Supplementary Materials for

Spectral Response Analysis: An Indirect and Non-Destructive Methodology for Biocrusts Chlorophyll Quantification

José Raúl Román, Emilio Rodríguez-Caballero, Borja Rodríguez-Lozano, Beatriz Roncero-Ramos, Sonia Chamizo, Pilar Águila-Carricondo and Yolanda Cantón

Coil turnos	Soil texture		ъЦ	Electrical	TOC	TN	
Son types	Sand (%)	Silt (%)	Clay (%)	рп	(mS/cm)	(g/Kg)	(g/Kg)
Las Amoladeras	61.50 ± 5.10	28.40 ± 4.20	10.10 ± 2.10	8.03 ± 0.04	0.16 ± 0.01	21.41 ± 0.96	2.07 ± 0.11
El Cautivo	29.20 ± 5.40	58.60 ± 5.80	12.20 ± 4.20	8.28 ± 0.12	0.13 ± 0.01	3.87 ± 0.09	0.57 ± 0.04
Gádor quarry	31.20 ± 4.65	43.10 ± 2.34	25.70 ± 2.80	8.57 ± 0.03	1.98 ± 0.18	0.24 ± 0.21	0.17 ± 0.09

Table S1. Soil texture, pH, electrical conductivity, total organic carbon (TOC) and total nitrogen (TN) of the of the three soils employed in this study: Las Amoladeras, El Cautivo and Gádor quarry (from Román et al., 2018).

2	Table S2. Su	immary of the	different spec	tral indices used i	n this stu	dy. R: reflectance; q: t	he first
3	derivative o	f reflectance;	RBLUE: reflec	tance in the blue	region, 1	RGREEN: reflectance	in the
4	green	region,	RNIR:	reflectance	in	near-infrared	region.

1

		P (
Index	Formulation	Reference

YCAR	R600/R680	Schlemmer et al. (2005)
OCAR	R630/R680	Schlemmer et al. (2005)
Vogelman3	R740/R720	Vogelman et al. (1993)
SRPI (Simple Ratio Pigment Index)	R430/R680	Peñuelas et al. (1994)
Vogelman1	Q715/Q705	Vogelman et al. (1993)
dSR1*	Q725/Q702	Kochubey and Kazantsev (2007)
dSR2*	Q705/Q722	Zarco-Tejada et al. (2002)
Datt-CabCx+c	R860/(R550 * R708)	Datt (1998)
PSRI	(R680 - R500)/R750	Merzlyak et al. (1999)
mSR705	(R750 - R445)/(R705 - R445)	Sims and Gamon (2002)
BmSR	(Q722 - Q502)/(Q700 - Q502)	le Maire et al. (2004)

Simple ratio or modified simple ratio of reflectance or derivatives

Index	Index Formulation				
Normalized difference of derivatives					
BND	(Q722 – Q700)/(Q722 + Q700)	le Maire et al. (2004)			
Mod	ified normalized difference of derivativ	es			
BmND	(Q722 - Q700)/(Q722 + Q700 - 2Q502)	le Maire et al. (2004)			
Indices r	elated with red edge derived with derive	atives			
dRE	First derivative maxima in red- edge region (680-780 nm)	Filella and Peñuelas (1994)			
∑dRE	Sum of first derivative reflectance in red-edge region (680-780 nm)	Filella and Peñuelas (1994)			
EGFR (Ratio of first derivative maxima in red-edge region and green region (530-570 nm))	dRE/dG	Penuelas et al. (1994)			
EGFN	(dRE – dG)/(dRE + dG)	Penuelas et al. (1994)			
EBAR (Ratio of Sum of first derivative reflectance in red- edge region (680-780 nm) and blue region (490-530 nm))	∑dRE/∑dB	Xue et al. (2009)			
EBAN	$(\sum dRE - \sum dB)/(\sum dRE + \sum dB)$	Xue et al. (2009)			
EBFR	dRE/dB	Xue et al. (2009)			
EBFN	(dRE – dB)/(dRE + dB)	Xue et al. (2009)			

Index	Formulation	Reference	
	Broad band indices		
Normalized Difference Vegetation Index(NDVI)	(RNIR – RRED / RNIR + RRED)	Rouse et al. (1973)	
Enhanced Vegetation Index (EVI)	2.5 * (Rnir – Rred) / (Rnir + 6Rred – 7.5Rblue + 1)	Huete et al. (2002)	
Soil-adjusted vegetation index (SAVI)	(R _{NIR} – R _{RED} / R _{NIR} + R _{RED} + 0.5) * (1+ 0.5)	Huete (1988)	
Optimized soil-adjusted vegetation index (OSAVI)	(R _{NIR} – R _{RED} / R _{NIR} + R _{RED} + 0.16) * (1 + 0.16)	Rondeaux et al. (1996)	
Modified Chlorophyll Absorption in Reflectance Index (MCARI)	[(Rnir – Rred) – 0.2(Rnir + Rgreen)] * (Rnir /Rred)	Daughtry et al. (2000)	
MCARI/OSAVI	MCARI/OSAVI	Daughtry et al. (2000)	
Simple Ratio Index (SR)	(RNIR / RRED)	Jordan (1969)	
Modified Simple Ratio Index (MSR)	[(RNIR / RRED) – 1] / [(RNIR / RRED) –1] 1/2	Chen (1996)	
Crust Index (CI)	1 – (Rred – Rblue)/(Rred – Rblue)	Karnieli, 1997	
Biological Soil Crust Index (BSCI)	$\frac{1 - 2 \times R_{RED} - R_{GREEN} }{R_{GRNIR}^{mean}}$	Chen et al. (2005)	

Index	Formulation	Reference	
	Others		
MCARI[705,750]	[(R750 - R705) - 0.2(R750 - R550)] * (R750/R705)	Wu et al. (2008)	
Blog 1/R737	the first derivative of logarithm 1/R737	Yoder and Pettigrew-Crosby (1995)	
DD	(R749 - R720)/(R701 - R672)	le Maire et al. (2004)	
SIPI (Structure Insensitive Pigment Index)	$(R_{800} - R_{445})/(R_{800} - R_{680})$	Peñuelas et al. (1995)	
Vogelman2	(R734 - R747)/(R715 + 726)	Vogelman et al. (1993)	
PRI (Photochemical reflectance index) * Ci (chlorophyll ratio index)	[(R570 - R530)/(R570 + R530)] * [(R760/R700) -1]	Garrity et al., (2011)	
DFDS_ICCW	sum of Q675-680 – sum of Q640-674	Zhang et al. (2014)	

Inoculated

Figure S1. 2-D correlation plot illustrating the coefficient of determination (R²) of the
 normalised difference indices for all possible band combinations between 450 – 900 nm at
 hyperspectral resolution, for cyanobacteria artificially inoculated. Only the significant values (P
 < 0.05) are represented.

Cyanobacteria-dominated

Figure S2. 2-D correlation plot illustrating the coefficient of determination (R²) of the normalised
 difference indices for all possible band combinations between 450 – 900 nm at hyperspectral resolution, for
 natural cyanobacteria-dominated subsamples. Only the significant values (P < 0.05) are represented.

Lichen-dominated

Figure S3. 2-D correlation plot illustrating the coefficient of determination (R²) of the normalised
difference indices for all possible band combinations between 450 – 900 nm at hyperspectral resolution, for
natural lichen-dominated subsamples. Only the significant values (P < 0.05) are represented.

Moss-dominated

Figure S4. 2-D correlation plot illustrating the coefficient of determination (R²) of the normalised
 difference indices for all possible band combinations between 450 – 900 nm at hyperspectral resolution, for
 moss-dominated subsamples. Only the significant values (P < 0.05) are represented.

All communities

Figure S5. 2-D correlation plot illustrating the coefficient of determination (R^2) of the normalised difference indices for all possible band combinations between 450 – 900 nm at hyperspectral resolution, for the entire dataset. Only the significant values (P < 0.05) are represented.

Inoculated

Figure S6. 2-D correlation plot illustrating the coefficient of determination (R²) of the normalised difference indices for all possible band combinations between 450 – 900 nm at Sentinel-2 spectral resolution, for artificially inoculated cyanobacteria subsamples. Only the significant values are represented (P < 0.05).

Cyanobacteria-dominated

Figure S7. 2-D correlation plot illustrating the coefficient of determination (R²) of the normalised difference indices for all possible band combinations between 450 – 900 nm at Sentinel-2 spectral resolution, for natural cyanobacteria-dominated subsamples. Only the significant values (P < 0.05) are represented.

Lichen-dominated

Figure S8. 2-D correlation plot illustrating the coefficient of determination (R²) of the normalised
difference indices for all possible band combinations between 450 – 900 nm at Sentinel-2 spectral
resolution, for lichen-dominated subsamples. Only the significant values (P < 0.05) are represented.

Moss-dominated

43

44 Figure S9. 2-D correlation plot illustrating the coefficient of determination (R^2) of the normalised 45 difference indices for all possible band combinations between 450 – 900 nm at Sentinel-2 spectral 46 resolution, for moss-dominated subsamples. Only the significant values (P < 0.05) are represented.

All communities

48

49 Figure S10. 2-D correlation plot illustrating the coefficient of determination (R^2) of the normalised **50** difference indices for all possible band combinations between 450 – 900 nm at Sentinel-2 spectral **51** resolution for the entire dataset. Only significant values (P < 0.05) are represented.

Figure S11. GINI importance of each variable in Random Forest model. Two options were tested: a) with cover (green bars) and, b) without cover (pink bars). IC: Incipient cyanobacteria, C + PL: mix of

57 cyanobacteria and pioneer lichens.

60 Supplementary references

- Chen, J.M., 1996. Evaluation of vegetation indices and a modified simple ratio for
 boreal applications. Can. J. Remote Sens. 22, 229–242.
 https://doi.org/10.1080/07038992.1996.10855178
- Chen, J., Ming, Y.Z., Wang, L., Shimazaki, H., Tamura, M., 2005. A new index for
 mapping lichen-dominated biological soil crusts in desert areas. Remote Sens.
 Environ. 96, 165–175. https://doi.org/10.1016/j.rse.2005.02.011
- Datt, B., 1998. Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and
 total carotenoid content in eucalyptus leaves. Remote Sens. Environ. 66, 111–121.
 https://doi.org/10.1016/S0034-4257(98)00046-7
- Daughtry, C.S.T., Walthall, C.L., Kim, M.S., De Colstoun, E.B., McMurtrey, J.E., 2000.
 Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance.
 Remote Sens. Environ. 74, 229–239. https://doi.org/10.1016/S0034-4257(00)00113-9
- Filella, I., Peñuelas, J., 1994. The red edge position and shape as indicators of plant
 chlorophyll content, biomass and hydric status. Int. J. Remote Sens. 15, 1459–1470.
 https://doi.org/10.1080/01431169408954177
- Garrity, S.R., Eitel, J.U.H., Vierling, L.A., 2011. Disentangling the relationships between
 plant pigments and the photochemical reflectance index reveals a new approach
 for remote estimation of carotenoid content. Remote Sens. Environ. 115, 628–635.
 https://doi.org/10.1016/j.rse.2010.10.007
- Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25,
 295–309. https://doi.org/10.1016/0034-4257(88)90106-X
- Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview
 of the radiometric and biophysical performance of the MODIS vegetation indices.
 Remote Sens. Environ. 83, 195–213.
- Jordan, C.F., 1969. Derivation of Leaf-Area Index from Quality of Light on the Forest
 Floor. Ecology 50, 663–666. https://doi.org/10.2307/1936256
- Karnieli, A., 1997. Development and implementation of spectral crust index over dune
 sands. Int. J. Remote Sens. 18, 1207–1220. https://doi.org/10.1080/014311697218368
- Kochubey, S.M., Kazantsev, T.A., 2007. Changes in the first derivatives of leaf
 reflectance spectra of various plants induced by variations of chlorophyll content.
 J. Plant Physiol. 164, 1648–1655. https://doi.org/10.1016/j.jplph.2006.11.007
- Le Maire, G., François, C., Dufrêne, E., 2004. Towards universal broad leaf chlorophyll
 indices using PROSPECT simulated database and hyperspectral reflectance

- 94 measurements. Remote Sens. Environ. 89, 1–28.
- 95 https://doi.org/10.1016/j.rse.2003.09.004
- Merzlyak, M.N., Gitelson, A.A., Chivkunova, O.B., Rakitin, V.Y., 1999. Non-destructive
 optical detection of pigment changes during leaf senescence and fruit ripening.
 Physiol. Plant. 106, 135–141. https://doi.org/10.1034/j.1399-3054.1999.106119.x
- 99 Penuelas, J., Filella, I., Baret, F., 1995. Semi-empirical indices to assess
 100 carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 31,
 101 221–230.
- Peñuelas, J., Gamon, J.A., Fredeen, A.L., Merino, J., Field, C.B., 1994. Reflectance
 indices associated with physiological changes in nitrogen- and water-limited
 sunflower leaves. Remote Sens. Environ. 48, 135–146. <u>https://doi.org/10.1016/0034-</u>
 4257(94)90136-8
- Román, J.R., Roncero-Ramos, B., Chamizo, S. Rodríguez-Caballero, E. Cantón, Y., 2018.
 Restoring soil functions by means of cyanobacteria inoculation: Importance of soil conditions and species selection. L. Degrad. Dev. 29, 3184–3193.
- Rondeaux, G., Steven, M., Baret, F., 1996. Optimization of soil-adjusted vegetation
 indices. Remote Sens. Environ. 55, 95–107. https://doi.org/10.1016/00344257(95)00186-7
- Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C., 1974. Monitoring the
 vernal advancements and retrogradation of natural vegetation. In: NASA/GSFC,
 Final Report, Greenbelt, MD, USA, 1–137.
- Schlemmer, M.R., Francis, D.D., Shanahan, J.F., Schepers, J.S., 2005. Remotely
 measuring chlorophyll content in corn leaves with differing nitrogen levels and
 relative water content. Agron. J. 97, 106–112.
 https://doi.org/10.2134/agronj2005.0106
- Sims, D.A., Gamon, J.A., 2002. Relationships between leaf pigment content and spectral
 reflectance across a wide range of species, leaf structures and developmental
 stages. Remote Sens. Environ. 81, 337–354. https://doi.org/10.1016/S00344257(02)00010-X
- Vogelmann, J.E., Rock, B.N., Moss, D.M., 1993. Red edge spectral measurements from
 sugar maple leaves. Int. J. Remote Sens. 14, 1563–1575.
 https://doi.org/10.1080/01431169308953986
- Wu, C., Niu, Z., Tang, Q., Huang, W., 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 148, 1230–1241. https://doi.org/10.1016/j.agrformet.2008.03.005

- Xue, L., Yang, L., 2009. Deriving leaf chlorophyll content of green-leafy vegetables from
 hyperspectral reflectance. ISPRS J. Photogramm. Remote Sens. 64, 97–106.
 https://doi.org/10.1016/j.isprsjprs.2008.06.002
- Yoder, B.J., Pettigrew-Crosby, R.E., 1995. Predicting nitrogen and chlorophyll content
 and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy
 scales. Remote Sens. Environ. 53, 199–211. https://doi.org/10.1016/00344257(95)00135-N
- Zarco-Tejada, P.J., Miller, J.R., Mohammed, G.H., Noland, T.L., Sampson, P.H., 2002. 136 137 Vegetation Stress Detection through Chlorophyll + Estimation and Fluorescence 138 Effects on Hyperspectral Imagery. J. Environ. Qual. 31, 1433. 139 https://doi.org/10.2134/jeq2002.1433
- 140 Zhang, J., Huang, W., Zhou, Q., 2014. Reflectance variation within the in-chlorophyll
 141 centre waveband for robust retrieval of leaf chlorophyll content. PLoS One 9.
 142 https://doi.org/10.1371/journal.pone.0110812