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Abstract: This article reviews studies regarding wild animal surveys based on multiple platforms,
including satellites, manned aircraft, and unmanned aircraft systems (UASs), and focuses on the
data used, animal detection methods, and their accuracies. We also discuss the advantages and
limitations of each type of remote sensing data and highlight some new research opportunities and
challenges. Submeter very-high-resolution (VHR) spaceborne imagery has potential in modeling
the population dynamics of large (>0.6 m) wild animals at large spatial and temporal scales, but has
difficulty discerning small (<0.6 m) animals at the species level, although high-resolution commercial
satellites, such as WorldView-3 and -4, have been able to collect images with a ground resolution of up
to 0.31 m in panchromatic mode. This situation will not change unless the satellite image resolution
is greatly improved in the future. Manned aerial surveys have long been employed to capture the
centimeter-scale images required for animal censuses over large areas. However, such aerial surveys
are costly to implement in small areas and can cause significant disturbances to wild animals because
of their noise. In contrast, UAS surveys are seen as a safe, convenient and less expensive alternative
to ground-based and conventional manned aerial surveys, but most UASs can cover only small areas.
The proposed use of UAS imagery in combination with VHR satellite imagery would produce critical
population data for large wild animal species and colonies over large areas. The development of
software systems for automatically producing image mosaics and recognizing wild animals will
further improve survey efficiency.

Keywords: very-high-resolution satellites; unmanned aircraft systems; wild animal surveys;
remote sensing

1. Introduction

Poaching activities, climate change, rapid habitat loss and environmental degradation have led to
massive population decline and even extinction for many types of wild animals in recent decades [1].
The regular monitoring of wild animals is thus essential for estimating population changes and
modeling the possible consequences of changes in human activities, the climate, and many other
possible stressors on wild animal populations [2]. However, monitoring animal populations over large
geographical areas is extremely challenging because wild animals are often located far from human
settlements and are commonly concealed [3].
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The traditional methods for monitoring aspects of wild animals, such as their population size
and structure, mainly rely on ground-based surveys [4–7]. Although traditional field-based data
collected from thousands of sampling quadrats or transects are accurate, the collection of such data is
laborious, time-intensive, and costly [7–9], and survey regions are often difficult to access on the ground.
For example, Sibanda and Murwira [4] randomly generated one hundred transects to collect elephant
data, but only 36% of the transects were accessed. The limited sample number of field surveys also
restricts the monitoring accuracy of large-scale animal surveys. To ensure a sufficient sample number
and geographic coverage of field surveys, some field-based surveys, such as the North American
Breeding Bird Survey (1966–2011) [9], have been conducted with the help of thousands of volunteers
along roadsides. However, such data are not representative of either the amount of habitat or the rate
of change at a large spatial scale [10]. Using roadside methods also results in significant bias because
only disturbed landscapes are examined. In addition, collecting data for animals sensitive to humans,
such as waterbirds, is difficult [11]. For this purpose, researchers have developed various methods to
survey wild animals from satellites, manned aircraft, and unmanned aircraft systems (UASs) [12–14].

Although multiple reviews have been published on the use of satellite imagery [12,13,15], manned
aerial data [16–18], and UAS data [1,19–22] individually for wild animal surveys, there needs to be a
single review that compares and contrasts these methods to help readers make an informed decision
about which monitoring approach to use. The spatial resolution of satellite imagery is low relative
to that of aerial imagery and thus requires that the surveyed animals or clusters of animals be large
enough and have high contrast with the landscape [12]. Manned aerial systems have a relatively longer
endurance time than do UASs, but manned aerial surveys typically require a much higher cost to
implement and can be risky for survey personnel. The shortcomings of each type of data will not be
overcome in the foreseeable future. Consequently, it is sometimes necessary to fuse these data types
to regularly monitor wild animals over vast areas with high accuracy. This information is essential
for users to establish appropriate uses of different remote sensing data or combinations thereof in the
planning phases of wild animal surveys [23].

In this article, we review recent studies that used remote sensing data collected from satellites,
manned aircraft, and UASs to estimate the abundance of wild animals by directly detecting and
counting individuals. We describe the sensors, animal detection methods, and capabilities and
limitations of each type of data and highlight some new research opportunities and technological
developments for wild animal surveys using remote sensing data.

2. Methods

A comprehensive literature search was performed using the databases Web of Science and Google
Scholar to collect studies related to remote sensing surveys of wild animal populations. The literature
published before 26 December 2018, was reviewed. The keywords of the remote sensing platforms
(including ‘remote sensing’ or ‘spaceborne’ or ‘space’, ‘satellite’ or ‘aircraft’ or ‘airborne’ or ‘unmanned
aerial system’ or ‘unmanned aerial vehicle’ or ‘UAS’, ‘UAV’ or ‘drone’), surveyed species (including
‘wildlife’ or ‘animal’ or ‘wild animal’ or ‘mammal’, ‘bird’ or ‘herbivorous’), and investigation content
(including ‘survey’ or ‘population’ or ‘census’ or ‘monitoring’) were used in combination in the search.
Studies associated with the search results that were found in citations and recommended by anonymous
reviewers were also added to the literature. According to the data acquisition platform, the surveys
were classified as spaceborne surveys, manned aerial surveys, and UAS surveys. The platforms,
sensors, image resolution, availability, data cost, coverage, surveyed species, animal detection methods,
pixel number of the surveyed species on the imagery, and the accuracy of the wild animal surveys
in each paper were determined. Some studies did not report the data cost, coverage, and pixel
number of the surveyed species on the imagery, and these figures were estimated according to the
provided information.
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3. Results

3.1. Platforms

3.1.1. Satellites

Medium to low (1–60 m) spatial resolution spaceborne remote sensing data have been used for
indirect animal surveys by identifying some form of ‘sign’ that indicates that animals have been
in the area, such as fecal counts [24–26], food removal, and burrow counts [27,28], since the early
1980s. Schwaller et al. [26] delineated the physical extent of the Adélie penguin rookeries on Ross
and Beaufort Islands, Antarctica, by analyzing the penguin nesting sites based on guano and other
debris in 30-m-resolution Landsat TM imagery. Fretwell and Trathan [24] revealed 38 emperor penguin
colonies scattered along the shore of Antarctica according to the characteristics of fecal stains using
Landsat data. The breeding population of the emperor penguins at each colony was further estimated
from QuickBird satellite images with a resolution of 0.61 m in the panchromatic band and a resolution
of 2.44 m in the four multispectral bands (blue, green, red, and infrared) using a robust regression
algorithm between these classified areas and the number of penguins [25]. In recent years, submeter
very-high-resolution (VHR, ≤1 m panchromatic resolution) imagery from commercial satellites, such
as the GeoEye-1, WorldView-2, WorldView-3, Quickbird-2, and IKONOS satellites, with resolutions
ranging from 0.3–1 m in the panchromatic band to 1.2-4 m in the multispectral band, have been
used to directly identify large-sized (≥0.6 m) individual animals, such as wildebeests (Connochaetes
gnou), zebras (Equus quagga) [29], polar bears (Ursus maritimus) [30,31], albatrosses [32], southern
right whales (Eubalaena australis) [33,34], and Weddell seals (Leptonychotes weddellii) [35]. Among the
fifteen satellite remote sensing studies, three studies used GeoEye-1 imagery, seven studies used
WorldView-1/2/3 imagery, three studies used Quickbird-2 imagery, and one study used IKONOS
imagery (Table 1). At present, optical satellites have the ability to capture imagery with resolutions
as fine as 31 cm (WorldView-3/4) with global coverage, and radar satellites offer resolutions as fine
as 1 m (TerraSAR-X). Table 2 summarizes the submeter commercial satellites. The submeter radar
satellites include TerraSAR-X and COSMO-SkyMed, but their use has not been reported for wild animal
population surveys, which may be due to the low sensitivity of their radar signals to animals [15].

Table 1. Comparison of spaceborne, manned aerial, and unmanned aircraft system (UAS) surveys of
wild animals.

Spaceborne Surveys Manned aerial Surveys UAS Survey

Platforms

Satellite images are from GeoEye-1
(3/15), WorldView-1/2/3/4 (7/15),
Quickbird-2 (3/15), and IKONOS

satellites (1/15).

Aircraft used were mainly light
manned helicopters (3/12) and

fixed-wing aircraft (11/12).
Surveyors of terrestrial mammals

prefer using helicopters.
Surveyors of animals in plains or

marine environments prefer using
fixed-wing aircraft.

A long-period study used a
combination of helicopters and

fixed-wing airplanes.

UASs used include small fixed-wing
UASs (11/18) and multicopters

(9/18).
Fixed-wing UASs are typically used
to survey large or marine animals.

Multicopter UASs are typically used
to survey animals in uneven terrain
and high-vegetation areas, as well
as birds because of their superior

vertical takeoff and landing
capabilities and low noise.

Sensors

Panchromatic and multispectral
images are the most widely used

data (Two satellite remote sensing
studies used panchromatic imagery,
and the other thirteen studies used

multispectral imagery).
Pansharpening techniques were
used to merge high-resolution

panchromatic and lower-resolution
multispectral imagery to create a

single high-resolution color image to
increase the differentiation between

target objects and background.

Real-time surveys do not need
imaging sensors.

Photographic surveys used still
RGB images, video, and infrared

thermography to detect wild
animals.

RGB images are suitable for
detecting wild animals living in

open lands or marine environments.
Thermal infrared cameras are

primarily used for detecting wild
animals living in forests and other

high-vegetation areas.
Radio-tracking devices have been
used on UASs in recent years to

study the behavior of small animals.
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Table 1. Cont.

Spaceborne Surveys Manned aerial Surveys UAS Survey

Resolution

Up to 0.31 m resolution in the
panchromatic band (WorldView-3

and -4)
Up to 1.2 m in the multispectral

band (WorldView-3 and -4)

Up to 2.5 cm (RGB imagery) Up to 2 mm resolution (RGB
imagery)

Coverage Regional to global scales

Has been used for regular and
geographically comprehensive
animal monitoring on regional

scales.
Sampling distances were up to

12,800 km, with an area of
approximately 6000 km2.

No more than 50 km2.
Most survey areas were <2 km2.

The minimum survey area was only
4 × 4 m.

Cost

Relatively low (the price of 0.5 m
spatial resolution satellite imagery
ranges from USD $14–27.5 per km2

depending on the spectral
resolution, order area and data age).

Expensive to implement for small
study areas because of the cost of

the aircraft, operator, and fuel.

Medium
Has been seen as a safer and

low-budget alternative to manned
aircraft.

Surveyed species

It is possible only to directly identify
large-sized (≥0.6 m) individual

animals from existing VHR
commercial satellite imagery, such
as wildebeests, zebras, polar bears,
albatrosses, southern right whales,

and Weddell seals.

The real-time survey method has
long been used to survey

terrestrial and marine animals
with potentially low abundances

in remote or large areas.
Manned aerial imagery allows

directly discern smaller (<0.6 m)
animals, such as birds, sea turtles,

and fish; large animals that are
difficult to distinguish from the
background at the species level,

such as roe deer and red deer; and
some animals with a significant
temperature difference from the

background environment, such as
Pacific walruses.

UASs allow surveying of smaller
animals, as well as their behaviors,
such as butterfly species, Bicknell’s

and Swainson’s thrushes, noisy
miners, and iguanas.

Most applications of UASs focus on
assessing the possibilities of species
detection in a small geographic area.

Methodology

Direct visual recognition and
Automatic and semiautomatic

detection using pixel-based and
object-based methods

Direct visual recognition
Automatic and semiautomatic

detection using pixel-based and
object-based methods and

traditional machine learning.

Direct visual recognition
Automatic and semiautomatic

detection using pixel-based and
object-based methods, traditional

machine learning, and deep
learning.

Pixel number of
target species in

imagery
2–6 pixels Did not investigate, but similar to

those for UAS imagery. Most animals cover 22–79 pixels.

Accuracy

Automated and semiautomatic counts of animals from remote sensing imagery are reported to usually be highly
correlated with manual counts when these algorithms were applied to small areas in relatively homogenous

environments.
The manual counts of animals derived from different remote sensing imagery and ground-based counts collected

within a short time interval are also reported to be highly correlated.
Remote sensing-based counts often underestimate populations because some animals are invisible to remote

sensing imagery, especially those living in high-vegetation areas and aquatic environments, but high-resolution
imagery increases the detection possibility.

Note: The accuracy was determined through comparison with ground-based counts or manual counts.

Table 2. Submeter commercial satellites (1 m or higher resolution).

No. Sensor/Instrument Sensor Type Spatial Resolution (Nadir) Agency Launch Year

1

IKONOS Optical Panchromatic 1 m,
multispectral 4 m

Digital Globe, USA

1999

QuickBird-2 Optical Panchromatic 0.61 m,
multispectral 2.62 m 2001

GeoEye-1 Optical Panchromatic 0.41 m,
multispectral 1.65 m 2008

WorldView-1 Optical Panchromatic 0.46 m 2007

WorldView-2 Optical Panchromatic 0.46 m,
multispectral 1.85 m 2009

WorldView-3/4 Optical Panchromatic 0.31 m,
multispectral 1.24 m 2014/2016
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Table 2. Cont.

No. Sensor/Instrument Sensor Type Spatial Resolution (Nadir) Agency Launch Year

2 COSMO-SkyMed
1/2/3/4/5/6 SAR X-Band up to 1 m Italian Space Agency 2007-2018

3 Pleiades-1/2 Optical Panchromatic 0.5 m,
multispectral 2 m

French space agency and
EADS Astrium 2011/2012

4 TerraSAR-X
TanDEM-X SAR X-Band up to 1 m German Aerospace Center

and EADS Astrium 2007

5 Resurs-DK1 Optical Panchromatic 1 m,
multispectral 2-3 m Russian Space Agency 2006

6
Kompsat-2 Optical Panchromatic 1 m,

multispectral 4 m Korean Academy of
Aeronautics and Astronautics

2006

Kompsat-3 Optical Panchromatic 0.7 m,
multispectral 2.8 m 2012

7 CartoSat-2/2A/2B Optical Panchromatic 1 m Indian Space Research
Organization 2007

8 EROS-B Optical Panchromatic 0.7 m
Israeli Aircraft Industries Ltd.

(built) and ImageSat
International N.V. (own)

2006

9 GF-2 Optical Panchromatic 0.8,
multispectral 3.2 m

State Administration of
Science, Technology and

Industry for National
Defense, China

2014

10 Beijing 2 Optical Panchromatic 0.8 m,
multispectral 3.2 m

Twenty First Century
Aerospace Technology Co.,

Ltd, China
2015

11 SuperView-1 Optical Panchromatic 0.5 m,
multispectral 2 m

China Aerospace Science and
Technology Corporation 2016

3.1.2. Light Manned Aircraft

Using light manned helicopters or fixed-wing aircraft for wild animal surveys has obvious
advantages over using satellite-derived imagery [16]. The flight altitudes, time and sensors can be
customized for each mission. Furthermore, aerial imagery can be collected with significantly higher
spatial resolutions, up to 2.5 cm [23]. Given the flight safety and the endurance time of aircraft, studies
of terrestrial mammals distributed over smaller areas prefer to use helicopters [18,36,37], while those
of plains, remote locations and marine environments prefer to use fixed-wing aircraft [2,17,38–41].
One long-period study used a combination of helicopters and fixed-wing airplanes [42]. Among the
thirteen manned aerial surveys of wild animals, three studies used manned helicopters, and eleven
studies used fixed-wing aircraft (one study used both helicopters and fixed-wing aircraft, Table 1).

3.1.3. UASs

In recent years, UASs have also been employed to count and track wild animals [43–45] and
to detect their body sizes [46] and behaviors [11,47,48]. UASs typically include an unmanned aerial
vehicle (UAV, commonly known as a drone), a ground-based controller, and a system of communication
between the two. The flight of UAVs may operate with various degrees of autonomy and can operate
under remote control by a human operator or autonomously by onboard computers. The UASs
employed for wild animal surveys in the literature are mainly small fixed-wing UAVs and multicopters
that can be remotely controlled autonomously by onboard computers [19] (Table 1). Most of these UAS
surveys were conducted with small UASs within the line of site because UASs are not permitted to fly
out of sight of the operator or close to densely populated areas in many countries unless permission
has been given [49]. In addition, many authors expressed understandable concerns over legislation
regulating the use of UASs. Some surveys used large UASs, such as the ScanEagle, to obtain relatively
large-range (up to 100 km) and long-endurance (24+ h) capabilities [50,51]. Among the nineteen studies,
approximately half of the studies used multicopters (9/18) and fixed-wing UAVs (11/18). Because
of their poor flexibility, airships and aerostats have not been used in wild animal surveys. Figure 1
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shows photos of a fixed-wing UAS, a quadcopter UAS, and a hexacopter UAS. Given the safe flight
height and the long-endurance, fixed-wing UASs are typically used to survey large animals, such
as roe deer, red deer, wild boar [52], elephants [43], dugongs [51], and humpback whales [50], over
a large area by operating at a high flight altitude (typically > 100 m). In the marine environment,
fixed-wing UASs are much less restricted in terms of the safe flight height, and the capacity of the
sensor dictates what species can be detected at a set altitude [50]. However, one disadvantage of large
fixed-wing UASs is that they typically need a launch ramp or runway (Figure 1) to launch. Although
some small and light fixed-wing UASs, such as the eBee [53], are able to take off by being thrown
into the air, open and flat areas are required for a safe landing, and thus, their use has been largely
restricted over uneven terrain and in high-vegetation areas. The predominance of multicopters can be
explained by their low cost and superior vertical takeoff and landing performance on small flat areas
surrounded by uneven terrain. Additionally, multicopters are readily available and can easily maintain
a stationary position in flight to take pictures at any orientation. Among multicopters, quadcopters
and hexacopters are the main types employed, and only one study used an octocopter [54]. Typically,
quadcopters are less expensive and are easier to carry than other multicopters. Quadcopters fitted
with light and small cameras can fly at low altitudes to detect small animals, such as blacktip reef
sharks, pink whiprays [55], and butterflies [56], which are not overly sensitive to UAS disturbances.
Hexacopters and octocopters are able to carry telephoto or high imaging quality cameras, which are
heavier, but can capture higher-resolution imagery than the cameras carried by quadcopters at the
same altitude. Thus, they are widely used to survey birds, such as canvasbacks, western/Clark’s grebes,
double-crested cormorants [11], Gentoo penguins, chinstrap penguins [57], frigatebirds, crested terns,
and royal penguins [54], which are sensitive to UAS and human disturbances and must be monitored
from a greater height.   

 

Figure 1. Photographs of representative UASs: (a) Gatewing×100TM, a fuel-powered fixed-wing UAS 
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Figure 1. Photographs of representative UASs: (a) Gatewing×100TM, a fuel-powered fixed-wing
UAS [43]; (b) DJI Phantom 2, an electric quadcopter [55]; and (c) APH-22, an electric hexacopter [57].

Regarding the power sources of UASs, most UASs are driven by electricity. Although fuel-based
power systems generally allow for longer endurance, combustion engines are more difficult to handle
than electric engines for people without expertise, and these engines produce more vibrations and
noise than electric engines and cannot easily provide flexible power for multicopters [1]. In addition,
combustion engines present risks associated with engine ignition. Multiple studies considered electric
UASs to be an excellent tool for approaching and surveying birds because of their low noise [57–61].

Table 1 shows a comparison of spaceborne, manned aerial, and UAS surveys of animals, including
the platforms used, sensors, image resolution, data cost, coverage, availability, surveyed species,
animal detection methods, pixel number of surveyed species in the imagery, and detection accuracy.

3.2. Sensors

Depending upon the wavelengths collected by the sensors, remote sensing instruments can be
classified into optical (0.4–14 µm) or microwave (1 mm–1 m) sensors [23]. Optical (0.4–14 µm) sensors
can capture panchromatic (black and white), multispectral (collecting several bands) and hyperspectral
(collecting hundreds of bands) imagery. In addition to the visible light range of red, green and blue
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(RGB), multispectral and hyperspectral imagery also includes the far blue, near-infrared, thermal and
infrared bands. Some satellites are able to collect superspectral (between 10-100 bands) imagery; for
example, WorldView-3 can capture up to 17 bands. The data used for satellite, manned aerial, and
UAS surveys include panchromatic [58], RGB [11,43], multispectral [29–33,35], and thermal infrared
imagery [53,62,63], as well as radio-tracking data [23,48,64,65].

3.2.1. Spaceborne Surveys

For spaceborne wild animal surveys, panchromatic imagery [31,66] and multispectral
imagery [29,67,68] are the most widely used types of data. Among the fifteen satellite remote sensing
studies, two studies used panchromatic imagery, and the other thirteen studies used multispectral
imagery (Table 1). Multispectral imagery provides more spectral information for distinguishing target
objects from the background than doe spanchromatic imagery [32]. However, the low resolution of
multispectral imagery makes it effective only for recognition of huge animals (>2.5 m, twice the ground
resolution of Worldview 3 in multispectral bands), such as southern right whales [33]. Researchers
also used pansharpening techniques (merging high-resolution panchromatic and lower-resolution
multispectral imagery to create a single high-resolution color image) to increase the differentiation
between the target objects and the background [29,67,69]. Although the resolution has been greatly
improved (up to 1 m, Table 2), microwave spaceborne imagery has not been reportedly used for wild
animal recognition because of its low sensitivity to animals [15].

3.2.2. Manned Aerial Surveys

Aerial surveys of wild animals fall into two main categories: (a) Real-time surveys, in which
the wild animals are counted in situ by trained observers, i.e., no imaging sensors are used during
the surveys [2,17,37–39,41], and (b) photographic surveys, in which wild animals are counted from
still RGB images or video [36,42,70–73]. Infrared thermography has also been tested for surveying
wild animals with a significant temperature difference from the background environment, such as the
Pacific walrus (Odobenus rosmarus) [63,74,75], and red deer (Cervus elaphus), fallow deer (Dama dama),
roe deer (Capreolus capreolus), wild boar (Sus scrofa), foxes, wolves and badgers [76].

3.2.3. UAS Surveys

Similar to manned aerial surveys, UAS surveys have also widely used RGB cameras (15/18) and
thermal infrared cameras (5/18) to capture data [1,20,21]. The use of multispectral, hyperspectral, radar
and other sensors sensitive to vegetation information has not been reported, most likely for cost and
efficiency reasons. Medium-format RGB cameras are smaller and cheaper, but have a much higher
resolution than thermal infrared cameras (8 to 24 megapixels vs. <0.21 megapixels). Furthermore, RGB
images are closer to human vision and are suitable for detecting wild animals, such as elephants [43],
dugongs [51], and turtles [42], which live in open lands or marine environments. Thermal infrared
cameras are primarily used for detecting wild animals that live in forests and other high-vegetation
areas, such as roe deer, rabbits, foxes [77], koalas [62] and gray seals [53]. Animals can be detected by
the temperature differences between their bodies and the environment, which is a helpful feature for
detecting nocturnal animals in low-light conditions [52,63]. However, thermal infrared cameras are
less commonly used because of their high price and the coarse resolution of the sensors [1]. These
issues may become less important with continued technological developments and the increased
availability of thermal infrared cameras. In addition, radio-tracking devices have been used on UASs
in recent years to study the behaviors of small animals, such as Bicknell’s and Swainson’s thrushes (C.
ustulatus) [64], noisy miners (Manorina melanocephala) [48], and iguanas [65], which used to be monitored
from a ground-based vehicle or on foot by following radio signals [5,78]. However, to use radio tags,
researchers had to first install the radio tags on the animals before tracking them. Consequently, radio
signal data could not be used to properly assess the population of animals without radio tags. For the
UAS data type, still images are the main outputs of the sensors. Videos typically produce images of
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lower quality than still images and are primarily used for the real-time monitoring and tracking of
wild animals and the surrounding environment (see the list in Table 5). Overall, the types of UASs
and sensors used are likely to be largely governed by their availability, price and ease of use. As more
and cheaper UASs are developed and become available, the types and percentages of the UASs and
sensors used are likely to change.

3.3. Data Availability, Resolution and Cost

3.3.1. Satellite Data

Satellite data can provide up to 0.31 m-resolution imagery (WorldView-3 and -4) for global
coverage and are available from commercial satellites. The price of 0.5 m spatial resolution satellite
imagery ranges from USD $14–27.5 per km2, depending on the spectral resolution, order area and
data age [79]. A guarantee of a low degree of cloud cover increases costs by 25–50%. These data
are relatively expensive, although the many US and European data providers have offered test data
with several scenes or pieces of images. Researchers with limited budgets will likely not be able to
obtain data over large areas. As stated by Kuenzer et al. [15], free and open data will be critical to
encouraging studies and applications of VHR satellite imagery for wild animal surveys. Although this
submeter satellite imagery is largely in the commercial domain, companies are being encouraged to
allow researchers to access the archived data for free or at an affordable cost.

3.3.2. Aerial Data

Manned helicopter or fixed-wing vehicles have a relatively long endurance time and have
been used for regular and geographically comprehensive animal monitoring by directly observing
animals from the air [17,23,37,39,41] or reviewing centimeter-scale resolution imagery [42,70–73].
Stoner et al. [41] assessed the effectiveness of protection strategies in Tanzania based on a decade
(1988–1998) of aerial survey data collected for 23 types of large herbivores, including buffalos (Syncerus
caffer), elands (Taurotragus oryx), elephants (Loxodonta africana), and giraffes (Giraffa camelopardalis).
Ottichilo et al. [17] analyzed the population trends of large nonmigratory wild herbivores and livestock
in the Masai Mara ecosystem, Kenya, based on 20 years (1977–1997) of aerial survey data. The surveyed
herbivores included elephants, impalas, ostriches, gazelles, warthogs, and cattle. Stapleton et al. [18]
used a helicopter (Bell 206 LongRanger) to conduct a comprehensive aerial survey of Foxe Basin polar
bears (Ursus maritimus) during the 2009 and 2010 ice-free seasons. The sampling transect was over
12,800 km, with an area of approximately 6000 km2. Martin et al. [42] used five decades (1963–2012)
of aerial survey data from Guam (Marianas Archipelago in Micronesia) to systematically estimate
the changes in the abundances, trends, and geographic distributions of sea turtles, elasmobranchs,
and cetaceans. It is difficult to quantify the costs of aerial surveys because the costs are extremely
variable depending upon the location, the access to aircraft and a number of other factors. Manned
aerial surveys are expensive to implement for small study areas because of the cost of the aircraft,
operator, and fuel, especially in developing countries. Furthermore, strict flight restrictions and crash
risks must be considered [1,21]. Although it decreases as the area increases, the cost of aerial imagery
is still much higher than that of satellite imagery.

3.3.3. UAS Data

UASs can fly at an altitude of several meters to hundreds of meters (Table 5) to capture up to
2 mm-resolution imagery [56] and have been seen as a safer and low-budget alternative to manned
aircraft for wild animal surveys [1,20,21]. UASs have indeed become accessible to common consumers
primarily because of the miniaturization of electronic components; the increase in computational power
for onboard central processing units (CPUs); the development of intelligent flight control subsystems
for takeoff, landing, and flight control; the improvement of payloads; and the reduction in costs [44].
The UASs used for wild animal surveys encompass a broad range of sizes from quadcopters (e.g.,
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DJI Phantom 2, an electric quadcopter that costs approximately $1000 [55]) to full-sized planes (e.g.,
ScanEagle, providing a range of up to 100 km and 24+ h endurance capabilities [50,51]) and, therefore,
vary in cost [23]. UASs have cost and image resolution advantages over manned aircraft. Most surveys
were applied to small areas, as shown in Table 5. Indeed, only two studies surveyed geographic areas
larger than 10.0 km2: Vermeulen et al. [43] surveyed African elephants over an area of 13.79 km2,
and Hodgson et al. [50] surveyed humpback whales over an area of 35.2 km2. The remaining studies
surveyed geographic areas smaller than 2.0 km2, which were much smaller than those surveyed with
manned aerial surveys [17,18,42], and the minimum survey area was only 4 × 4 m [56]. This difference
is mainly because the endurance times and operating distances of UASs are typically very short. Most
multirotor UASs on the market only have an endurance of 10–30 min, and even the fixed-wing UASs
mostly have endurance times shorter than 2 h. The operating distance of UASs may range from only
several to tens of kilometers [1,23,50,51]. UASs tend to be affected by weather, particularly rain and
wind [1]. Most UASs cannot fly in rain or moderately high winds [23]. Hostility from local people
and poachers must also be considered, and the UASs may be shot down [80]. Although all species
reported could be successfully surveyed using proper UAS models at proper flight heights, wild
animals typically have stronger reactions to larger UAS sizes, combustion (noisier) engines, and low
flight altitudes [81]. Animals during the nonbreeding period and in large groups were more likely to
show behavioral reactions to a UAS [82], and birds were more prone to react than were other taxa [81].
Thus, most studies focused on surveying bird reactions to UASs and considered electric UASs an
excellent tool for approaching them [57–61]. In addition to behavioral responses, the possible social
aspects of using drones for wild animal surveys, including safety, privacy, psychological responses,
data security and the wider understanding of conservation problems, should be of concern [47,80,83].
UAS users should also follow the local UAS operation legislation and ethics to prevent undesirable
consequences for wild animals and human beings [84], as previous researchers did by receiving permits
from the relevant local authorities for entering the study areas and operating UASs [11,43,50,59,60,85].
The comprehensive work of Cracknell [86] presents a review of UAS operation legislation in a number
of countries.

3.4. Surveyed Species and Methodology

3.4.1. Spaceborne Surveys

The early spaceborne surveys of wild animals focused on using medium/low (1–60 m)-spatial
resolution spaceborne data to find wild animals by identifying some form of sign indicating that the
animals have been in the area, such as fecal counts [24–26], food removal, and burrow counts [27,28],
rather than performing direct observations of the animals themselves. Examples of the indirect
surveying of species include monitoring the population increase of the king penguin (Aptenodytes
patagonicus) using 10 m-resolution SPOT images in the southern Indian Ocean [87], developing a
supervised classification algorithm for locating seabird nesting habitats from Landsat TM images in
the Russian High Arctic archipelago of Franz Josef Land [88], surveying the distribution of the Adélie
penguin (Pygoscelis adeliae) [25,26] and emperor penguin (Aptenodytes forsteri) [24] in Antarctica by
analyzing guano and other debris in the Landsat TM imagery, and detecting hairy-nosed wombats
(Lasiorhinus latifrons) by analyzing the degraded vegetation and bare ground caused by the animal’s
burrowing and mound building behaviors in the Nullarbor Plain of southern Australia based on
60 m-resolution Landsat imagery. VHR imagery, such as 1.8 m-resolution Worldview-2 imagery, has
also been applied to detect gerbil burrows using a similar NDVI-based technique [28]. Although this
indirect approach is valuable for detecting mammals and other animals with clear habitat modification
signals, other species might not directly generate a detectable signal of habitat modification [15].
Recent studies have focused on using VHR (0.31–1 m panchromatic resolution) imagery from satellites,
such as the GeoEye-1, WorldView-2, WorldView-3, and Quickbird-2 satellites, for directly identifying
large-sized (≥0.6 m) individual animals, such as wildebeests (Connochaetes gnou), zebras (Equus
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quagga) [29,66], polar bears (Ursus maritimus) [31], albatrosses [32], southern right whales (Eubalaena
australis) [33], and Weddell seals (Leptonychotes weddellii) [35]. Multitemporal image differencing
and change detection methods have also been used to detect animal movements, such as those of
polar bears [30]. Other efforts include assessing the possibility of detecting marine mammals (polar
bears, walruses, and bowhead whales) in GeoEye-1 images [31], monitoring marine mammals (e.g.,
humpback whales) using IKONOS imagery [68], manually detecting, describing, and counting four
different mysticete species (fin whales in the Ligurian Sea, humpback whales off Hawaii, southern right
whales off Península Valdés, and gray whales in Laguna San Ignacio) in WorldView-3 imagery [34],
manually recognizing elephant seals (Mirounga leonina) in GeoEye-1 images of Macquarie Island in the
southern Pacific Ocean [69], and monitoring the population changes of Weddell seals along the Victoria
Land coast based on an analysis of high-resolution satellite images captured by the DigitalGlobe and
GeoEye platforms [89]. Leblanc et al. [90] presented a study that analyzed the potential to detect and
differentiate large arctic mammals using spaceborne optical satellites (e.g., Pleiades and WorldView-2
and 3) by using a ground-based portable ASD FieldSpec®3 spectroradiometer to measure and analyze
the spectral reflectance (within the 350–2500 nm range) of snow and several arctic mammal pelts
(polar bear, caribou, muskox, and ringed, harp and bearded seals) under winter conditions. Data
fusion of multiresolution spaceborne imagery was also used to produce large-scale and accurate wild
animal population data. Fretwell et al. reported a global and synoptic survey of emperor penguins by
integrating 30 m-resolution Landsat TM and 0.6 m-resolution QuickBird imagery [67]. LaRue et al. [12]
summarized several criteria, including the minimum animal size, open habitat landscapes, and high
color contrasts between the target organisms and the landscape, that must be met in order to use VHR
imagery to detect wild animals. Figure 2 shows two VHR satellite images of wild animals. Table 3
summarizes the animal species detected using satellite imagery.

Figure 2. Two VHR satellite images of wild animals. (a) Emperor penguins (Aptenodytes forsteri) are 
shown as black/gray pixels, and guano is shown as brown pixels in a pansharpened QuickBird image 
from Fretwell et al. [67]. (b) Migration season of wildebeests (Connochaetes gnou) and zebras (Equus 
quagga) in a GeoEye-1 satellite image from Yang et al. [29]. Note: The QuickBird and GeoEye-1 images 
have resolutions of 0.61 m and 0.5 m (at nadir), respectively, in the corresponding panchromatic
bands. The use of these two images was authorized by the DigitalGlobe Foundation. 

Table 3. Animal species detected using spaceborne imagery.
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Figure 2. Two VHR satellite images of wild animals. (a) Emperor penguins (Aptenodytes forsteri)
are shown as black/gray pixels, and guano is shown as brown pixels in a pansharpened QuickBird
image from Fretwell et al. [67]. (b) Migration season of wildebeests (Connochaetes gnou) and zebras
(Equus quagga) in a GeoEye-1 satellite image from Yang et al. [29]. Note: The QuickBird and GeoEye-1
images have resolutions of 0.61 m and 0.5 m (at nadir), respectively, in the corresponding panchromatic
bands. The use of these two images was authorized by the DigitalGlobe Foundation.
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Table 3. Animal species detected using spaceborne imagery.

Group Species or Items Detected Satellites

Resolution (in
the

Panchromatic
Band)

Data Type Study

Terrestrial
mammals

wildebeests (Connochaetes
gnou), zebras (Equus quagga) GeoEye-1 0.5 m Multispectral

imagery [29]

wildebeests (Connochaetes
gnou), zebras (Equus quagga) GeoEye-1 0.5 m Panchromatic

imagery [66]

polar bears (Ursus maritimus) WorldView-2
and Quickbird

0.5 and 0.6 m,
respectively

Multispectral
imagery [30]

polar bears (Ursus maritimus) GeoEye-1 0.5 m Panchromatic
imagery [31]

muskoxen (Ovibus moschatus)
WorldView-1

and
WorldView-2

0.5 m Multispectral
imagery [12]

Aquatic and
amphibious

animals

walruses and bowhead whales GeoEye-1 0.5 m panchromatic
imagery [31]

southern right whales
(Eubalaena australis) WorldView-2 0.5 m Multispectral

imagery [33]

fin whales, southern right
whales, and gray whales WorldView-3 0.31 m

Multispectral
imagery

(Pansharpened)
[34]

Weddell seals (Leptonychotes
weddellii)

Quickbird-2
and

WorldView-1
0.6 m

Multispectral
imagery

(Pansharpened)
[35]

emperor penguins
(Aptenodytes fosteri) QuickBird 0.6 m

Multispectral
imagery

(Pansharpened)
[67]

humpback whales (up to 10 m
in length) IKONOS 1 m

Multispectral
imagery

(Pansharpened)
[68]

elephant seals (Mirounga
leonina) GeoEye-1 0.5 m

Multispectral
imagery

(Pansharpened)
[69]

Weddell seals (Leptonychotes
weddellii)

DigitalGlobe
and GeoEye

(specified
satellites were

not given)

0.6 m
Multispectral

imagery
(Pansharpened)

[89]

Flying
organisms and

insects

wandering albatross (Diomedea
exulans) and northern royal
albatross (Diomedea sanfordi)

WorldView-3 0.3 m Multispectral
imagery [32]

3.4.2. Manned Aerial Surveys

Manned aerial technology has been used for monitoring wild animals since the mid-1930s, when
the US Bureau of Biological Survey used airplanes and dirigibles to survey waterfowl [70]. The early
surveys were mainly real-time surveys that employed trained observers to survey terrestrial and
marine animals with potentially low abundance in remote or large areas [38]. The terrestrial animals
included polar bears in the Arctic [37]; red kangaroos (Megaleia rufa) and sheep [91]; buffalos (Syncerus
caffer), elands (Taurotragus oryx), elephants (Loxodonta africana), and giraffes (Giraffa camelopardalis) in the
African grasslands [41]; and pronghorns (Antilocapra americana) in two pronghorn pastures, Wyoming,
USA, with vegetation communities dominated by mountain big sagebrush communities [2]. In marine
environments, aerial surveys have typically focused on marine megafauna, such as cetaceans and
elasmobranch [38,39], because these taxa are regularly visible at the surface and their large sizes make
them highly visible. Aerial surveys have been widely used for decades to estimate the local densities
and population sizes of walruses and other cetaceans [92]. The National Oceanic and Atmospheric
Administration (NOAA) have conducted many aerial surveys of marine mammals using manned aircraft
with observers and photos since 1976 (https://www.afsc.noaa.gov/nmml/software/bwasp-comida.php).
However, real-time aerial survey technology often underestimates animal numbers [91]. Marsh and
Sinclair [40] reported that in an aerial survey of dugongs (Dugong dugon) and sea turtles (Chelonia

https://www.afsc.noaa.gov/nmml/software/bwasp-comida.php
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mydas) in Moreton Bay, Australia, in 1985, observers missed over 40% of the dugong groups and
over 80% of the turtles visible within the transect, including groups of more than 10 dugongs. The
systematic reconnaissance fight method [93] is a widely used method in Africa, Australia and North
America for the assessment of plains and woodland wildlife [38,41]. The method involves systematic
or random transects over the target area at a constant height above ground, with at least one observer
recording wild animals in a calibrated strip on at least one side of the aircraft. The double-observer
survey configuration has proven to be necessary to quantify and correct for the bias caused by the
failure of observers within the innermost distance band [2]. The method has often been criticized for
its low accuracy and precision, even if the advanced version adopting the dual-experienced observer
technique can partly eliminate the potential of visual obstruction. Despite this criticism, this method is
considered to be the best option for obtaining relatively inexpensive coverage of large areas [38,40].
With the development of digital imaging and computer technologies, still images or videos captured
from manned aerial aircraft have been used to count animals [36,71]. The separation of animal counting
and aerial flight missions provides the photography-based method with several benefits over the
real-time survey method, including allowing aircraft to fly at a higher altitude (high-resolution or
telephoto cameras are required), revisiting the imagery or video after flights, and developing automatic
counting algorithms [71–73]. Furthermore, aerial imagery can be collected with RGB cameras and
infrared thermography at significantly higher spatial resolutions of up to 2.5 cm [23]. Therefore, aerial
imagery allows one to directly discern more small (<0.6 m) animals, such as birds [70–73], sea turtles,
and fish [42]; large animals that are difficult to distinguish from the background at the species level,
such as roe deer (Capreolus pygargus) and red deer (Cervus elaphus) [36]; and some animals in varying
habitats and at night, such as Pacific walruses (Odobenus rosmarus) [74], and and red deer (Cervus
elaphus), fallow deer (Dama dama), roe deer (Capreolus capreolus), wild boar (Sus scrofa), foxes, wolves
and badgers [76]. Table 4 summarizes the animal species surveyed using manned aircraft.

Table 4. Manned aerial surveys of wild animals.

Group Species or Items Detected Platforms Sensors Data Type
Surveyed

Area
(km2)

Flight
Height

(m)
Study

Terrestrial
mammals

polar bears (Ursus
maritimus) Helicopter

Real-time
surveys, no

sensors

No
imagery 263 100 [37]

polar bears (Ursus
maritimus)

Bell 206
LongRanger
(helicopter)

Real-time
surveys, no

sensors

No
imagery ~6000 ~120 [18]

buffalos (Syncerus caffer),
elands (Taurotragus oryx),

elephants (Loxodonta
africana), and giraffes
(Giraffa camelopardalis)

Cessna 182 or
185 aircraft

(fixed-wing aircraft)

Real-time
surveys, no

sensors

No
imagery <10,000 Not

mentioned [41]

pronghorns (Antilocapra
americana)

Maule 5 (fixed-wing
aircraft)

Real-time
surveys, no

sensors

No
imagery ~60 91.4 [2]

red kangaroos (Megaleia
rufa), grey kangaroos

(Macropus giganteus) and
sheep

Cessna 182
(fixed-wing aircraft)

Real-time
surveys, no

sensors

No
imagery 136 46–183 [91]

buffalos, giraffes, elands
and

waterbucks, elephants,
impalas, ostriches, cattle,

goats and
sheep

Cessna 185 or
Partinevia

(fixed-wing,
high-wing aircraft)

Real-time
surveys, no

sensors

No
imagery 6000 90–120 [17]

red deer (Cervus elaphus),
fallow deer

(Dama dama), roe deer
(Capreolus capreolus), wild

boar (Sus scrofa), foxes,
wolves and badgers

Microlight S–Stol
(fixed-wing,

electric)

A JENOPTIC@

infrared camera
and a Canon 5D

Mark 2

Infrared
videos and

RGB
images

4 450 [76]
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Table 4. Cont.

Group Species or Items Detected Platforms Sensors Data Type
Surveyed

Area
(km2)

Flight
Height

(m)
Study

Aquatic
and

amphibious
animals

lemon
sharks (Negaprion

brevirostris)

A Cessna 172, a
Beechcraft 35

Bonanza, a Piper
Pa-28 Archer, and a

Piper PA-31-350
Navajo

Chieftain
(fixed-wing, low
winged aircraft)

Real-time
surveys, no

sensors

No
imagery ~100 100 m [38]

humpback whales
(Megaptera novaeangliae)

Mitsubishi
Marquese

(fixed-wing, flat
window aircraft)

Real-time
surveys, no

sensors

No
imagery 1180 152.4 m [39]

dugongs (Dugong dugon),
dolphins, and sea turtles

(Chelonia mydas)

Partenavia 68B
(fixed-wing,

high-wing aircraft)

Real-time
surveys, no

sensors

No
imagery ~120 137–274 [40]

sea turtles, sharks, manta
rays, small delphinids, and

large delphinids

Early surveys
(1963–1965) used
helicopters (e.g.,

Sikorsky SH-
3 SeaKing), and

later surveys
(1975–2012) used

4-seat single engine
fixed-wing

airplanes (e.g.,
Cessna 172
Skyhawk)

Real-time
surveys, no

sensors

No
imagery 70.16 92–200 [42]

Pacific walrus (Odobenus
rosmarus
divergens)

Aero Commander
690B (fixed-wing,

high-wing aircraft)

Daedelus
Airborne

Multispectral
Scanner (AMS)
and Nikon D1X
digital camera

Thermal
infrared
images

and RGB
images

~11,398.5 457–3200 [74]

Flying
organisms
and insects

greater flamingo
(Phoenicopterus roseus) Not mentioned

35 mm film
or digital (5 M
pixels) reflex

cameras

RGB
images

Not
mentioned 300 [71]

lesser snow geese (Chen
caerulescens) Not mentioned

DSS 439
39-megapixel
aerial camera

RGB
images

Not
mentioned

Not
mentioned [72]

common scoter (Melanitta
nigra), great cormorant

(Phalacrocorax carbo), diver
species group (Gavia sp.),

Sandwich tern (Sterna
sandvicensis), Manx

shearwater (Puffinus
puffinus)

Twin-engine Cessna
402B and Cessna
404 (fixed-wing

aircraft)

Vexcel’s
UltraCAM-D

and
UltraCAM-XP

RGB
images 670 475 [73]

3.4.3. UAS Surveys

Since Anderson and Gaston [19] published a review on the ecological applications of drones,
several broad-ranging literature review papers on the wild animal applications of drones have been
published [1,20,21]. More recently, published review papers on the wild animal applications of
drones have focused on specific niches, such as marine mammals [22]. UASs have been seen as a
safer and low-budget alternative to manned aircraft for surveying terrestrial mammals. Most UAS
studies have focused on assessing the possibilities of species detection, detection probabilities, and
analyzing influencing factors [50] rather than monitoring large areas [1], which is likely because the UAS
application field is still in its infancy. In many countries, aviation regulations inhibit many high-altitude,
long-range, and beyond-line-of-sight (BLOS) UAS operations [49], which has stunted progress in
larger fixed-wing applications. Additionally, de-icing technology has stunted UAS operations in polar
regions or at high altitudes where icing is a big issue. Other technical limitations include the short
endurance time of batteries and the low flight reliability of UASs.
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The surveyed terrestrial mammals include roe deer, foxes [77], orangutans [45], African
elephants [43], wild rabbits [94], wildebeests [95], elephants, poachers [44], koalas, deer, kangaroos [62],
red deer, roe deer, and wild boar [52]. UASs have also been widely used to survey aquatic and
amphibious animals because of their hard-to-access habitats, which are hazardous to manned aircraft
and pilots [20]. Early detections of American alligators (Alligator mississippiensis), white ibises
(Eudocimus albus), other white wading birds, and Florida manatees (Trichechus manatus) were reported
by Jones et al. [58]. In addition to live animals, 4 life-size foam alligator decoys were used to test
the performance of a small UAS for recognizing large to midsize vertebrates. Because these species
typically live in or near water, it is almost impossible to detect all individuals at one time. Recently,
published studies have also focused on assessing the sighting rate of using UASs to detect species,
such as dugongs [51], turtles [42], and humpback whales [50]. Due to their ability to noninvasively
collect very high-resolution aerial data, UASs have also been used to investigate the quantity, colony
area, and density of species (including gentoo penguins, chinstrap penguins [57], sharks and rays [55]),
assess the body size and condition of humpback whales [46], and study the movement of iguanas [65].
Birds and insects have also been subjects of UAS surveys. Because flying organisms tend to be highly
sensitive to investigators, the use of UASs is considered a convenient method to access their habitats
(e.g., dense forests, wetlands, and islands). The early assessment of the possibility of surveying various
bird species, including white ibises and other white wading birds, using UAS imagery was reported by
Jones et al. [58]. Light and small UASs also have advantages over ground surveys or conventional
aerial surveys in monitoring bird colonies and locating nests. Sarda-palomera et al. [82] reported the
use of a Multiplex Twin Star II, a small electric fixed-wing UAS, to monitor temporal changes in the
breeding population size of a black-headed gull colony in Catalonia, northeastern Spain, and obtained
disturbance-free georeferenced data on nest locations. Hodgson et al. [54] used a 3D robotics X8 electric
octocopter to monitor the breeding of lesser frigatebirds and crested terns and the molting of royal
penguins in tropical and polar environments. Another study focused on the use of UASs to detect
insects, i.e., the butterfly species Libythea celtis [56].

Figure 3 shows UAS photos of four species: Elephants, lesser frigatebirds, fur seals, and royal
penguins. Table 5 summarizes the animal species surveyed using UASs.
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Figure 3. UAS imagery of wild animals: (a) Elephants in the Nazinga Game Ranch in the south
of Burkina Faso [43], (b) breeding lesser frigatebirds (Fregata ariel) in the tropical Ashmore Reef
Commonwealth Marine Reserve and on the nearby Adele Island, Western Australia [54], (c) fur
seals [57], and (d) molting royal penguins (Eudyptes schlegeli) on the subantarctic Macquarie Island,
Australia [54]. These studies demonstrate that using UAS technology can significantly improve the
efficiency and precision of surveying hard-to-reach wild animal populations and places compared with
using traditional ground-based methods.
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Table 5. Detected animal species and employed unmanned aerial systems (UASs) determined via a literature review.

Group Species or Items Detected UAS Model (Type of UAS) Sensor Data Type Surveyed
Area (km2)

Flight
Height (m) Study

Terrestrial
mammals

roe deer (Capreolus pygargus) Falcon-8 (fixed-wing, electric) FLIR Tau640 thermal imaging camera Thermal image 0.71 30–50 [77]
elephants (Loxodonta africana) Gatewing 100 (fixed-wing, electric) Ricoh GR3 still camera RGB image 13.79 100–600 [43]

cows (Bos taurus) Custom-made 750 mm carbon-folding
Y6-multirotor (hexacopter, electric) FLIR Tau 2 LWIR thermal imaging camera Thermal image <1.0 * 80–120 [96]

koalas (Phascolarctos cinerus) S800 EVO (hexacopter, electric) Mobius RGB Camera +FLIR Tau 2-640 thermal
imaging camera

RGB video +
thermal video 0.01 * 20–60 [62]

red deer (Cervus elaphus), roe deer
(Capreolus capreolus), and wild boar

(Sus scrofa)
Skywalker X8 (fixed-wing, electric) IRMOD v640 thermal imaging camera Video ~1.0 * 149~150 [52]

Aquatic and
amphibious

animals

dugongs (Dugong dugon) ScanEagle (fixed-wing, fuel) Nikon D90 SLR camera + fixed
video camera

RGB image+ RGB
video 1.3 152–304 [51]

American alligators (Alligator
mississippiensis) and Florida manatees

(Trichechus manatus)

1.5-m wingspan MLB FoldBat (fixed-wing,
fuel) Canon Elura 2 RGB video 1.3 100–150 [58]

leopard seals (Hydrurga leptonyx) APH-22 (hexacopter, electric) Olympus E-P1 RGB image <1.0 * 45 [57]
humpback whales (Megaptera novaeangliae) ScanEagle (fixed-wing, fuel) Nikon D90 12 megapixel digital SLR camera RGB image 35.2 * 732 [50]

blacktip reef sharks (Carcharhinus
melanopterus) and pink whiprays

(Himantura fai)
DJI Phantom 2 (quadcopter, electric) GoPro Hero 3 RGB video 0.0288 12 [55]

gray seals (Halichoerus grypus) senseFly eBee (fixed-wing, electric) Canon S110+ FLIR Tau 2-640 thermal imaging
camera

RGB image +
thermal image 0.16 * 250 [53]

Flying organisms
and insects

white ibises (Eudocimus albus) 1.5-m wingspan MLB FoldBat (fixed-wing,
fuel) Canon Elura 2 RGB video 1.3 100–150 [58]

black-headed gulls (Chroicocephalus
ridibundus)

Multiplex Twin Star II model (fixed-wing,
electric) Panasonic Lumix FT-1 RGB image 0.0558 30–40 [82]

frigatebirds (Fregata ariel), crested terns
(Thalasseus bergii), and royal penguins

(Eudyptes schlegeli)
3D Robotics (octocopter, electric) Canon EOS M RGB image <1.0 * 75 [54]

gentoo penguins (Pygoscelis papua) and
chinstrap penguins (Pygoscelis antarctica) APH-22 (hexacopter, electric) Olympus E-P1 RGB image <1.0 * 45 [57]

canvasbacks (Aythya valisineria),
western/Clark’s grebes (Aechmophorus
occidentalis/clarkii), and double-crested

cormorants (Phalacrocorax auritus)

Honeywell RQ-16 T-Hawk (hexacopter,
fuel) and AeroVironment RQ-11A

(fixed-wing, electric)

Canon PowerShot SX230, SX260, GoPro Hero3,
and Canon PowerShot S100 RGB image <1.0 * 45–76 [11]

butterflies (Libythea celtis) Phantom 2 Vision+ (quadcopter, electric) GoPro Hero3 RGB image 0.000016 4 [56]

Bicknell’s and Swainson’s thrushes (C.
ustulatus) Sky Hero Spyder X8 (octocopter, electric)

Radio transmitter
(Avian NanoTag model NTQB-4-2, Lotek
Wireless Inc., Newmarket, Ont., Canada)

Radio-tracking
data <1.0 * 50 [64]

noisy miners (Manorina Melanocephala) Unmentioned
(hexacopter, electric)

Radio transmitter
(Avian NanoTag model NTQB-4-2, Lotek
Wireless Inc., Newmarket, Ont., Canada)

Radio-tracking
data <1.0 * 50 [48]

* indicates values estimated from the studies.
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3.5. Pixel Number of Target Species in Imagery

The determination of the optimal pixel number of each animal in remote sensing imagery for wild
animal surveys is difficult and becomes more complex when several species of different sizes are of
interest. The optimal pixel number for species detection is mainly dependent on the body size and
the contrast between the target organisms and the landscapes. The other influencing factors include
image quality, possible confounding features, safe flight altitude, and cloud height (for aerial imagery).
According to the Nyquist-Shannon sampling theorem [97], an object must occupy two or more pixels
to be detected in the imagery. Nevertheless, more pixels raise the detection certainty, especially when
several species need to be distinguished and the objects have a low color contrast with the landscape.

3.5.1. Spaceborne Surveys

Large-sized (≥0.6 m) individual animals typically cover one or more pixels in VHR satellite
imagery (0.31–1 m resolution), depending on the animal size and image resolution. For example, adult
wildebeests and zebras have head-and-body lengths of 1.5 to 2.5 m and 2.2 to 2.5 m, respectively,
which results in image objects 3 to 4 pixels long and 1 to 2 pixels wide in a pansharpened GeoEye-1
image [29]. The average length and width of an adult female seal is 2.4 m and 1.4 m, respectively, so
seals occupy 4–6 pixels in a pansharpened GeoEye-1 image [69,89]. An adult polar bear with a body
length of 2–2.5 m occupies 4–5 pixels in a pansharpened GeoEye-1 image [31]. Submeter VHR satellite
imagery has also been used for estimating the populations of animals that are colonial or congregate in
herds, such as penguins [67]. Although emperor penguins appear as one or more pixels (when they
group into close clusters) in the 0.6 m-resolution QuickBird imagery, the population of each colony can
be estimated by constructing a regression between the area of these animals in the VHR images and
the field-collected population numbers for each site [67].

3.5.2. UAS Surveys

We also investigated the pixel numbers of wild animals in UAS imagery and found that most
animals cover 22–79 pixels (Figure 4). For example, Israel [77] found theoretically that a maximum
flying altitude of 166 m can detect a fawn (roe deer) in a meadow using the FLIR Tau640 thermal
camera (two pixels for each fawn), but that a flight altitude of 30 m (at which a fawn is approximately
22 pixels in length) should be used to avoid missing fawns, to ensure satisfactory illumination, and to
minimize the impact of weather conditions. Some very large animals, such as elephants and leopard
seals, cover over 100 pixels. This variation is partly because UASs must strike a balance between image
resolution and other factors, such as a safe flight altitude, cloud height, and cover efficiency. Generally,
flying at higher altitudes increases the transect strip width, but also increases the risk of encountering
clouds and reduces the image resolution and detection certainty [50,51]. Many studies have used UASs
to detect animals, but only a few studies have discriminated between several species, which requires
more pixels [54,57]. Dulava et al. [11] reported that a minimum pixel resolution of approximately
5 mm was necessary to identify most waterbird species, such as the canvasback, meaning that each
bird covers approximately 96 pixels in length in UAS images.

Manned aerial imagery and UAS imagery are similar in terms of their image resolution and flight
height. The pixel number of wild animals in manned aerial imagery was not investigated.
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Figure 4. Pixel number of target species in UAS images. The pixel number, N, is estimated by
N = Length/GSD, where Length represents the body length of the target adult animal and GSD represents
the ground sample distance of the UAS images. The body lengths of the target adult animals were
collected or estimated from the corresponding references.

3.6. Automatic and Semiautomatic Algorithms for Wild Animal Surveys

Manually counting animals from remote sensing imagery collected from satellites [30,34,68,69,89],
manned aircraft [17,36,37,39,92], and UASs [43,58] has been performed with a high degree of accuracy
and reliability for over half a century [35,69]. However, manual reviews of remote sensing imagery by
inspectors or the direct observation of animals from aircraft are time consuming and subjective [1,2].
With the resolution improvement of remote sensing imagery and advancements in computer
technologies, researchers have developed various automatic and semiautomated counting algorithms
for detecting and counting wild animals in remote sensing imagery [3,71–73]. Although automatic
and semiautomated counting algorithms have remarkable advantages in terms of dataset processing
speed, most such studies have focused on only a few remote sensing images (usually covering only
a few square kilometers) in relatively homogenous environments [23,32]. In general, pixel-based
image analysis and object-based image analysis are the two main image classification techniques used
in remote sensing. Supervised and unsupervised classification is pixel-based and creates a map in
which each pixel is assigned to a class based on spectral information. Supervised classification uses
known objects to train the algorithms and may return many errors of commission. Unsupervised
classification uses statistical algorithms to group pixels based on spectral information, identifying
objects with limited user inputs, and thus may result in no meaningful results [32]. Object-based image
classification has been used more recently for high-resolution data in which each target covers multiple
pixels [72]. It uses multiresolution segmentation or segment mean shifts to produce homogenous
image objects with different scales by grouping pixels. These objects can then be analyzed in elaborate
ways based on a large variety of spatial, spectral, and textural attributes.

3.6.1. Pixel-Based Methods

Pixel-based methods, such as supervised classification, unsupervised classification, and
thresholding, are the simplest and most common methods for detecting animals from spaceborne
imagery because even large animals cover only single to several pixels in VHR spaceborne imagery,
and object-based image classification is less useful for producing homogenous image objects in
spaceborne imagery [32,53,71]. Fretwell et al. [32] reported that a simple thresholding technique for
the panchromatic and coastal (400 nm–450 nm) bands of the WorldView-2 satellite generates better
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results in counting southern right whales than three other supervised and unsupervised classification
methods and found 84.6% of all manually digitized whales and 89% of the objects manually classed as
probable whales, with 23.7% false positives. Descamps et al. [71] developed an unsupervised model
for detecting greater flamingos in aerial images by fitting birds into bright ellipses surrounded by a
darker background and delivered counts with good precision compared to manual counts by an expert
(5% difference). Some studies also found that simple threshold-based methods remain adequate for
detecting animals in low-resolution UAS thermal and RGB imagery. Seymour et al. [53] constructed
a threshold-based seal detection model in the ArcGIS model builder programming environment
to automatically detect and count gray seals in UAS thermal imagery, and the automated counts
were 95–98% similar to the human estimates. Gonzalez et al. [62] developed an algorithm that used
threshold segmentation and template matching technologies to count and track koalas and deer in
UAS RGB and thermal videos. Thresholding and unsupervised classification algorithms were also
developed to detect and count chickens in agricultural fields from thermal imagery to reduce the
animal mortality caused by agricultural machinery [94] and to identify black-faced spoonbills (Platalea
minor) in UAS RGB imagery to support an upcoming annual international black-faced spoonbill
census [98]. Although the thresholding method performs adequately when the targets have similar
gray values and are significantly different from their background, it is less accurate in more complex
areas. Thresholding also requires users to identify thresholds. Yang et al. [29] used a hybrid image
classification method that combines pixel-based and object-based image classification approaches to
detect and count wildebeests and zebras in a GeoEye-1 satellite image of open savanna and generated
good results with an average count error of 8.2%, omission error of 6.6% and commission error of
13.7%. The hybrid method first applied a pixel-based image classification method, i.e., an artificial
neural network (ANN), to classify potential targets with similar spectral reflectance values at the pixel
level. An object-based image classification method was then used to further differentiate animal targets
from the surrounding landscapes. However, the method requires the input of a number of parameters
and is therefore subjective and labor-intensive. Xue et al. [66] developed a semisupervised object-based
method that combined a wavelet algorithm and an adaptive-network-based fuzzy neural network
(ANFIS) to detect and count wildebeests and zebras in a single VHR GeoEye-1 panchromatic image of
open savanna. The ANFIS, combining machine learning and a fuzzy system, can not only use existing
expert knowledge, but also learn from data and is thus efficient and stable. The accuracy of the method
is significantly higher than that of the traditional threshold-based method (0.79 vs. 0.58), which uses
only gray value thresholding as a simple image segmentation method to divide an image into objects
and background.

3.6.2. Object-Based Methods and Machine Learning

Aerial imagery collected from manned aircraft and UASs typically have a higher resolution than
satellites, and each target animal covers more pixels (most animals cover 22–79 pixels on UAS imagery).
Therefore, it is possible to use more features, including texture and shape features, to develop more
complex and robust automatic counting algorithms, such as object-based algorithms [72] and machine
learning [44,95,96], to detect animals in more complex environments. Chabot et al. [72] developed a
systematic, repeatable approach using a commercial remote sensing image analysis program, ENVI
5.3 (Exelis Visual Information Solutions, Boulder, CO, USA), bundled with the OBIA-capable Feature
Extraction module and the Interactive Data Language (IDL) programming application, to detect and
count lesser snow geese (Chen caerulescens) in the Canadian Arctic in large numbers of manned aerial
images at 4- and 5-cm resolutions (totaling 290 files and 234 GB) covering a variety of landscapes,
numerous confounding features, and varying illumination conditions and exposure levels. Compared
to manual counts, the object-based approach produced overall accurate estimates of goose numbers
(R2 = 0.998, regression coefficient = 0.974) in 41 test images drawn from several breeding colonies. Torney
et al. [95] developed an automatic counting method that uses rotation-invariant object descriptors
combined with machine learning algorithms to detect and count wildebeests in aerial images collected
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in the Serengeti National Park. The results showed that the per image error rates were greater than,
but comparable to, two separate human counts. For the total count, the algorithm was more accurate
than both manual counts, suggesting that human counters have a tendency to systematically over- or
undercount images, and the recognition accuracy was 74.15%. Olivares-Mendez et al. [44] developed
a UAS that uses vision sensors to detect and track elephants and poachers automatically. In the
research, a low-dimensional subspace representation scheme was applied to model 3D animals. An
online incremental learning approach was utilized as an effective technique for learning/updating
the appearance of a 3D animal. A particle filter and hierarchical tracking strategy were employed
to estimate the motion model of a 3D animal. Christiansen et al. [94] developed a thermal feature
extraction algorithm that used the discrete cosine transform to parameterize the thermal signature and
a k-nearest-neighbor (kNN) classifier to automatically discriminate wild rabbits and chickens from
nonanimals. The classification accuracy was 93.3% at an altitude range of 3–10 m. Longmore et al. [96]
developed a UAS that could detect cows in thermal images based on astronomical detection software
with machine learning algorithms. The average detection accuracy at low altitudes (<80 m) was
70%, with a scatter of approximately 10%, depending on variations in the background levels. Rey
et al. [3] proposed a semiautomated data-driven active learning system jointly based on an object
proposal strategy with an ensemble of exemplar support vector machine (EESVM) models to detect
large mammals, including common elands (Taurotragus oryx), greater kudus (Tragelaphus strepsiceros),
and gemsboks (Oryx gazella), in the semiarid African savanna from 6500 RGB UAS images, achieving
a recall rate of 75% for a precision of 10%. The data-driven system was trained with crowd-sourced
annotations provided by volunteers.

3.6.3. Deep Learning

Over the last several years, the machine learning community has realized that deep learning
can learn functions that traditional shallower machine learning models, such as ANN [29], are often
unable to. Major breakthroughs in deep learning have been made, and this technique has become
an extremely powerful tool for use in processing large remote sensing data sets [99]. The significant
difference between deep learning and classic visual recognition methods is that deep learning methods
automatically learn hierarchical features from a huge amount of data rather than requiring the
engineering of features by hand. Convolutional neural networks (CNNs), a recent family of deep
learning algorithms, normally have more than one hidden layer; thus, they are able to extract more
useful feature representations from a large number of input images for object detection and have been
used in detecting large mammals in large datasets with a higher accuracy than those of traditional
machine learning algorithms, such as EESVM (80% correct detections for a precision of 30% [100]
vs. 75% correct detections for a precision of 10% [3]). However, extremely large training datasets
are needed when applying deep learning, and it is a black-box solution; consequently, the trained
models are unexplainable [99]. These issues are controversial within the remote sensing community.
Furthermore, it is difficult to obtain a practical balance between recall rates and false positives when
using deep learning [100].

Overall, the current automatic detection algorithms are rudimentary and cannot easily outperform
human counts in most cases. Automated counting can be used as a first-pass count [100] or a
method of assessing the performance of amateurs [95]. The use of semiautomated counting methods,
i.e., automated counting methods in combination with manual counting results, would be an ideal
application of the method.

3.7. Accuracy of Remote Sensing-Based Counts

As mentioned above, the automated and semiautomatic counts of animals in remote sensing
imagery are usually highly correlated with manual counts when these algorithms are applied
to small areas in relatively homogenous environments [25,34], achieving an overall accuracy of
>70% [32,44,72,95,96]. However, the recognition accuracy dramatically decreases as the survey
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area, species and environmental complexity increase [95,96]. This trend is true even when using
state-of-the-art models, such as CNNs. Recent works on the detection of large mammals in a large
mammal reserve show that, at a recall rate of 80%, at least 3–20 false positives should be expected for
each true positive [3,100].

Manual counts of animals derived from different remote sensing imagery and ground-based
counts collected within a short time interval are also reported to be highly correlated. The numbers of
seals manually recognized from pansharpened GeoEye-1 images and ground counts show a significant
relationship (R2 = 0.9062) [69]. The estimate of polar bears counted from WorldView-1/2 and Quickbird
imagery (N: 94; 95% confidence interval: 92–105) was remarkably similar to an abundance estimate
derived from a line transect aerial survey conducted a few days earlier (N: 102; 95% confidence interval:
69–152) [30]. LaRue et al. [35] reported a strong, positive correlation (r = 0.98, df = 3, P < 0.003) between
the ground counts of seals and counts derived from the Quickbird-2 and WorldView-1 images at
overlapping locations within Erebus Bay at the same time. However, intrinsic (e.g., group size and
animal activity) and extrinsic factors (e.g., lighting conditions, occlusion, flight speeds, image quality,
vegetation composition and structure) are likely to contribute to the failure to detect all animals within
the surveyed areas [2]. Therefore, remote sensing-based counts, including those derived from real-time
aerial survey technology [40,91], often underestimate animal populations, especially for animals living
in high-vegetation areas [36,62] and aquatic environments [42,50,51], but employing high-resolution
imagery and additional observers [2] increases the detection probability [11].

4. Discussion

This paper has provided a brief overview of wild animal surveys based on spaceborne, manned
aerial, and UAS data to date, and it lists the platforms, sensors, data, surveyed species, animal
detection methods, and detection accuracies. The capabilities and limitations of each type of data are
also discussed.

4.1. Spaceborne Surveys

Low-spatial resolution spaceborne imagery has primarily been used for characterizing and
assessing changes in wild animal habitats, and VHR satellite imagery has been used only for directly
monitoring large-sized (>0.6 m) individual animals, such as wildebeests, zebras [29], and southern
right whales [33], or estimating the populations of animals that are colonial or congregate in groups,
such as penguins [67]. Notably, most previous VHR surveys have used 0.4-1-m-resolution imagery
(e.g., GeoEye-1, WorldView-2, Quickbird-2, and IKONOS). To date, only a limited number of studies
have used the higher-resolution WorldView-3 data (e.g., Fretwell, et al. [32] and Cubaynes, et al. [34]).
Satellite imagery offers several potential advantages over aerial imagery collected using manned aircraft
or UASs, including larger geographic coverage (e.g., global) and regular data collection. Satellite
imagery has the potential for modeling past, present, and future populations of large-sized wild
animals. Satellite surveys require little regulation or logistical effort, are safe and do not disturb the
target animals. With the continuous improvement of the satellite imagery resolution in the future,
it will be possible to monitor more species from space. Although revisit times may improve with
additional satellite launches, satellite imagery will not entirely replace conventional aerial surveys
in the near future because of the significantly lower resolution [68]. Even for the highest resolution
satellite imagery, such as WorldView-3 and -4 (0.3 m), the resolution is still not sufficient to discern
small-sized (<0.6 m) animals [29] at the species level. According to the Nyquist-Shannon sampling
theorem [97], an animal must occupy two or more pixels in the imagery to avoid information loss.
Target animals that occupy only 1–2 pixels in the VHR imagery cannot be discerned as being different
species, especially when the target species have similar colors and body sizes. In addition, open habitat
landscapes and high color contrasts between the target organisms and the landscape are necessary for
using VHR imagery in the estimation of animal abundance [12].
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4.2. Manned Aerial Surveys

Manned aerial surveys of wild animals including real-time and photography-based methods
have been routinely used to study wild animals for decades [23,37,39,70,73]. Aerial imagery can be
collected with significantly higher spatial resolutions (up to 2.5 cm) than those of satellite imagery [23],
which allows one to directly survey smaller (<0.6 m) animals, such as birds [70], sea turtles, and
fish [42]. Manned aerial vehicles typically have a longer endurance time than do UASs, thus allowing
large-scale wild animal surveys. Although manned aerial survey protocols are more mature and have
been refined over decades by continual use, they are expensive and risky to implement. Moreover,
large manned aerial vehicles sometimes cause significant disturbances to wild animal behavior because
of the associated noise. Therefore, they have increasingly been replaced by UAS surveys [1,43].

4.3. UAS Surveys

As a new remote sensing method, UASs can easily access areas that are either impossible or very
dangerous for humans or manned aircraft to enter; therefore, the line transect setting is less restricted by
natural conditions, such as rivers and steep mountains. The use of UASs not only has ensured the safety
of researchers and improved the reliability of results, but also has the potential to reduce disturbances
of the target species [56]. As the use of UASs increases, the cost will further decrease; advances in
UASs and sensors may lead to richer wild animal data and results that are more accurate than those
of human surveys. Therefore, the potential for collecting unprecedented amounts of data on wild
animal population distributions, abundances, behavior and habitat use will increase [50]. However,
the UAS data acquisition efficiency is severely hampered by the short endurance and limited sensor
resolution (both of which impact the coverage area). Among the studies, only two conducted surveys
of geographic areas larger than 2.0 km2, with a maximum area of 35.2 km2 (surveying humpback
whales). In addition, many authors expressed understandable concern over legislation regulating the
use of UASs. In most countries, UASs are not permitted to fly out of sight of the operator or close to
densely populated areas unless specific permission has been given [49]. The existing UAS operation
regulations, national privacy and data protection rules are rigidly applied to the data captured by
both civil and military UASs. These rules have hindered the application of civilian UASs for wild
animal surveys. Fortunately, some countries have recently made positive efforts in terms of legislation.
The South African Civil Aviation Authority (SACAA) has drafted a regulation indicating that flights
can be performed as long as they are conducted over wild animal areas with low manned aircraft
activity and are not close to registered active airfields [101]. The regulation will mean that wild animal
surveys using UASs can be carried out more quickly with less bureaucracy. The USA Federal Aviation
Administration (FAA) passed the small unmanned aircraft rule (part 107) in 2016, which raised the
“blanket” altitude authorization for Section 333 exemption for aircraft weighing less than 55 pounds
and for government aircraft operators to 400 feet from 200 feet [49]. The move has significantly reduced
the workload for airspace applications and made UAS surveys of wild animals easier as well. The USA
has also created six test sites to begin integrating UASs in civil airspace, and civil safety agencies are
allowed to use these sites [1]. China has also opened civil airspace at thirteen sites located all over the
country where researchers can use civilian UASs without permits [102]. A safe operation manual for
lightweight UASs has been provided to support scientific research in the UK [103]. UAS users in many
countries may not know where or how to apply for permits, and applying for permits may also be
costly and time consuming. Many UAS experiments have thus been delayed or have had to be carried
out without permission. Recently, government apps (e.g., “Can I fly there?” in Australia) have been
developed to provide readily accessible airspace information to everyone. Although such flexibility
significantly facilitates the activities of researchers and helps legislation take a positive path, airspace
applications should be simplified, or exemptions should be developed, especially for applications that
are obviously not considered to be a risk to national and human security, such as wild animal surveys
in remote or sparsely inhabited regions. The authors believe that these problems could be overcome
in the near future. UAS remote sensing will serve as a more effective alternative to manned aircraft
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for aerial and ground-based wild animal surveys and will provide technical support for the dynamic
monitoring of small-scale wild animal populations.

5. Perspectives

The use of multiresolution spaceborne imagery has shown potential in global, synoptic surveys of
species, as Fretwell et al. demonstrated with Landsat TM and QuickBird satellite images for surveying
emperor penguins [67]. Similarly, the data fusion of the fine spatial resolution UAS data, the broad
spatial coverage of VHR spaceborne imagery and high temporal resolution of animal movement data
collected via GPS tracking technologies [104] will provide critical data in monitoring wild animals over
large areas. Data fusion is particularly attractive for understanding the dynamics of some large wild
animal species, such as elephants and wildebeests, especially when multiple target species are surveyed.
Spaceborne remote sensing has the unique advantage of assessing the dynamics of wild animals
and their habitats. The numbers of large animals or colonies can roughly be estimated from VHR
satellite imagery, such as QuickBird and WorldView. Although higher-spectral, -temporal and -spatial
resolution imagery collected by satellites (e.g., those from the Digital Globe Legion) will improve
our ability to detect small animals and should continue to receive attention, it is almost impossible
to detect juvenile individuals and capture the details of small-sized species in satellite imagery, even
if the resolution greatly improves in the future. UASs can offer scientists fine-resolution data for
colony-scale wild animal surveys at user-controlled revisit periods. The proposed use of large-sized
animals or their colony numbers roughly estimated from spaceborne images and the wild animal
population structure precisely extracted from UAS images at each colony in combination with animal
movement data not only will allow us to assess animal populations with higher accuracy, but also
can be used in modeling past, present, and future resource suitability. As an attempt, Toor et al. [104]
built a data-driven framework to map resource suitability related to the foraging of white storks
(Ciconia ciconia) by using multitemporal Landsat data and white stork movement data collected using
GPS tracking devices. This fusion technique will also be helpful for estimating the populations of
free-grazing livestock and other large wild herbivores, which is essential for many applications, such
as the estimation of the forage-livestock balance.

The manual reviewing of remote sensing imagery collected from satellites, manned aircraft, and
UASs by inspectors is costly, time consuming and subjective [1,2]. Previous studies have attempted to
develop reliable algorithms to automatically detect, count and track animals to replace human observers
in the field [3,44,62]. However, most of the algorithms are pixel-based or object-based and have been
applied to only small areas or a few images. Deep learning algorithms are able to automatically learn
hierarchical features from a huge amount of data and have shown higher reliability and superior
performance in detecting animals than do traditional machine learning algorithms [100]. The models
used are mainly common CNNs [7,100], and the accuracy of animal recognition and classification
is still low when these models are applied to large datasets [100,105]. Active learning and transfer
learning technologies can be utilized to enhance a CNN’s performance incrementally, as proposed by
Norouzzadeh et al. [7]. The detection speed can be improved via the use of the latest-developed deep
learning architectures, such as Faster RCNN [105,106]. The body sizes of target animals can be extracted
from the mask polygons generated by Mask RCNN [107]. An alternative approach for quickly counting
animals in remote sensing imagery is to recruit volunteers and use crowdsourcing platforms to tag
animals in various remote sensing imagery, and these human classifications can be used to help train
deep learning models to perform better in the future [3,23]. Existing open crowdsourcing platforms
include Geo-Wiki (which allows citizens to provide feedback on existing information overlaid on
satellite imagery or by contributing entirely new data, http://www.geo-wiki.org/), Penguin Watch
(which enables citizens to tag penguins in aerial or camera-trap imagery, https://www.zooniverse.org),
MicroMappers (https://micromappers.wordpress.com/) [3], and Amazon Mechanical Turk (which
enables individuals and companies to outsource processes and jobs to a distributed workforce that can

http://www.geo-wiki.org/
https://www.zooniverse.org
https://micromappers.wordpress.com/
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perform these tasks virtually, https://www.mturk.com/). The use of automated methods in combination
with manual methods would improve the efficiency of wild animal surveys.

Accessing various remote sensing data is becoming cheaper and easier, but limited data collection
and analytical expertise have limited the wider use of the data in animal surveys [108]. Future ecologists
are advised to develop expertise in data collection and processing to avoid costly delays, inaccurate
data collection and processing. Data collection and processing manuals, including the determination
of platforms, sensors, flight altitudes and transects, should also be specifically developed for different
species to survey target species with the desired accuracy while maximizing the sampling area. The
existing ground-based technical manuals for terrestrial wild animal surveys [109] provide a valuable
reference for UAS and VHR data collection, including transect design and population estimation theory.
However, detecting different sized species requires different imaging systems and image resolutions.
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