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Abstract: Cycle slip detection and repair are crucial for precise GPS-derived orbit determination
of the low-Earth orbit (LEO) satellites. We present a new approach to detect and repair cycle slips
for dual-frequency LEO satellite GPS observations. According to Newton’s equation of motion, the
second-order time difference of the LEO satellite’s position (STP) is only related to the sampling
interval and the satellite’s acceleration, which can be precisely obtained from the known orbit dynamic
models. Then, several kinds of second-order time-difference geometry-free (STG) phase combinations,
taking full advantage of the correlation between the satellite orbit variations and the dynamic model,
with different level of ionospheric residuals, are proposed and adopted together to detect and fix cycle
slips. The STG approach is tested with some LEO satellite GPS datasets. Results show that it is an
effective cycle slip detection and repair method for LEO satellite GPS observations. This method also
has some important features. Firstly, the STG combination is almost independent of the pseudorange.
Secondly, this method is effective for LEO satellites, even in real-time application. Thirdly, this method
is suitable for ground-based GPS receivers if we know the acceleration of the receivers.

Keywords: cycle slip detection; second-order time difference; ionospheric-free liner combination;
geometry-free liner combination; LEO satellite

1. Introduction

As GPS carrier phase observations are much more accurate than pseudorange observations, carrier
phase measurements are usually used as observations for the precise GPS-derived orbit determination
of low-Earth orbit (LEO) satellites [1–5]. Compared to ground GPS data, due to the high-speed motion
and complicated observation environment of LEO satellites, cycle slips occur frequently in LEO satellite
GPS carrier phase data, which are undesirable and must be detected and repaired correctly to maintain
the continuity of GPS carrier phase observations.

The difficulties of cycle slip detection are as follows: (i) the geometric distance between receiver
and satellite varies greatly; (ii) the ionospheric delay varies quickly. How to eliminate the influence of
geometric distance and ionospheric delay, and construct an effective quantity that is sensitive to the
cycle slips is the key point of cycle slip detection. In the past, a variety of cycle slip detection methods
for dual-frequency GPS signals were proposed. According to the strategy to eliminate the geometric
distance, these methods can be divided into two categories, described below.

The first category encompasses linear combination methods, where the linear combinations of
observations at different frequencies are formed to eliminate the geometric distance, including the
Hatch–Melbourne–Wübbena (HMW) combination [6–8] and the geometry-free phase combination [9].
The HMW combination is widely used to detect cycle slips for dual-frequency GPS data of both static
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and kinematic receivers. However, this method is not suitable for data with the same size of cycle
slips on both L1 and L2 frequencies. In order to detect all potential cycle slips, a complementary
method must be adopted, such as the traditional TurboEdit method [10]. However, TurboEdit may fail
to detect small cycle slips of 1–2 cycles due to the large pseudorange noise [11]. The geometry-free
phase combination is also usually used to detect cycle slips along with the HMW combination. This
combination, however, contains ionospheric residuals and has a wavelength of only 5.4 cm for cycle
slips, which is only effective for the cases when the ionosphere is stable. Some modifications of the
phase combination with different techniques were also proposed, such as polynomial fitting [12,13],
Kalman filter [14–16], higher-order time difference [17,18], cycle slip detection by integrating an inertial
navigation system and GPS [19,20], double- or triple-epoch difference residuals [21], and Bayesian
theory [22]. In addition, Liu [23] applied the ionospheric total electron content rate (TECR) to detect
cycle slips. Cai et al. [11] proposed a method based on a forward- and backward-moving window
averaging algorithm integrated with a second-order time-difference phase ionospheric residual (STPIR)
algorithm. As the backward-moving technique is used, it is utilized for post-processing. Having
smooth phase observations is an underlying assumption of many of these cycle slip detection methods.
This assumption can be violated under high ionospheric activities [24].

The second category encompasses estimation methods, where the first-order or second-order
time-difference observations of carrier phase and pseudorange observations are formed; then, the
position variations are estimated along with the receiver clock variation, the ionospheric delay variations,
and the cycle slips [25,26]. Due to the numerous unknown parameters, the introduction of reasonable
constraints of the ionospheric delay variations is necessary. Incorrect cycle slip determination may be
caused when there are irregular rapid ionospheric variations. Li et al. [27] developed a geometry-based
ionosphere-weighted (GBIW) model dedicated to efficiently estimating cycle slips in scenarios with
active ionospheric conditions. However, consecutive historical data are necessary for the prediction
of between-epoch ionospheric variations under high ionospheric activities or in the case of a large
sampling interval/data gap.

As for the satellite-borne GPS receiver, the ionospheric residuals in carrier phase observations
clearly vary and cannot be removed by differences in measurements in adjacent epochs, and consecutive
historical ionospheric residual data are hardly available, which makes many of the methods related
to the ionosphere ineffective. Bae et al. [28] and Montenbruck et al. [1,29] used a priori orbit as a
reference to detect cycle slips with ionosphere-free linear combinations. However, because carrier
phase measurements are essential for precise GPS orbit determination, it is an iteration process that
detects cycle slips, and the detection effect is affected by the accuracy of the a priori orbit.

In this research, we present a second-order, time-difference, geometry-free (STG) approach to
detect and repair cycle slips for LEO satellite GPS carrier phase observations with orbit dynamic model
information. According to a reformulation of Newton’s equation of motion, the second-order time
difference of the LEO satellite’s position (STP) is only related to the satellite’s acceleration and the
sampling interval, regardless of velocity. Therefore, the STP value can be computed, with an accuracy
that is only affected by the accuracy of the a priori acceleration. Moreover, the precise dynamic orbit
determination of the GPS/LEO satellite [3,5,30,31] shows that it is possible to obtain a high-precision
acceleration estimate of satellites with the known orbit dynamic models. By substituting the STP
values into the carrier phase observations, the STG observations are derived. In this paper, unlike the
traditional HMW combination and the geometry-free phase combination, four STG combinations with
different levels of ionospheric residuals are adopted together to detect and repair cycle slips.

The remainder of the paper is organized as follows: In Section 2, the STG cycle slip detection and
repair approach is presented. The experiments and analysis are presented in Section 3 to assess the
performances of the proposed method in various cases. Finally, concluding remarks are summarized,
and an outlook for future research is presented in Section 4.
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2. Materials and Methods

This article is based on the analysis of GPS products, LEO precise orbit products, and LEO
GPS observation datasets obtained from different sources. The second-order, time-difference carrier
phase liner combination is presented. Then, based on the relationship between the STP value and the
satellite’s acceleration, the STG cycle slip detection and repair approach is described in detail.

2.1. GPS and LEO Data

In order to investigate the performance of the proposed STG cycle slip detection and repair
method, the analysis of our paper is based on the GPS products (provided by the International GNSS
Service (IGS)), LEO precise orbit products (GOCE, GRACE-A, and Jason-3 satellites provided by the
European Space Agency (ESA), Jet Propulsion Laboratory (JPL), and CNES, respectively), and GOCE
satellite GPS observations provided by the ESA. Here, we tested GOCE satellite phase observations in
November 2009, with a 1-Hz sampling rate.

2.2. Second-Order, Time-Difference Carrier Phase Combination

The dual-frequency (subscript 1/2 for carriers L1/L2) observations between the LEO satellite
receiver (subscript r) and GPS satellites (superscript G) are commonly described as

LG
1,r = c ·ΦG

1,r/ f1 = ρG
r + c(dtG

− dtr) + λ1NG
1,r − IG

r + εG
1,r

LG
2,r = c ·ΦG

2,r/ f2 = ρG
r + c(dtG

− dtr) + λ2NG
2,r − αIG

r + εG
2,r

, (1)

where c is the velocity of light, ρG
r is the geometric distance between the GPS satellite and receiver,

LG
1,r, LG

2,r are the dual-frequency carrier phase observations, ΦG
1,r, ΦG

2,r,λ1,λ2, NG
1,r, NG

2,r are the carrier

phases, wavelengths, and ambiguities at frequencies f1, f2, respectively, dtG, dtr are the clock offset of
the GPS satellite and receiver, respectively, α = f12/ f22, IG

r is the ionospheric delay, and εG
1,r, ε

G
2,r are the

noise of the dual-frequency carrier phase observations.
The antenna phase center correction, relativistic effect, and wind-up effect, which can be calculated

with the known correction models, are eliminated in Equation (1). For simplicity of expression, the
time epoch (t) of some symbols is omitted, such as ρG

r for ρG
r (t), whereas subscript r and superscript G

are also omitted in some of the following equations. Given Equation (1), the linear combination of
carrier phase Lc can be described as follows:

Lc = iL1 + jL2

= (i + j) · (ρ+ c(dtG
− dtr)) − (i + α j)I + iλ1N1 + jλ2N2

, (2)

where i and j are coefficients of the observations L1 and L2, respectively.

Assuming the true position of the GPS satellite and receiver’s mass center are
→
r

G
and

→
r r,

respectively, and the approximate positions are
→
r

G
0 and

→
r r,0, respectively, then we have

ρ = ρ0 +
→
e · d

→
r , (3)

where ρ0 is the geometric distance between
→
r

G
0 and

→
r r,0,

→
e =

→
r

G
0 −

→
r r,0

ρ0
is unit direction vector between

the GPS satellite and receiver, and d
→
r = (

→
r

G
−
→
r r) − (

→
r

G
0 −

→
r r,0).

With Equations (2) and (3), the second-order, time-difference carrier phase combination ∆∆Lc can
be represented as

∆∆Lc = (i + j)∆∆(ρ0 +
→
e · d

→
r + dtG

− dtr) − (i + α j)∆∆I
+iλ1∆∆N1 + jλ2∆∆N2

. (4)
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Let us analyze the terms in Equation (4).
→
r

G
0 is available from the GPS broadcast ephemeris in the

real-time application or IGS final precise ephemeris products in the post-processing applications, and
→
r r,0 is available from a LEO a priori orbit, e.g., a GPS code solution [32]. Thus, ∆∆ρ0 can be treated as
known. Moreover, the term ∆∆(

→
e · d

→
r ) can be given as

∆∆(
→
e · d

→
r ) =

→
e (t− ∆t) · d

→
r (t− ∆t) − 2

→
e (t) · d

→
r (t) +

→
e (t + ∆t) · d

→
r (t + ∆t)

=
→
e (t) · ∆∆d

→
r

+d
→
r (t + ∆t) ·

[
→
e (t + ∆t) −

→
e (t)

]
− d
→
r (t− ∆t) ·

[
→
e (t) −

→
e (t− ∆t)

] , (5)

since

→
e (t + ∆t) −

→
e (t) ≈

→
e (t) −

→
e (t− ∆t) ≈

.
→
e (t) · ∆t ≈

∣∣∣ .
→
r

G

r

∣∣∣
ρ0
· ∆t. (6)

Considering the altitude of the GPS satellite, ρ0 is usually larger than 20,000 km, even for LEO
satellites. Additionally, the GPS and LEO satellite velocities are approximately 4 km/s and 8 km/s,
respectively. Then, we have

|

.
→
e (t)| ≈

∣∣∣ .
→
r

G

r

∣∣∣
ρ0

< 6× 10−4rads−1. (7)

Thus, the maximum amplitude of
→
e (t + ∆t) −

→
e (t) is less than 2 × 10−2, even with 30-s

sampling intervals. Therefore, the last two terms d
→
r (t + ∆t) ·

(
→
e (t + ∆t) −

→
e (t)

)
and d

→
r (t − ∆t) ·(

→
e (t) −

→
e (t− ∆t)

)
in Equation (5) can be ignored.

The STP values ∆∆
→
r

G
and ∆∆

→
r r can be derived with the satellite orbit dynamic models (presented

in Section 2.3. Thus, ∆∆(
→
e · d

→
r ) in Equation (4) can be treated as known and used to remove the

geometric variations between the receiver and the GPS satellites. The second-order, time-difference
GPS clock errors ∆∆dtG are very small, due to the high-stability atomic clocks equipped on the GPS
satellites, which can be practically ignored for cycle slip detection and repair (presented in Section 3).

Moreover, for LEO satellite GPS data, STPIR is significantly smaller than the first-order,
time-difference phase ionospheric residual (PIR), which is similar to the ground-based GPS data [11].
What is more, as the distance variations are removed, several kinds of STG combinations can be formed
to reduce the ionospheric residuals ∆∆I further, as shown in the next section. The numerical results

and analysis of the second-order time-difference values mentioned above, ∆∆
→
r

G
, ∆∆

→
r r, ∆∆dtG, and

∆∆I, are presented in Section 3.

2.3. Second-Order Time Difference of the Satellite’s Position

Based on a reformulation of Newton’s equation of motion, the second-order time difference of the
satellite’s position ∆∆

→
r (t) can be given as by Ditmar and van der Sluijs [33].

∆∆
→
r (t) =

→
r (t + ∆t) − 2

→
r (t) +

→
r (t− ∆t)

=
t+∆t∫

t−∆t
(∆t− |τ− t|)

..
→
r (τ)dτ

= ∆t2
1∫
−1

(1− |τ′|)
..
→
r (t + τ′∆t)dτ′

= ∆t2
1∫
−1
κ

..
→
r (t + τ′∆t)dτ′

, (8)
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where

κ =

{
1− τ′ 0 ≤ τ′ ≤ 1
1 + τ′ −1 ≤ τ′ < 0

, 0 ≤ κ ≤ 1

τ′ = τ−t
∆t , t− ∆t ≤ τ ≤ t + ∆t .

∆∆(∗) = (∗)(t + ∆t) − 2(∗)(t) + (∗)(t− ∆t) is the second-order time-difference (ST) operator, in which

(t + ∆t), (t) and (t−∆t) refer to three consecutive epochs, and
→
r (t) and

..
→
r (t) are the satellite’s position

and acceleration at time epoch t.
Equation (8) is considered as the basic constraint in our work, which shows that the STP value

∆∆
→
r (t) is only related to the acceleration

..
→
r and sampling interval ∆t. Since

1∫
−1
κdτ′ = 1, the accuracy

requirements of acceleration for different sampling intervals with an ∆∆
→
r (t) error at the 1-cm level

can be given as σ ..
→
r
= 0.01

∆t2 , as shown in Table 1. Thus, the errors or magnitudes of the accelerations less

than the requirements can be practically ignored. In fact, most of the accelerations of LEOs are below
10−4 ms−2 [34].

Table 1. Acceleration accuracy requirements for different sampling intervals with an ∆∆
→
r (t) error at

the 1-cm level.

Sampling Interval (s) 1 5 10 30

Acceleration error (ms−2) 10−2 4 × 10−4 10−4 10−5

The precise dynamic orbit determination of the GPS and LEO satellites shows that it is usually
possible to obtain the satellites’ acceleration from known orbit dynamic models, with an accuracy

better than 10−5 ms−2 [3,4,30,31]. Therefore, the STP values ∆∆
→
r

G
and ∆∆

→
r r can be computed via

Equation (8), and used to remove the geometric variations in GPS data without a high-precision a
priori orbit.

What is more, in the real-time application, given a priori orbit error δr = 3m (broadcast ephemeris
for GPS satellites [35], a real-time GPS code solution for LEO satellites), the max acceleration error δa
comes from the Earth’s center of gravity.

δa ≈
GM
r3 δr ≈

g
r
δr ≈ 5× 10−6 ms−2 < 10−5 ms−2,

where GM is the Earth’s gravitational constant, r is the distance from the satellite to the Earth’s center,
and g ≈ 9.8 ms−2.

As Table 1 suggests, δa can be practically ignored, even for 30-s intervals. Thus, the term ∆∆(
→
e · d

→
r )

in Equation (4) can be derived precisely, even in real-time applications.

2.4. STG Cycle Slip Detection Method

We can make a satellite–difference combination to remove the second-order, time-difference
receiver clock errors ∆∆dtr. Thus, with Equation (4), the STG cycle slip detection values can be given as

∇∆∆N1 + jλ2/iλ1∇∆∆N2 = ∇(i∆∆L1 + j∆∆L2 − (i + j) · ∆∆ρ)/iλ1

+∇(i + α j)∆∆I/iλ1
, (9)

where ∇(∗) = ∇(∗)Gi −∇(∗)G j is the satellite–difference operator, Gi and G j represent the different GPS

satellites, and ∆∆ρ = ∆∆ρ0 +
→
e · ∆∆d

→
r .
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As stated above, the first part of the right side of Equation (9) can be precisely computed from the
GPS phase observations and the known orbit dynamic models. Based on Equation (9), we can have
several STG combinations, with different levels of ionospheric residuals as follows:

∇∆∆N1 − λ1/λ2∇∆∆N2 = ∇(∆∆L1 −
f 2
2

f 2
1

∆∆L2 − 0.3928∆∆ρ)/λ1, (10)

∇∆∆N1 −∇∆∆N2 = ∇(∆∆L1 −
f2
f1

∆∆L2 − 0.2208∆∆ρ))/λ1

−0.2833∇∆∆I/λ1
, (11)

∇∆∆N1 − 0.5λ2/λ1∇∆∆N2 = ∇(∆∆L1 − 0.5∆∆L2 − 0.5∆∆ρ)/λ1

+0.1765∇∆∆I/λ1
, (12)

∇∆∆N1 = ∇(∆∆L1 − ∆∆ρ)/λ1 +∇∆∆I/λ1. (13)

The coefficients i and j are shown in Table 2, corresponding to Equations (10)–(13).

Table 2. Ionospheric and geometric distance residuals with the different coefficients i and j.

Equations i j 1+α j
i 1+ j

i

Equation (10) 1 −
f 2
2

f 2
1

0 0.3928

Equation (11) 1 −
f2
f1

−0.2833 0.2208
Equation (12) 1 −0.5 0.1765 0.5
Equation (13) 1 0 1 1

Equations (10)–(13) can be used to detect cycle slips, as Equation (10) is ionospheric-free, and
Equations (11) and (12) have smaller ionospheric residuals (0.2833∆∆I and 0.1765∆∆I) to STPIR
(0.6469∆∆I). Furthermore, Equation (13) can be used for big cycle slip detection for single-frequency
GPS carrier phase data, where even ∆∆I cannot be practically ignored.

If cycle slips (dN1, dN2) occur on GPS L1 and L2 frequencies between time epochs t and t + ∆t,
due to the second-order time-difference processing, by adding the time epoch mark t with Equation (9),
we have the cycle slip values as follows:

dN1 + jλ2/iλ1dN2 = ∇(i∆∆L1(t) + j∆∆L2(t) − (i + j) · ∆∆ρ(t))/iλ1

+∇(i + α j)∆∆I(t)/iλ1
, (14)

−dN1 − jλ2/iλ1dN2 = ∇(i∆∆L1(t + ∆t) + j∆∆L2(t + ∆t) − (i + j) · ∆∆ρ(t + ∆t))/iλ1

+∇(i + α j)∆∆I(t + ∆t)/iλ1
. (15)

Equations (14) and (15) suggest that there will be two opposite peak values in the subsequent
epochs when cycle slips occur, which can be used together to detect cycle slips.

Moreover, it should be pointed out that ∆∆dtr for some LEO satellites (e.g., GOCE) can also
be practically ignored, due to the high-stability atomic clocks usually equipped, similar to the GPS
satellites. In that case, the satellite–difference operator ∇(∗) is not necessary for Equations (9)–(15)
(presented in Section 3).

2.5. Repair of Cycle Slips Using the STG Combinations

Any combination of Equations (10)–(13) alone can be used to detect cycle slips except for some
special cycle slip pairs (CSPs) (dN1, dN2). For instance, when the CSPs are (60k, 77k), k = ±1,±2, . . .,
the detected cycle slip value in Equation (10) is 0, because these CSPs do not result in a change in
dN1 − λ1/λ2dN2. Similarly, special CSPs, such as (k, k), do not show jumps in the combination of
Equation (11), and Equation (12) cannot detect CSPs such as (77k, 120k).
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Fortunately, the joint STG combinations can complement individual drawbacks. For instance, for
the CSP (1, 1), Equation (11) is insensitive, but Equation (10) has a value of 0.22 cycles, and Equation (12)
has a value of 0.3583 cycles, while Equation (13) has a value of one cycle, which can be detected easily.
Rows 3–6 in Table 3 refer to some special CSPs that are insensitive for some of STG combinations.

Table 3. Several special cycle slip pairs (CSPs) and detected cycle slip values for the second-order
time-difference geometry-free (STG) combinations.

CSPs dN1−λ1/λ2dN2 dN1−dN2 dN1−0.5λ2/λ1dN2 dN1
dN1 dN2

1 1 0.2208 0 0.3583 1
3 4 −0.1169 −1 0.4333 3
4 5 0.1039 −1 0.7917 4
3 5 −0.8961 −2 −0.2083 3
7 9 −0.0130 −2 1.2250 7
7 11 −1.5714 4 −0.0583 7
9 14 −1.9091 −5 0.0167 9

60 77 0 −17 10.5917 60

What is more, although Equation (13) seems to be suitable for estimating cycle slips for
single-frequency GPS observations alone, the ionospheric residual in Equation (13) is larger than the
other combinations. Thus, it is suggested to adopt all the combinations in Equations (10)–(13) together
to detect and repair cycle slips for dual-frequency LEO satellite GPS observations.

When cycle slips are detected using combinations from Equations (10)–(13), the values of cycle
slips (dN1, dN2) can be uniquely determined from the following equations:

dN1 − λ1/λ2dN2 = a
dN1 − dN2 = b

dN1 − 0.5λ2/λ1dN2 = c
dN1 = d

, (16)

where a, b, c, d are the detected cycle slip values, corresponding to Equations (10)–(13), respectively.
Based on Equation (16), the float cycle slip solutions (dN1, f , dN2, f ) are firstly solved and then the
integer solutions are determined, e.g., using the LAMBDA method proposed by Teunissen [36].

3. Results and Discussion

This section presents the results and analysis of the second-order time-difference values related to
the STG cycle slip detection and repair method, and investigates the performance of the proposed
method using the GPS observations of the GOCE satellite.

3.1. Analysis of the Second-Order Time-Difference Values for LEO GPS Observations

Firstly, we evaluate the errors of the computed ∆∆
→
r

G
and ∆∆

→
r r via Equation (8), with the known

orbit dynamic models, with different sampling intervals, with the final precise ephemeris products for
GPS satellites and LEO satellites (GOCE, GRACE-A, and Jason-3 satellite) as “true” values. Based on

one-day data, the errors of the computed ∆∆
→
r

G
and ∆∆

→
r r are shown in Figures 1 and 2. Here, only

the Earth gravity model 2008 (EGM2008) up to 120 degrees and order is used as the known dynamic

model to compute the ∆∆
→
r

G
and ∆∆

→
r r for the satellites, with ∆t= 30s for GOCE and GRACE, and

∆t = 60s for Jason-3 (corresponding to Jason-3′s orbit product). The results show that the computed

∆∆
→
r

G
errors all are less than 3 mm for all GPS satellites in three directions, while the RMSs of the

computed ∆∆
→
r r error in the three directions are 1.8 mm, 1.7 mm, and 2.2 mm for GOCE, 0.8 mm,

0.8 mm, and 0.8 mm for GRACE-A, and 4.4.mm, 2.9 mm, and 2.9 mm for Jason-3.
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On one hand, due to GOCE’s lower orbital altitude (about 260 km), the ignored gravitational
accelerations (e.g., ocean tide, solid tide) are stronger than for GRACE. Thus, the errors of the computed
STPs of GOCE are larger than those of GRACE. On the other hand, the errors of the computed STPs of
Jason-3 are larger than those of GOCE and GRACE, because of the larger sample interval. The results
are consistent with Equation (8). Moreover, the STP accuracies are still better than 0.01 m. Therefore, it

can be concluded that the errors of the computed STPs ∆∆
→
r

G
and ∆∆

→
r r computed via Equation (8)

are negligible for cycle slip detection and repair.
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Furthermore, with one-day (18 November 2009) final 30-s clock products provided by IGS as the
“true” values, ∆∆dtG is evaluated, and the means and RMSs of ∆∆dtG are statistically computed for a
sampling interval of 30 s, as shown in Figure 3. The results clearly illustrate that ∆∆dtG values are as
precise as 0.1 ns with nearly zero means for most GPS satellites, and are all smaller than 0.15 ns, which
means that ∆∆dtG can also be practically ignored for cycle slip detection and repair.
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Finally, as the ionosphere residuals in carrier phase observations vary quickly for LEO satellite
GPS data, one may have the question whether ∆∆I can be practically ignored in the estimation of
cycle slips for satellite-borne GPS observations, even with a 1-s sampling interval. To answer this
question, Figures 4 and 5 show the examples of the first-order, time-difference PIR and STPIR [11]
(∆∆L1 − ∆∆L2 = 0.6469∆∆I) at the GOCE satellite on 26 November 2009, with different sampling
intervals. As shown in Figures 4 and 5, firstly, STPIR values increase and vary more quickly as the
sampling interval grows, especially at low elevation angles and near polar areas, where the quality
of the carrier phase observations is poor [3,28]. Secondly, STPIR values are usually less than 0.02 m
(about 0.1 cycles) with 1-s sampling intervals, always less than 0.05 m (about 0.25 cycles) with 5-s
sampling intervals, and less than 0.1 m (about 0.5 cycles) with 10-s sampling intervals. Moreover,
STPIR is significantly smaller than the first-order, time-difference PIR for GOCE. It suggests that STPIR
(0.6469 ∆∆I) is negligible for cycle slip detection for LEO satellite phase observations, especially with a
1-Hz sampling rate, based on the conditions tested.

Therefore, the second-order time-difference values for LEO GPS observations given in Equation (9),

∆∆
→
r

G
, ∆∆

→
r r, ∆∆dtG, and ∆∆I, can be practically used as known or ignored for the proposed STG

cycle slip detection and repair method.
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second-order time-difference PIRs for 1 s, 5 s, and 10 s, respectively; (d) GPS satellite elevation angle
and GOCE satellite latitude.
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Figure 5. Time-difference PIR, elevation angle, and satellite latitude for GPS PRN 19 at GOCE on 26
November 2009, with different sampling intervals. (a–c) First- or second-order time-difference PIRs for
1 s, 5 s, and 10 s, respectively; (d) GPS satellite elevation angle and GOCE satellite latitude.
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3.2. Using the Proposed STG Method to Detect and Repair Cycle Slips

In order to investigate the performance of the proposed STG cycle slip detection and repair
method, the GPS observation data of GOCE satellite on 21 November 2009 were collected with a
sampling interval of 1 s. Figure 6 shows GOCE satellite latitude, elevation, and STPIR (1 s) for GPS
PRN 9 and PRN 22 (max elevation 2.1◦). Due to the lower elevation, the quality of the carrier phase
observations corresponding to PRN 22 is poor. Firstly, simulated special CSPs were added to the GPS
L1 and L2 carrier phase data every 5 min, from 5:20 to 5:45 p.m. (GPS time) for PRN 9, and from 5:35 to
5:45 p.m. (GPS time) for PRN 22, as shown in Table 4.
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Figure 6. GOCE satellite latitude, elevation, and second-order time-difference PIR (STPIR) (1 s) for GPS
PRN 9 and PRN 22 on 21 November 2009.

Table 4. Simulated special CSPs at GOCE satellite GPS observations.

GPS Time CSPs on PRN 9 CSPs on PRN 22

5:20 p.m. (5, 4) –
5:25 p.m. (3, 4) –
5:30 p.m. (3, 2) –
5:35 p.m. (1, 1) (1, 1)
5:40 p.m. (9, 7) (3, 4)
5:45 p.m. (4, 5) (5, 4)

Figures 7 and 8 show the cycle slip detection results for the testing data with special CSPs using
the STG method, without the satellite–difference processing. For convenience of display, the detected
cycle slip values larger than 1.5 cycles were set as 1.5 in the figures below. In each plot, time series
of the combinations from Equations (10)–(13) are shown. The time series of the ionosphere-free STG
combination in Equation (10) shown in Figures 7 and 8 are stable at zero cycles, which indicates that
the geometric variations are removed clearly, and GOCE’s ∆∆dtr can be practically ignored, similar
to the GPS satellites, due to the high-stability atomic clocks equipped [3]. The STG combinations in
Equations (11)–(13) are also stable at zero cycles, which illustrates that the ionospheric residuals ∆∆I
for GOCE are significantly small and negligible in our work. Moreover, as Equations (14) and (15)
suggested, there are two opposite peak values in the adjacent epochs when the cycle slip is simulated.
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Figure 8. Cycle slip detection results for GPS PRN 22 using STG combinations in Equations (10)–(13),
denoted by (a–d), respectively, with simulated cycle slip pairs at GOCE on 21 November 2009.

As expected, as shown in Figures 7 and 8, each combination of Equations (10)–(13) has some
insensitive CSPs. For instance, Equation (10) is insensitive to the CSPs (3, 4) and (4, 5), but they
can be distinguished using the other combinations. Thus, simultaneous application of all four STG
combinations is necessary to detect and repair all unknown CSPs.

As Equation (13) suggests, it can be used to detect big cycle slips. Thus, only random small
CSPs between −10 and 10 added to the GPS L1 and L2 carrier phase data at GPS PRN 9 and PRN 22
at random epochs are tested in our experiments. The test is repeated over 1000 independent runs.
Considering the fact that the raw LEO satellite GPS sampling interval is usually less than 10 s, such as
for GOCE [3,4], SWARM [5], FY-3C [37], and Sentinel-3A [38], the max interval is set to 10 s.
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Table 5 shows the percentage of correct instances of detection and repair of the simulated cycle
slips on observations of GPS PRN 9 and PRN 22 for datasets with sampling intervals of 1, 5, and 10 s.
The data with sampling intervals of 5 and 10 s are extracted from the original dataset. The percentages
of the correct cycle slip detection and repair in all cases for PRN 9 for the datasets with sampling
intervals of 1, 5, and 10 s using the STG method were 100%, 100%, and 99.9% for detection, and 100%,
99.9%, and 98.5% for repair, respectively. For PRN 22, the percentages were 100%, 100%, and 99.7% for
detection, and 100%, 99.4%, and 97.6% for repair, respectively.

Table 5. Correct instances of detection and repair of cycle slips (in percentage) using STG methods for
the GOCE GPS dataset above with sampling rates of 1-s, 5-s, and 10-s intervals for PRN 9 and PRN 22.

GPS Satellite Interval(s) Detection Repair

PRN 9
1 100 100
5 100 99.9

10 99.8 98.5

PRN 22
1 100 100
5 100 99.4

10 99.7 97.6

As Table 5 shows, the performance for PRN 22 is slightly worse than for PRN 9, due to its low
elevation angle. The results indicate that increasing the sampling interval degrades the performance,
because some STG combinations (Equations (11)–(13)) are related to the small ionospheric residuals
which increase with the sampling interval. Meanwhile, there are some special CSPs insensitive
to the ionospheric-free Equation (10). Fortunately, even in that case, considering the fact that
the ionospheric-free phase combinations are usually used as an observation for the precise orbit
determination of the LEO satellites, the special undetected CSPs will have a slight influence on the
orbit determination. Certainly, it is better to use data with a 1-s sampling interval for LEO satellites in
order to detect and repair all cycle slips.

4. Conclusions

In this paper, a second-order, time-difference geometry-free (STG) cycle slip detection and repair
approach was proposed for dual-frequency GPS carrier phase observations. Based on a reformulation
of Newton’s equation of motion, the second-order time difference of the LEO satellite’s position (STP)
is only related to the satellite’s acceleration and the sampling interval. Then, with the GPS/LEO satellite
acceleration derived from known orbit dynamic models, the geometric variations in GPS carrier phase
observations can be removed. Several kinds of STG combinations were presented, one of which
was ionospheric-free, while some were more sensitive to cycle slips than STPIR. Moreover, one STG
combination can be used to detect cycle slips on single-frequency carrier phase observations, if STPIR
can be practically ignored.

The combination of STG linear combinations can be used to uniquely determine cycle slips on
both GPS L1 and L2 frequencies. To investigate the performance of the proposed method, extensive
experiments were carried out with GPS datasets from the GOCE satellite, with simulated cycle slip
pairs. The results indicated that the proposed method can detect and repair cycle slips with a high
success rate, even at low elevation angles, especially for LEO GPS datasets with a sampling rate
of 1 Hz. Moreover, because one of the STG combinations, Equation (10), was ionospheric-free, the
ionospheric-free carrier phase combination can be used as an observation for LEO satellite orbit
determination. The undetected special cycle slip pairs for the STG approach will have a slight influence
on LEO satellite orbit determination. This is, thus, an effective method for cycle slip detection and
repair for GPS carrier phase observation.
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Unlike the traditional TurboEdit method, the proposed method is almost independent of the
pseudorange. Benefiting from the high-stability atomic clock equipped on the GPS satellites and the
known high-precision satellite orbit dynamic models, the geometric variations between the satellites
can be derived precisely and ultimately removed, even with GPS broadcast products. Thus, the STG
approach can also be applied in real-time application. Moreover, similar to previous work [39,40],
the performance of the proposed method is expected to be further tested for multi-frequency GNSS
observations in the future.

Furthermore, as stated, only the GPS receiver’s acceleration information is necessary, the proposed
method is suitable for ground-based receivers whose acceleration information is known, such as the
static IGS station, and kinematic receivers equipped with an inertial navigation system (INS).

What is more, as Cai et al. [11] mentioned that STPIR can be practically ignored for ground GPS
data, Equation (13) can be used alone to detect and repair cycle slips for single-frequency ground-based
GPS receivers, when the acceleration of the receivers is available, even with 30-s sampling intervals.
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