
location of Radar 1 is taken as the origin, and the connection line of Radars 1 and 2 is regarded as the
x-axis. In this case, the coordinates of Radars 1 and 2 are (0, 0) and (dr, 0), where dr is the distance
between these two radars. Assuming the extracted target ranges from the two radars are d1 and d2,
estimation (x0, y0) of the target location can be calculated by using the triangulation algorithm as

x0 =
d1

2 − d2
2 + dr

2

2dr

y0 =
√

d1
2 − x02

. (15)

Under the condition of penetration detection, such as wall penetration, the estimated target
location is displaced from the real target location due to the penetration decline of propagation velocity.
For the purpose of correcting the displacement, assuming that the electromagnetic waves vertically
propagate in the wall, the approximate compensation of wall penetration is performed as presented
in [6] to modify the extracted target ranges from two radars. Specifically, with the prior information of
wall thickness dw and relative permittivity εw, target ranges d1 and d2 are modified as

d1
′ = d1 − 2dw (

√
εw − 1)

d2
′ = d2 − 2dw (

√
εw − 1) .

(16)

By substituting d1
′ and d2

′ for d1 and d2 in Equation (15), we can obtain a better estimation of
target location with smaller displacement in comparison to that without wall compensation.
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4. Experimental Results and Discussion

Two single-channel SFCW radars were fabricated to verify the capability of the proposed
algorithm. Specifically, four groups of experiments were carried out in two different realistic scenarios.
The radar description and experiment results are provided below in this section.

4.1. Description of Single-Channel SFCW Radar

The block diagram of the proposed single-channel SFCW radar is shown in Figure 3. It is clear
that the radar system is composed of five key components: two transmitting/receiving antennas
(TA/RA), a stepped-frequency (SF) transmitter, an SF receiver, an FPGA-based control transfer module,
and a host computer with a user-friendly interface. In the process of signal generating, based on
the activation instruction from the computer, the FPGA-based module controls the phase-locked
loop within the SF transmitter to continuously generate a sequence of carrier frequencies with a
fixed stepwise manner. Then, the carrier frequencies are divided into two channels through a power
divider where the one is amplified to the TA and the other is transported to the I/Q quadrature
demodulator as a reference signal. In the process of data acquisition, the reflected signals collected
by the RA are filtered and amplified successively by a band-pass filter and a low-noise amplifier
(LNA), and then the I/Q demodulator performs the coherent demodulation with use of the reference
signal. Through the active LPF, the demodulated I/Q signals are filtered and amplified to produce the
baseband I/Q signals, which are then sampled by utilizing a two-channel analog-to-digital converter
(ADC). In the FPGA-based module, multiple sampled I-channel (Q-channel) data of each frequency
are combined into an efficient I-channel (Q-channel) data by the averaging operation. Finally, through
the USB port, the efficient I/Q data are serially transferred to the computer for storage and subsequent
processing. The detailed parameters of the radar system are listed in Table 1. These antennas are
known as microstrip antennas whose parameters are given in Table 2. In all experiments outlined
below, the distance between TA and RA was 0.1 m. For convenience, this distance was ignored in
target localization.
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filter
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I/Q 

demodulator

Active

LPF

Dual-channel
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Timing control and data 

transfer module with FPGA

Stepped-frequency receiver

Host

Com-

puter

U
S
B

Data

Data

InstructionInstruction

Figure 3. Block diagram of the single-channel SFCW radar.

Table 1. The key parameters of SFCW radar.

Parameters Value

Frequency number 301
Starting frequency 1.6 GHz
Ending frequency 2.2 GHz
Frequency step 2 MHz
Duration time of each frequency 100 µs
Bandwidth 600 MHz
Pulse repetition interval 30.1 ms
Radiation power 18 dBm
Sampling rate of ADC 250 KHz
Sampling bit number of ADC 14 bits
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Table 2. The key parameters of microstrip antennas.

Parameters Value

3 dB beamwidth in azimuth at 1.9 GHz (E plane) ±46◦

3 dB beamwidth in elevation at 1.9 GHz (H plane) ± 30◦

Gain >4 dB
Voltage standing wave ratio <2
Size: maximum width 75 mm
Size: height 47 mm
Size: thickness 3 mm

Based on the operation parameters in Table 1, the maximum unambiguous range is 75 m and
the range resolution is 0.25 m. Moreover, the data rate of each radar is about 35 KBps. Specifically,
in the duration time of 100 µs of each frequency, there are totally two efficient data points for I/Q two
channels. Each data point is represented by 14-bit binary numbers. Therefore, the data rate can be
calculated as ((2× 14 bit) /100 µs) /8 = 35 KBps.

4.2. Experiments with Different Target Positions

The first group of experiments was performed to reveal the effect on the proposed algorithm
of different target positions. In these experiments, the wall is a solid brick wall with the measured
thickness of 0.2 m and relative permittivity of about 9. As shown in Figure 4, two SFCW radars were
placed against the wall with an interval distance of 1.5 m. For the sake of distinction, the experiments
are named Experiment 1.1 and Experiment 1.2.

1m

1.5m

Radar transceiver Microstrip antenna

Figure 4. Deployment of dual-station radars.

In Experiment 1.1, two human targets with normal respiration were standing at (0 m, 4 m),
and (1.5 m, 5 m), based on the given coordinate system, as shown in Figure 5, where Radars 1 and
2 were separately located at the origin of (0 m, 0 m) and (1.5 m, 0 m). Target 1 at (0 m, 4 m) weighs
about 75 kg and is about 1.75 m tall. Target 2 at (1.5 m, 5 m) weighs about 70 kg and is about 1.7 m
tall. By manually operating the displaying and controlling host computer, the two radars collected
N = 300 periods of SFCW echoes. After IFFT processing with a point number of M = 4096 and
two-pulse cancellation for each period, two fast–slow time range profile planes of the two radars
were provided (Figure 6a,b). For ease of observation, the range display was limited from 0 to 8 m.
It was obvious that, in the planes of Radar 1, the respiration signal of Target 2 was much lower than
that of Target 1 because of the longer propagation range and oblique detection angle of the view
while, for Radar 2, the respiration signals of the two targets with approximate propagation ranges
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and viewing angles had almost identical intensity. Through cross-correlation calculation between
the two range profile planes, the correlation coefficient matrix was calculated, as shown in Figure 6c,
where two targets clearly emerged. According to the feature of Gaussian distribution [25], it is easy
to say that the noise in Figure 6c is non-Gaussian distribution, which means that CFAR detection
was unable to provide constant false probability for all matrix elements. Fortunately, two targets
were still successfully extracted, as shown in Figure 6d, by pseudo-CFAR detection with Lc = 32
elements of the sliding window, Lg = 16 elements of the protection window, and Pf a = 0.01, which
verified the feasibility of identifying targets by using a CFAR detector, in this case of non-Gaussian
noise background. Each extracted target was composed of multiple conterminous elements with a
value of 1, whose centroid element was selected to generate two desired target ranges for two radars
by using corresponding row and column coordinates. By placing the extracted target ranges into
Equation (15), the estimated target locations were obtained, as shown in Figure 6h with two blue crosses.
Because of wall-penetration effect, the estimated target locations were obviously displaced from real
target locations. After compensation for wall penetration as in Equation (16), estimations of the target
locations were corrected to the vicinities of real locations, marked with two red dots. The coordinates
of estimated position of Target 1 and Target 2 are (−0.09 m, 4.11 m) and (1.65 m, 5.06 m), respectively.

Mean localization error (MLE) was used to quantitatively evaluate localization accuracy:

MLE =
1
β

β

∑
λ=1

√
(xλ − x̂λ)

2 + (yλ − ŷλ)
2, (17)

where β is the total number of targets, x and y are the coordinates of the actual target positions,
x̂ and ŷ are the coordinates of the estimated target positions, and λ is the target number. The MLE of
Experiment 1.1 was about 0.15 m.

Radar 2Radar 1

Wall0.20m

4m

5m

x/m

y/m

1.5m

Human 

Target 1

Human 

Target 2

Figure 5. Photograph and geometry of Experiment 1.1.

Moreover, Figure 6e,f provide the range profile planes of the two radars after an average
cancellation of 300 periods. Compared with Figure 6a,b from two-pulse cancellation, the average
cancellation had better performance in preserving target signals (with higher SNR), while most
associated side lobes were retained as well. Through cross-correlation, the retained side lobes were
transformed into widespread ghost interferences, as shown in Figure 6g, hindering the detection of
desired main-lobe correlations. Therefore, although the main lobe of the target signal was partly
reduced, two-pulse cancellation was a preferred choice for suppressing stationary clutter in the
proposed algorithm due to the residual side lobes disappearing in the noise background.

Furthermore, the FFT-based energy accumulation method in [21] and the single-radar correlation
based method in [22] were performed to compare the proposed algorithm. Specifically, the FFT
accumulation along slow-time was performed on each range profile plane in Figure 6a,b. The generated
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RD planes are provided in Figure 7a,b where the target ranges and respiration rates could be extracted
together. In accordance with Figure 6a, Figure 7a shows that the accumulated respiration signal
of Target 2 was much weaker than that of Target 1. In other words, the energy accumulation of
FFT inherited the intensity difference of two targets, which made it difficult to identify the weaker
target. On the contrary, the two targets were endowed with similar intensities through the proposed
cross-correlation operation. Therefore, the aforementioned comparison proved the effectiveness of
reducing the intensity difference of multiple targets by cross-correlation of dual-station radars. Besides,
through cross-correlation, two ranges of each target associated with two radars were isolated without
the additional pairing operation that was necessary for the extracted four target ranges from RD planes
in Figure 7a,b.

According to the single-radar correlation-based method in [22], the correlation operation was
performed on each range column with regard to each radar plane in Figure 6e,f. As shown in
Figure 7c,d, the single-radar correlation results were blurred by widespread ghost interferences
derived from the retained side lobes in the average cancellation. Therefore, based on Figures 6g and
7c,d, it is concluded that the average cancellation was unable to support the proposed dual-radar
cross-correlation algorithm and the existent single-radar correlation method because of the side lobes
of SFCW pulse compression. For simplification, the following dual-radar cross-correlation results and
single-radar correlation results were entirely based on the range profile planes from the two-pulse
cancellation. Specially, Figure 7e,f reveals the single-radar correlation results corresponding to the
range profile planes in Figure 6a,b from two-pulse cancellation, where ghost interferences were
significantly reduced in contrast to Figure 7c,d. However, it was also difficult based on the single-radar
correlation method to identify weak Target 2 from the results in Figure 7e. It is noticed that, in
Figure 7c–f, there exist line-like interferences around the diagonal that adversely affected the target
detection. The line-like interference is an inherent defect in the single-radar correlation algorithm [22]
because the correlation coefficient between the data vector in each range unit and itself is always 1.

To evaluate cross-correlation performance under extreme conditions, Experiment 1.2 was
implemented as shown in Figure 8 where two human targets stood in a line along with y-axis. In this
case, with regard to Radar 1, the far Target 2 at (0 m, 4 m) fell into the shadow of the near Target 1 at
(0 m, 3 m). The target at (0 m, 3 m) weighs about 70 kg and is about 1.7 m tall. The target at (0 m, 4 m)
weighs about 75 kg and is about 1.75 m tall. Therefore, from the range profile plane in Figure 9a and the
RD plane in Figure 10a of Radar 1, the respiration signal of Target 2 almost disappeared. It was verified
that the existing method based on energy accumulation suffered from the problem of missed detection
of weak target. Meanwhile, as given in Figure 9b,d for Radar 2, the respiration signals of two targets
were captured from another angle of view without a shadow effect, while Target 2 was weaker than
Target 1 due to the longer propagation range. Fortunately, by utilizing the proposed algorithm based on
dual-station cross-correlation, the weak Target 2 also appeared clearly (Figure 9c) and was thus detected
successfully (Figure 9d). Furthermore, two pairs of ranges of two targets were obtained to generate
the estimation target locations with wall compensation, as shown in Figure 9h. The coordinates of
estimated positions of Target 1 and Target 2 were (0.06 m, 2.95 m) and (0.05 m, 4.12 m), respectively.
The MLE was about 0.1 m. It was demonstrated that the cross-correlation operation was able to support
robust detection and localization of multiple different intensities of stationary human targets even
in the case of a shadowing effect, by exploring the correlation characteristic of each target between
two radars.
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Figure 6. Results of Experiment 1.1: (a) range profile plane of two-pulse cancellation for Radar 1;
(b) range profile plane of two-pulse cancellation for Radar 2; (c) cross-correlation result between
(a,b); (d) CFAR detection result; (e) range profile plane of average cancellation for Radar 1; (f) range
profile plane of average cancellation for Radar 2; (g) cross-correlation result between (e,f); and
(h) localization result.
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Figure 7. Comparison results of Experiment 1.1: (a) RD plane of Figure 6e; (b) RD plane of
Figure 6f; (c) single-radar correlation result of Figure 6e; (d) single-radar correlation result of Figure 6f;
(e) single-radar correlation result of Figure 6a; and (f) single-radar correlation result of Figure 6b.
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Figure 8. Photograph and geometry of Experiment 1.2.
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Figure 9. Results of Experiment 1.2: (a) range profile plane for Radar 1; (b) range profile plane
for Radar 2; (c) cross-correlation result between (a,b); (d) CFAR detection result; (e) range profile
plane of average cancellation for Radar 1; (f) range profile plane of average cancellation for Radar 2;
(g) cross-correlation result between (e,f); and (h) localization result.

Moreover, although two range profile planes of average cancellation had a higher SNR, as
shown in Figure 9e,f, the corresponding cross-correlation result in Figure 9g was seriously blurred
by widespread ghost interferences from the retained side lobes. It was further demonstrated that the
average cancellation was unavailable to the proposed cross-correlation algorithm with dual SFCW
radars. Figure 10c,d shows the single-radar correlation results, as in [22]. Obviously, the shadowed
weak Target 2 for Radar 1 was missed, as shown in Figure 10c. By comparing with Figure 9c,
the superiority of the proposed algorithm in weak target detection was validated, guaranteed by
two-view observation of dual-station radars because the shadowed weak target in one radar view can
be observed effectively in another radar view.
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Figure 10. Comparison results of Experiment 1.2: (a) RD plane of Figure 9e; (b) RD plane of Figure 9f;
(c) single-radar correlation result of Figure 9e; and (d) single-radar correlation result of Figure 9f.

4.3. Experiments with Different Radar Locations

For a comprehensive verification of the proposed algorithm, the following three groups of
experiments were accomplished in the other scenes to study the effects of radar location, human-target
orientation, and human-target posture. The wall in these three groups of experiments was a solid brick
wall with a measured thickness of 0.24 m and relative permittivity of about 8.5. The height of the radar
antennas from the ground was 0.54 m. The body type of one human target was about 75 kg weight
and 1.7 m height, and the other human target was about 65 kg weight and 1.7 m height.

In this subsection, three experiment results are provided to observe the effect of different radar
locations. Specifically, under the fixed origin location of Radar 1, Radar 2 was moved away from Radar
1 in a straight line to separately form three interval distances of two radars, namely 1 m, 2 m and 3 m,
corresponding to three experiments, as shown in Figure 11. In these three experiments, the two human
targets stood at coordinates of (0 m, 3 m) and (0 m, 4 m) as in Experiment 1.2. For simplification, the
three experiments with the radar intervals of 1 m, 2 m and 3 m are denoted by Experiments 2.1, 2.2
and 2.3, respectively. The coordinates of estimated target positions and MLE of the experiments above
are shown in Table 3.

Radar 2Radar 1
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x/m

y/m

1m

Human 

Target 1

Human 

Target 2

1m

Radar 2

1m

Radar 2
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Figure 11. Photographs and geometries of Experiment 2.

Table 3. Localization results and MLE of Experiment 2.

Experiment 2.1 Experiment 2.2 Experiment 2.3

Extracted coordinates of Target 1 (0.02 m, 3.02 m) (0.04 m, 3.05 m) (0.04 m, 3.04 m)
Extracted coordinates of Target 2 (0.22 m, 4.11 m) (−0.03 m, 4.06 m) Missed detection
MLE 0.14 m 0.07 m N/A
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The experimental results including range profiles of two radars, cross-correlation images,
and localization result, are provided in Figures 12–14 for Experiments 2.1–2.3, respectively.
By comparison, it can be seen that, with the increase of radar interval, the two targets, especially
Target 2, gradually disappeared in the clutter background. That is because, in the case of a larger radar
interval, the greater ranges and the bigger observation angles between Radar 2 and the two targets
reduced respiration-signal intensities. Especially under the joint action of target occlusion, Target 2
was out of the effective detection and localization range of the proposed cross-correlation algorithm.
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Figure 12. Results of Experiment 2.1 with 1 m interval between two radars: (a) range profile plane for
Radar 1; (b) range profile plane for Radar 2; (c) cross-correlation image; and (d) localization result.
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Figure 13. Results of Experiment 2.2 with 2 m interval between two radars: (a) range profile plane for
Radar 1; (b) range profile plane for Radar 2; (c) cross-correlation image; and (d) localization result.
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Figure 14. Results of Experiment 2.3 with 3 m interval between two radars: (a) range profile plane for
Radar 1; (b) range profile plane for Radar 2; (c) cross-correlation image; and (d) localization result.

4.4. Experiments with Different Target Orientations

In this subsection, the influence of target orientation was considered by carrying out three
experiments with different orientations of human Target 2, as shown in Figure 15. These two radars
were located at (0 m, 0 m) and (1.5 m, 0 m) as in Experiments 1.1 and 1.2, and the two human targets
stood at (0 m, 4 m) and (1.5 m, 5 m), respectively. In these three experiments, Target 1 maintained a
fixed orientation that was always facing Radar 1, while Target 2 was endowed with three different
orientations, namely, three orientation angles of 0◦, 30◦, and 90◦ between target orientation and the
baseline of the two radars. For convenience, these three experiments in Figure 15a–c are labeled
Experiments 3.1, 3.2, and 3.3, respectively. The coordinates of estimated target positions and MLE of
the experiments above are shown in Table 4.
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Figure 15. Photographs and geometries of Experiment 3: (a) Experiment 3.1 with orientation angle of
90◦ for Target 2; (b) Experiment 3.2 with orientation angle of 30◦ for Target 2; and (c) Experiment 3.3
with orientation angle of 0◦ for Target 2.

Table 4. Localization results and MLE of Experiment 3.

Experiment 3.1 Experiment 3.2 Experiment 3.3

Extracted coordinates of Target 1 (0.06 m, 3.92 m) (0 m, 3.98 m) (−0.11 m, 3.93 m)
Extracted coordinates of Target 2 (1.54 m, 5.03 m) (1.58 m, 4.94 m) (1.43 m, 5.04 m)
MLE 0.08 m 0.06 m 0.11 m

As shown in Figures 16a,b, 17a,b, and 18a,b, the respiration signals of Target 2 in the range profile
planes of the two radars fell into a decline along with the decrease of orientation angle from 90◦ to 0◦.
In the case of an orientation angle of 0◦, it was almost impossible to identify the respiration signals
in these two range profile planes. That is because the major fluctuations of the human abdomen,
caused by respiration, gradually deviated from the observation view of the two radars, while the
affiliated minor fluctuations of the scapula part gradually turned toward the radar view. Fortunately,
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through the presented cross-correlation process, these two targets were clearly highlighted in the
cross-correlation images, as shown in Figures 16c, 17c, and 18c. Therefore, through CFAR detection,
the range of two targets could be successfully extracted to calculate estimations of target locations,
as shown in Figures 16d, 17d, and 18d. Based on the above discussion, it was demonstrated that
the proposed cross-correlation algorithm has the favorable ability to adapt different orientations of
human targets.
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Figure 16. Results of Experiment 3.1: (a) range profile plane for Radar 1; (b) range profile plane for
Radar 2; (c) cross-correlation image; and (d) localization result.
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Figure 17. Results of Experiment 3.2: (a) range profile plane for Radar 1; (b) range profile plane for
Radar 2; (c) cross-correlation image; and (d) localization result.
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Figure 18. Results of Experiment 3.3: (a) range profile plane for Radar 1; (b) range profile plane for
Radar 2; (c) cross-correlation image; and (d) localization result.

4.5. Experiments with Different Target Postures

To evaluate the algorithm performance for different human target postures, three experimental
results with three additional postures including lying, kneeling and sitting are provided in this
subsection. As shown in Figure 19, for these three experiments, Radar 1 and Radar 2 were always
located at (0 m, 0 m) and (1.5 m, 0 m), and the human Target 1 and Target 2 were invariably positioned
at (0 m, 4 m) and (1.5 m, 5 m). Moreover, in each experiment, Target 2 maintained the posture of
standing as a reference, while Target 1 was assigned with different postures. For simplification, these
three experiments in Figure 19a–c are represented separately by Experiments 4.1, 4.2 and 4.3 with
regard to lying, kneeling and sitting of Target 2, respectively. The coordinates of estimated target
positions and MLE of the experiments above are shown in Table 5.



Remote Sens. 2019, 11, 1428 19 of 22

Radar 2Radar 1

Wall0.24m

4m

5m

x/m

y/m

1.5m

Lying

Target 1

Standing 

Target 2

(a)

Radar 2Radar 1

Wall0.24m

4m

5m

x/m

y/m

1.5m

Kneeling 

Target 1

Standing 

Target 2

(b)

Radar 2Radar 1

Wall0.24m

4m

5m

x/m

y/m

1.5m

Sitting 

Target 1

Standing 

Target 2

(c)

Figure 19. Photographs and geometries of Experiment 4: (a) Experiment 4.1 with lying posture for
Target 1; (b) Experiment 4.2 with kneeling posture for Target 1; and (c) Experiment 4.3 with sitting
posture for Target 1.

Table 5. Localization results and MLE of Experiment 4.

Experiment 4.1 Experiment 4.2 Experiment 4.3

Extracted coordinates of Target 1 (0.02 m, 4.01 m) (−0.14 m, 3.99 m) (−0.06 m, 4.02 m)
Extracted coordinates of Target 2 (1.39 m, 4.97 m) (1.66 m, 4.91 m) (1.69 m, 4.94 m)
MLE 0.07 m 0.16 m 0.13 m

Figures 20–22 show that, although these two targets with postures of standing, lying, kneeling,
and sitting ambiguously appeared in the range profiles, the cross-correlation process could still clear the
targets in the correlation images, ensuring the feasibility of the subsequent detection and localization.
Therefore, the proposed cross-correlation algorithm could be applied to detect and localize multiple
different postures of human targets.
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Figure 20. Results of Experiment 4.1: (a) range profile plane for Radar 1; (b) range profile plane for
Radar 2; (c) cross-correlation image; and (d) localization result.
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Figure 21. Results of Experiment 4.2: (a) range profile plane for Radar 1; (b) range profile plane for
Radar 2; (c) cross-correlation image; and (d) localization result.
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Figure 22. Results of Experiment 4.3: (a) range profile plane for Radar 1; (b) range profile plane for
Radar 2; (c) cross-correlation image; and (d) localization result.

For all the above experiments, data processing was implemented on a laptop with Windows using
MATLAB software. The laptop has an Intel Core i5 CPU with a frequency of 2.5 GHz and a memory
of 8 GB. For the interesting range interval of 8 m, the average time consumption of the proposed
algorithm was about 14.67 s.

5. Conclusions

A cross-correlation algorithm of dual-station SFCW radars is designed to implement detection
and localization of multiple stationary human targets. The application of SFCW signals makes it
feasible to implement simultaneous dual-view observation without mutual interference by deploying
two single-channel radars at different stations. Based on the correlation characteristics of respiration
signals of each target between the two radars, the cross-correlation coefficient matrix of two-radar
target echoes is first calculated. Then, a two-dimension CFAR detector is employed to extract the range
of multiple targets from the cross-correlation coefficient matrix. Finally, the extracted target ranges are
transformed to the estimations of target locations by utilizing a triangulation method.

Based on multiple groups of experiment results in two different scenes and multiple different
setups, we conclude the following three points about the presented cross-correlation algorithm. First,
compared with the existent energy-accumulation algorithm and single-radar correlation algorithm,
the missed detection of weak targets can be efficiently prevented, even in the case of target occlusion for
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one of the two radars. Second, necessary additional range pairing in the existent single-radar processing
algorithm is avoided because two ranges of each target for the two radars are synchronously connected
in the cross-correlation process. Finally, the cross-correlation algorithm has favorable adaptability
for different radar locations, human-target orientations, and postures, except for the condition of
large radar intervals with a large observation angle. As a conclusion, the proposed dual-station
cross-correlation algorithm provides an effective integrated approach for the detection and localization
of multiple stationary human targets.
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Abbreviations

The following abbreviations are used in this manuscript:

CFAR Constant false alarm rate
FFT Fast Fourier transform
FPGA Field-programmable gate array
IFFT Inverse fast Fourier transform
I/Q In-phase/Quadrature
LNA low-noise amplifier
LPF Low-pass filter
MLE Mean localization error
RA Receiving antenna
RD Range-Doppler
SF Stepped-frequency
SFCW Stepped-frequency continuous-wave
SNR Signal-to-noise ratio
TA Transmitting antenna
UWB Ultra-wide band
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