
remote sensing  

Article

Feedback Unilateral Grid-Based Clustering Feature
Matching for Remote Sensing Image Registration

Zhaohui Zheng 1,2, Hong Zheng 1, Yong Ma 1, Fan Fan 1,*, Jianping Ju 1,3, Bichao Xu 4,
Mingyu Lin 3 and Shuilin Cheng 5

1 School of Electronic Information, Wuhan University, Wuhan 430079, China;
zhengzhaohui@whu.edu.cn (Z.Z.); zh@whu.edu.cn (H.Z.); mayong@whu.edu.cn (Y.M.);
gjdxjjp@whu.edu.cn (J.J.)

2 Department of Public Courses, Wuhan Railway Vocational College of Technology, Wuhan 430205, China
3 School of Mechanical & Electrical and Information Engineering, Hubei Business College,

Wuhan 430000, China; linmingyu@hb.edu.cn
4 Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430000, China; xubichao@wh.iov.cn
5 School of Statistics and Mathematics, Zhongnan University of Economics and Law, Wuhan 430000, China;

chengslzncd@znufe.edu.cn
* Correspondence: fanfan@whu.edu.cn

Received: 27 April 2019; Accepted: 10 June 2019; Published: 14 June 2019
����������
�������

Abstract: In feature-based image matching, implementing a fast and ultra-robust feature matching
technique is a challenging task. To solve the problems that the traditional feature matching algorithm
suffers from, such as long running time and low registration accuracy, an algorithm called feedback
unilateral grid-based clustering (FUGC) is presented which is able to improve computation efficiency,
accuracy and robustness of feature-based image matching while applying it to remote sensing image
registration. First, the image is divided by using unilateral grids and then fast coarse screening of the
initial matching feature points through local grid clustering is performed to eliminate a great deal of
mismatches in milliseconds. To ensure that true matches are not erroneously screened, a local linear
transformation is designed to take feedback verification further, thereby performing fine screening
between true matching points deleted erroneously and undeleted false positives in and around this
area. This strategy can not only extract high-accuracy matching from coarse baseline matching with
low accuracy, but also preserves the true matching points to the greatest extent. The experimental
results demonstrate the strong robustness of the FUGC algorithm on various real-world remote
sensing images. The FUGC algorithm outperforms current state-of-the-art methods and meets the
real-time requirement.

Keywords: feature matching; feedback unilateral grid-based clustering (FUGC); real-time; remote
sensing; mismatch

1. Introduction

Feature-based image matching is one of the basic research issues in the fields of multimedia,
computer vision, graphics and even bioinformatics [1–3]. Its purpose is to compare or fuse two
similar but partially different images, find their corresponding relations, and then estimate the best
global geometric relations [4]. The usual feature matching algorithm follows a two-stage strategy [5,6].
First, the assumed correspondence relations are calculated by using feature similarity constraints, such
as scale-invariant feature transform (SIFT) [7], oriented fast and rotated brief (ORB) [8], and speeded
up robust features (SURF) [9]. This assumed correspondence set contains not only most true matches,
but also a large number of mismatches or outliers due to the fuzziness of similarity constraints.
Then, the algorithm eliminates outliers using geometric constraints; i.e., it requires that matches satisfy
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geometric constraints. The major problem at this stage is to remove as many false matches as possible
and keep true matches.

At present, many matching methods have been developed [10,11], some of which use the
invariance of feature descriptors for registration; for example, the shape context (SC) descriptors [12]
have been proposed to describe the shape or outline of an object. For every point, its shape context is
extracted, and the shape context of the entire object is formed by combining the shape contexts of all
points. This characteristic is often used for object recognition and image registration. Scale-invariant
feature transform (SIFT) [7] is a classic algorithm for extracting local features of images. The algorithm
extracts the descriptors of corner points in addition to their related scales and directions of the images,
which are used as features for image registration; the method obtains good results. The two descriptors
described above are both aimed at two-dimensional (2D) images, whereas the mesh histogram of
oriented gradient (MeshHOG) [13] descriptor has been proposed as a 3D feature descriptor that can
concisely capture local geometric and luminosity properties. This type of registration method includes
a very representative algorithm called the random sample consensus algorithm (RANSAC) and
several corresponding variants, such as the maximum likelihood estimation by sample and consensus
(MLESAC) [14], locally optimized random sample consensus (LO-RANSAC) [15] and progressive
sample consensus (PROSAC) [16] algorithms. The purpose of this series of algorithms is to find the
optimal parameter matrix such that the maximum number of data points satisfying this matrix can be
obtained, and the advantage of these algorithms is that they can address outliers.

There are also several algorithms for registration based on the estimated correspondence matrix.
For example, the iterative closest point (ICP) algorithm [17] is one of the earliest and best-known
algorithms for point set registration. It assumes that the nearest point is the corresponding point
and obtains the transformation matrix by minimizing the mean squared distance. However, ICP can
only solve the rigid registration problem. The thin plate spline for robust point matching (TPS-RPM)
algorithm [18] solves the problem of non-rigid mapping through the thin plate spline interpolation
algorithm and uses the deterministic annealing method to solve the optimal correspondence relation
matrix. In reference [19], the regenerated kernel Hilbert space (RKHS) is used to model the
transformation function, first setting up the correspondence relation of points by the feature descriptor
and then addressing the noise and outlier points by adding robust the minimizing estimate (L2E).
The gaussian mixture model registration (GMMREG) algorithm [20] approaches modelling the two
sets of feature points by using Gaussian mixture models (GMMs) first and then solving the registration
problem by minimizing the Euclidean distance (L2) between the cluster centers of the two Gaussian
mixture models. At present, it is a very common method of describing the feature point set with
Gaussian mixture models. Myronenko et al. published the well-known coherent point drift (CPD)
algorithm [21] that regards the registration problem as a probability density estimation problem,
maximizes the center of the Gaussian mixture model of the template point set and the maximum
likelihood function of the target point set, and improves the registration speed by the fast Gaussian
transform and the matrix low-rank approximation; however, this algorithm is insufficiently robust
to noise and outliers. The locality preserving matching (LPM) [22] and guided locality preserving
matching (GLPM) [23] algorithms create a mathematical model to represent the neighborhood structures
of true matches and deduce a closed-form solution with linear time complexities. They require only
a few milliseconds to remove mismatches from thousands of matches.

Although some matching methods work well, all of them have their own advantages and
application scope but are difficult to integrate robustly, accurately and in real time, especially in the
case of remote sensing registration. To solve these problems, this paper presents a feedback unilateral
grid-based clustering (FUGC) method that divides the image using unilateral grids (see Figure 1).
Then, the image divided by the grid is subject to local grid clustering and coarse screening for rapid
identification of feature points, eliminating a large number of false matches. Afterwards, the remaining
true feature points determine the transformation matrix by using the local linear transformation and
then feedback verification; that is, fine screening is performed to distinguish between true matching
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points deleted by mistake and undeleted false ones in and around this area. This paper proposes a new
design concept for remote sensing image registration. It is effective, real-time and robust and could
effectively delete outliers from a large number of assumed feature matches within milliseconds while
retaining inliers to the maximum extent possible. The process is shown in Figure 2.Remote Sens. 2019, 11, x FOR PEER REVIEW 3 of 16 
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Figure 2. The left figure is the matching result of the brute force algorithm, and the right one is the
matching result of the feedback unilateral grid-based clustering (FUGC) algorithm. The brute force (BF)
algorithm relies on comparing each feature point with all possible candidate feature points belonging to
the corresponding search area by computing the distance between feature points. The yellow points and
green points represent feature points. The blue lines represent all matches. Clearly, the FUGC algorithm
not only ensures the accuracy of matching but also retains as many correct matches as possible.

The contributions of this paper include the following aspects:

• Describing an efficient unilateral grid, which divides one of a pair of images using smaller grids to
delete mismatched points and uses extended grids in subsequent feedback verification. It is based
on the principle of local neighborhood consistency. This processing addresses the influence of grid
division on the feature point statistics, making the FUGC algorithm highly efficient and real-time.

• Establishing a feedback verification method combined with local statistical analysis and a local
linear transformation. This method combines the statistical and geometric constraints and verifies
that the results satisfy each constraint by using the linear consistency of neighborhood feature
points, which is a property of feature matching. Thus, a large number of outliers can be processed,
and the normal values can be prevented from being deleted by mistake to retain the true feature
point pairs to the maximum extent.

• Proving that the FUGC algorithm is more efficient and robust than traditional algorithms such
as RANSAC [24], vector field consensus (VCF) [25], grid based motion statistics (GSM) [26] and
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unilateral grid based clustering (UGC) [27] when applied to the standard test set, which is very
important for real-time video image analysis.

2. Methods

In this section, the FUGC feature matching method is introduced. It takes remote sensing images
as the main matching objective.

First, we make the initial assumed matching set, which is obtained using the brute force algorithm.
Then we consider the local feature consistency, divide the image features using unilateral grids,
and introduce local clustering constraints for feature point selection, intending to remove as many false
matches as possible. Afterwards, a local linear transformation is used to upgrade the feature point
pairs, which will further filter the matches between the feature points with different spatial adjacent
structures and retain the matches with consistent spatial structure.

2.1. Clustering Analysis of the Local Region

In our previous work [11], an efficient and simple method is presented to remove mismatches.
Here, we review this method first. When two remote sensing images are registering, there may be
rotation, translation, scaling and various transformations, so a single global constraint cannot guarantee
that all feature points conform to the same transformation. However, the transformation consistency
can be guaranteed in a certain local area; that is, all the correct match points in a neighborhood have
the transformation consistency, as shown in Figure 3.
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Figure 3. In the neighbourhood of a matching point, the true matching points are consistent, whereas the
false ones are not. x0 is the feature point of image I1 and y0 is the corresponding feature point of
image I2.

The following is assumed:
If the feature points x ∈ U(x0, δ) are defined (x in the neighborhood of x0), then its corresponding

correct matching point y must also be in the neighborhood U(y0, δ1) of the corresponding correct
matching feature point y0 of x0. Namely,

x ∈ U(x0, δ)⇒ y ∈ U(y0, δ1) (1)

This means that true matches are consistent in the spatial domain, whereas false matches are random
and diverging. From the statistical point of view, the vectors (y-x) of coordinate differences between
any two correctly matching points x and y are always very similar, whereas the false matches conform
to a random distribution. This means that it can be used as an indicator to distinguish the true from
false matches.
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2.1.1. Unilateral Grid Division

Due to the translation, rotation and deformation of the image, the consistency of feature points
cannot be guaranteed for the whole image. If the image is divided into smaller areas, this not
only ensures the consistency within the small area, but also reduces the global operation time.
Therefore, N×N non-overlapping grid cells are selected to divide the image in this paper, as shown
in Figure 1.

If the false match points fall into the correct clustering region, they will be wrongly judged as
correct feature matching points. According to the randomness of the false feature points, the grid is
taken as the unit, whereas the probability of the false feature match points falling into the correct grid
region can be expressed using the following equations:

pa
f = 1/(N ∗N) (2)

pa
f = (N ∗N − 1)/(N ∗N) (3)

where a is the correct grid region corresponding to the feature match point (see Equation (2)), and a is
the region outside the correct corresponding grid region (see Equation (3)).

From the probability distribution, the standard deviation of the correct match points of each grid
is stable due to consistency, whereas the standard deviation of the false match points fluctuate greatly.
Therefore, the false and true match points can be distinguished according to the standard deviation
of the feature points’ coordinates, as shown in Figure 4. The mean value and standard deviation of
feature points’ coordinates are as follows:

µ =

 n∑
i=1

di

/n (4)

σ =

√√√√ n∑
i=1

(di − µ)
2

n
(5)

where di is the Euclidean distance between the i-th feature point and the center of all feature points
within one grid, and n is the number of feature points (see Equations (4) and (5)).
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2.1.2. Grid Clustering Statistics

Due to the consistency distribution of the true matches, the position of match points has the
effect of aggregation. From the perspective of the standard deviation, the data are stable and easily
distinguishable. Even if the number of mismatched points of some grids is greater than that of
true matching points, because the mismatched points are random and discrete, it is easy to exclude
the mismatched points by identifying mismatched points with large data fluctuations and standard
deviations. Therefore, a clustering method is used to obtain the center point of the feature matching,
as shown in Figure 5 (the black point is the mean center point, and the blue one is the clustering center
point). Meanwhile, the clustering center point is used to analyse the volatility of its standard deviation.

σc =

√√√√√ m∑
j=1

(
D j − µc

)2

m
(6)

where D j is the Euclidean distance between the j-th clustering feature point in the c-th cluster and
the c-th clustering center, and µc is the mean of the distance between the c-th clustering center and
clustering feature points in the c-th cluster.
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Figure 5. (a) One grid field from the initial match figure with detected feature points (represented as
green dots). (b) Clustering of the same feature points, where the green circle and red circle represent
the match points, the black cross represents the clustering center points, the yellow cross represents the
maximum clustering center points, the black circle represents the mean center points, and the dotted
box represents the maximum clustering area.

To facilitate clustering, mean shift is selected to obtain the clustering center. At the same time,
multiples of the grid radius are used as the merger radius R of the clustering center to judge whether
the clustering centers are merged or not and to calculate the merged new center.

Cnew =
k jC j + kiCi

k j + ki
i f min[d(C j −Ci)] < R (7)

where Ci is the ith clustering center point, C j is the jth clustering center point, ki is the number of the ith

clustering point, k j is the number of the jth clustering points, Cnew is the merged new clustering center
point, and d(C j −Ci) is the distance from the jth clustering center point to the ith clustering center point.



Remote Sens. 2019, 11, 1418 7 of 16

Since there is more than one clustering center in the grid, the proportion of each cluster in the grid
is calculated to replace the more time-consuming calculation of standard deviation by counting the
number of feature points of each of the clustering categories:

ri =
ki

n∑
j=1

k j

(8)

When max(ri) is greater than the set threshold value T, the cluster has a higher probability density;
that is, the cluster can be considered as the correct matching point set.

2.2. Feedback Verification Using Grid Linear Transformation

For the general feature matching algorithms, to keep the outlier ratio as low as possible, a simple
and effective strategy is to suppress the unstable matches as much as possible; however, such an
approach will result in the final match missing a portion of the true matches. This problem also
exists in clustering statistics. If the true matches scattered in the grid are at the edge of the correct
clustering categories, they are likely to be eliminated. This may be a problem for remote sensing image
registration with many relatively obscure textures. At the same time, for remote sensing tasks that
rely heavily on feature matching number, such as target recognition, tracking and visual navigation,
the loss of true matching will also reduce the final performance, as shown in Figure 6.
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To retain as many true matches as possible, this paper presents the grid linear transformation
to further extend the feedback verification strategy that performs fine screening between the true
match points deleted by mistake and the undeleted false ones in each grid region and its surroundings,
potentially extracting the matches with a high rejection rate from the coarse baseline matching with
a low false rejection rate (FRR).

Since the feature points in a single grid can be approximated by a simple linear transformation
relation, the linear transformation matrix for each grid is calculated; the transformation matrix
H-mapping relation between the grid feature points of two images can be expressed as:
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Although grid-based clustering results in a large number of true matching feature points being
eliminated by mistake, and the false ones also being removed as much as possible, it is more reliable
for constructing the correct linear transformation formulas.

The corresponding transformation matrix Hi is calculated by selecting the feature points after
grid-based clustering, and since the solution of this model can be regarded as the solution of
overdetermined equations, the solution of the equation with the smallest deviation as parameter Hi by
the least squares method, where the residual sum of squares function S is:

minS(Hi) =
∣∣∣∣∣∣HiX −Y

∣∣∣∣∣∣2 (10)

Above, X and Y are the sets of matching feature points corresponding to the two images.
Since grid division may divide the true matches of a cluster into different grids, to ensure that as

many true match points are obtained as possible, the grid is extended by an appropriate distance L
during feedback verification, as shown in Figure 7.
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The matching distance error of each feature point in the expanded grid is calculated by a linear
transformation formula. Additionally, a distance error threshold value τ is added for verification,
and the matching distance error function can be expressed as:

d( j) =
∣∣∣∣∣∣q j −Hi(p j)

∣∣∣∣∣∣ (11)

where p j and q j are the coordinates of the match feature points corresponding to the two images,
and Hi(p j) is the corresponding coordinate of p j after conversion.

The feature point is a true match if d( j) < τ. Because feedback verification is processed by using
linear transform, the size of τ is used to tolerate the influence of local nonlinear transform. In most
cases, feedback validation enlarging half of the grid is sufficient.

Therefore, the experiment generally set L = half of the grid width and τ = 10 pixels for verification
and to obtain satisfactory results, as shown in Figure 8. In Algorithm 1, FUGC process is summarized.
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Algorithm 1: Fugc Algorithm

Input: One pair of images
Output: Inliers set
1: Detect ORB feature points
2: Use Brute-Force for initial matching point
3: Divide one images by G grids
4: for i = 1 to G do
5: Compute the clustering centers Ci of corresponding image feature points in the ith grid;
6: repeat:
7: if min[d(C j −Ci)] < R then

8: Cnew =
k jC j+kiCi

k j+ki

9: end if
10: until: traverse all clustering centers
11: repeat:
12: when max(ri) > T, compute the transformation matrix using the corresponding matching points of Ci
13: Expand the grid size and validate

if
∣∣∣∣∣∣qi −Hi(pi)

∣∣∣∣∣∣< τ then
14: qi represents true matching points
15: end if

3. Results and Discussion

To verify the performance of the FUGC algorithm, the following aspects of the algorithm’s
performance is evaluated: precision, recall rate, and time consumption. FUGC is compared to powerful
matchers such as RANSAC, VCF, GSM and UGC. During the entire experiment, the parameters of the
algorithm remain consistent. The experiments are performed on a laptop with a 2.4 GHz i7 Intel Core
Central Processing Unit (CPU) and 8 GB of Random Access Memory (RAM), using the open source
toolkit OpenCV 3.0.

3.1. Datasets and Settings

To evaluate the FUGC algorithm comprehensively, experiments are carried out on four remote
sensing image datasets. We manually cut, scale and rotate the images to obtain the corresponding
images to be matched (Supplementary Materials).

(1) Dataset for Object Detection in Aerial Images (DOTA) is a large-scale dataset for object detection
in aerial Images. Altogether, there are 2806 remote sensing images with the size of approximately
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4000 × 4000; there are 188,282 instances divided into 15 categories, including airplanes,
playgrounds, overpasses, farmland and others.

(2) National Oceanic and Atmospheric Administration (NOAA) is a dataset of digital coastline;
it includes seabed data, elevation, image, land cover and socio-economic information. There are
245 images in this test set, and the data type is infrared.

(3) Dataset for Object Detection in Remote Sensing Images (RSOD) is a dataset for object detection
in aerial images, including four types of targets: aircraft, playgrounds, flyovers and oil drums.
The numbers of targets are 446, 189, 176 and 165, respectively.

(4) University of Chinese Academy of Sciences (UCAS) is a dataset for object detection in aerial
images, containing only two types of targets: vehicles and aircraft. There are 1000 images of
aircraft and 510 images of vehicles.

3.2. Experimental Results

To compare the algorithms’ performance, the number of feature points is fixed to 3000, and the
OpenCV’s ORB features are used uniformly. Because the FUGC algorithm places a particular emphasis
on the screening of matching feature points and eliminating false matches, and does not depend on
any particular feature, the feature points collection is performed during the initial matching using the
greedy matching brute force algorithm; the brute force algorithm can be GPU-accelerated to improve
the matching speed. The quality of matching is represented by the precision, recall and balanced
F1-score, where the precision is the ratio of the number of the final true matches to the total number
of final matches and the recall is the ratio of the number of final true matches to the total number of
initial true matches. F1 is the harmonic average of the precision and recall. Before the experiment,
the dimensions of the test images are standardized to 640×480. According to the previous discussion of
the UGC method, when the grid is set to 18×18, the accuracy and time of the method can be balanced
to the maximum extent possible; R is 0.75 times the grid width, L is 0.5 times the grid width, T is
0.5 times the total number of grid feature points, and τ is 10 pixels.

Some representative image matching effects selected from the testing dataset are displayed in
Figure 9. These eight images correspond to four datasets—DOTA, NOAA, RSOD and UCAS—where
each dataset contains two typical image pairs. It is a challenging task to establish a reliable
correspondence between these images due to problems such as the small overlap involved, severe noise,
large change in viewpoint transformation, or low resolution. The matching results of the FUGC
algorithm and several other state-of-the-art feature matching methods, including RANSAC, VCF,
GSM and UGC, are shown in Figure 9. The beginning and end of each blue line in Figure 9 correspond
to the positions of the corresponding feature points in the two images, and the red line and red box are
partial false matches. Since the simple and fast brute force matching strategy is used instead of some
complex strategies to construct the assumed correspondence, at the same time, the average number of
matches in the initial hypothesis set is set to 3000; to make the dataset challenging, the true matching
percentage in the initial hypothesis is set to be relatively low.
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Figure 9. Results for several typical image pairs of the four testing datasets, namely, DOTA, NOAA,
RSOD and UCAS, obtained using the RANSAC, VCF, GMS, UGC and FUGC algorithms. The red
boxes and red lines on the maps are examples of incorrectly established matches. It is clear that FUGC
performs better in both matching precision and the number of final matches.

According to the matching results in Figure 9, when the initial hypothesis set does not contain
many outliers, RANSAC can produce satisfactory results. However, its performance decreases rapidly
with an increasing number of outliers, e.g., in an affine dataset. The performance of VCF is not very
satisfactory: although it has a high recall rate, it lacks robustness at higher outlier counts; in particular,
it fails completely on image pairs with a very low percentage of true matches. GMS obtains very
low matching errors, but a large number of true matching pairs are lost. UGC has fewer mismatches
than GMS but it also has more missing correct matches. In contrast, the FUGC method can not only
eliminate a large number of false matches from the assumed correspondence of the image pairs,
but also retain as many true matches as possible. This observation shows that the FUGC method can
address various matching problems of remote sensing images, including remote sensing data and
image transformations of various types.

Next, a quantitative comparison of FUGC and the aforementioned state-of-the-art feature matching
methods is performed. All the comparison methods were based on publicly available core C++ code
and we adjusted the parameters to ensure the best settings. All code was implemented without special
optimizations, such as parallel computation or multithreading.

Recall and precision rate are key indicators of image registration. Usually, recall and precision are
expressed by the following formula:

recall =
correct_matches
correspondences

(12)

precision =
correct_matches

correct_matches + f alse_matches
(13)

where correct_matches is the number of correct matches in the filtered results, correspondences
is the number of correct matches in the initial assumed matching set (after brute force matching),
and false_matches is the number of false matches in the filtered results.

The initial inlier ratio, precision recall rate and the running time of various methods are shown in
Figure 10. The initial inlier ratio is the precision of 3000 feature matches after brute force matching.
The initial inlier ratio in the UCAS dataset is very low, whereas the average inlier ratio (AIR) is only
approximately 29.7%. The third and fourth line of Figure 10 shows the precision and recall rate of
each algorithm, in addition to the respective calculated average F1 scores. In the figure, the precision
and recall rate are selected through equal intervals after sorting all the precision and recall rates. It is
observed that both the precision and recall rate of RANSAC are poor, especially in the case of a low
inlier ratio, such as that of the UCAS dataset, where it performs much worse. The recall rate of VFC is
relatively higher, but the precision is not good, mainly because this algorithm results in the retention
of a large number of false matches in order to retain more true matches. GMS and UGC have higher
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precision but a lower recall rate. Because their strategy is to strictly reject false matches, a large number
of true matches are also removed. In comparison, the FUGC method obviously has the best matching
performance on all datasets, with the precision and recall rate of most image pairs being close to one.
In addition, on all four datasets, the precision, recall rate and the average F1 (AF1) score of FUGC
are all higher than those of other algorithms, indicating the effectiveness of the feedback verification
strategy of FUGC.
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testing datasets, namely, DOTA, NOAA, RSOD and UCAS. AIR = average inlier ratio, AF1 = average
F1 score and ART = average running time.

In the last two lines of Figure 10, the running times of the five algorithms are shown. The running
time does not include the feature point detection or the brute force matching. The average running
times of the RANSAC and VFC algorithms on the four datasets are significantly greater than 10 ms,
whereas the average running times of the GMS, UGC and FUGC algorithms are within 10 ms.
Although FUGC is slower than GMS and UGC, the longest average running time is only 7 ms and does
not violate the requirements of real-time applications. Therefore, the FUGC method can significantly
improve the matching precision and recall rate under certain real-time requirements to better meet the
requirements of remote sensing for matching precision.

4. Conclusions

FUGC is a type of false matching elimination method for feature matching of remote sensing
imagery. It is based on the principle of local neighborhood consistency; the method filters the true and
false match pairs using feedback verification of the local clustering analysis and a linear transformation.
This idea makes the algorithm’s theory much simpler, significantly improves the matching precision
and the recall rate, and ensures the algorithm’s real-time performance. The results show that the FUGC
algorithm incorporating feedback verification overcame the problem that the UGC and GSM algorithm
lost a large number of correct matching points in previous studies, and produced the most accurate
results. In addition, the feedback verification threshold of the FUGC algorithm will affect the matching
performance, which will be an important research direction for improving the robustness of matching.
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