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Abstract: Tree heights are the principal variables for forest plantation inventory. The increasing
availability of high-resolution three-dimensional (3D) point clouds derived from low-cost Unmanned
Aerial Vehicle (UAV) and modern photogrammetry offers an opportunity to generate a Canopy
Height Model (CHM) in the mountainous areas. In this paper, we assessed the capabilities of tree
height estimation using UAV-based Structure-from-Motion (5fM) photogrammetry and Semi-Global
Matching (SGM). The former is utilized to generate 3D geometry, while the latter is used to generate
dense point clouds from UAV imagery. The two algorithms were coupled with a Radial Basis Function
(RBF) neural network to acquire CHMs in mountainous areas. This study focused on the performance
of Digital Terrain Model (DTM) interpolation over complex terrains. With the UAV-based image
acquisition and image-derived point clouds, we constructed a 5 cm-resolution Digital Surface Model
(DSM), which was assessed against 14 independent checkpoints measured by a Real-Time Kinematic
Global Positioning System RTK GPS. Results showed that the Root Mean Square Errors (RMSEs) of
horizontal and vertical accuracies are approximately 5 cm and 10 cm, respectively. Bare-earth Index
(BEI) and Shadow Index (SI) were used to separate ground points from the image-derived point clouds.
The RBF neural network coupled with the Difference of Gaussian (DoG) was exploited to provide a
favorable generalization for the DTM from 3D ground points with noisy data. CHMs were generated
using the height value in each pixel of the DSM and by subtracting the corresponding DTM value.
Individual tree heights were estimated using local maxima algorithm under a contour-surround
constraint. Two forest plantations in mountainous areas were selected to evaluate the accuracy of
estimating tree heights, rather than field measurements. Results indicated that the proposed method
can construct a highly accurate DTM and effectively remove nontreetop maxima. Furthermore, the
proposed method has been confirmed to be acceptable for tree height estimation in mountainous areas
given the strong linear correlation of the measured and estimated tree heights and the acceptable
t-test values. Overall, the low-cost UAV-based photogrammetry and RBF neural network can yield a
highly accurate DTM over mountainous terrain, thereby making them particularly suitable for rapid
and cost-effective estimation of tree heights of forest plantation in mountainous areas.

Keywords: unmanned aerial vehicle (UAV); bare-earth points; difference of Gaussian (DoG); radial
basis function (RBF); canopy height model (CHM)
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1. Introduction

In remote mountainous areas of China with complex terrain, the maturity of trees varies due
to differences in climate or fertility. Many forest plantations are difficult to be uniformly planted or
felled. The felling of trees is typically determined by variables, such as the height and Diameter at
Breast Height (DBH). Deforested areas are frequently unevenly distributed and replanted on the basis
of the growing environment of the forest plantations. Therefore, the rapid and low-cost acquisition of
tree heights and other variables is crucial. Individual tree height is an important variable in forest
inventory and useful for silvicultural treatments and management of timber production. This variable
can provide a decision-making reference for deforestation and planting trees, including deciding on
the locations for clear-felling and tree planting depending on the site inventory and distribution of
trees, correspondingly.

Remote sensing technology is broadly used in various applications for forest investigation; these
applications include forest growth, forest quality prediction, and refined management of forests [1,2].
Satellite remote sensing images, including multiband spectral information, can be used to establish
high-precision forest parameter inversion regression models that are useful for large areas but unsuitable
for extracting refined individual trees because multispectral or hyperspectral remote sensing images
only have a meter or submeter resolution. Satellite remote sensing also suffers from the limitations of
acquisition time and weather conditions, and remote sensing-based approaches are inconsiderably
effective to accurately estimate the height and canopy of individual trees [3,4].

In comparison with satellite remote sensing, Unmanned Aerial Vehicle (UAV)-based
photogrammetry, with the advantage of low-cost and flexible operation, can concurrently acquire
high-resolution remotely sensed images and derive high-accuracy dense point clouds; thus, it is
especially suitable for the rapid periodic inventory of forest plantations by estimating tree heights
and crowns. Furthermore, UAV-based photogrammetry is suited for data acquisition of forest and
small classes; this method not only focuses on individual trees or sample plots but also is feasible for
monitoring forest stands that make UAV technology a significant advantage in forest resource survey
and dynamic monitoring. In contrast to traditional field measurements, UAV-based forest inventory
can be separated from the traditional site survey conducted using sample plots. On the basis of the
UAV-based photogrammetric mapping, any area within the scope of forest plantation that must be
monitored can be surveyed from the photogrammetric results, rather than field measurement. Thus,
the efficiency is much better in forest investigation than in traditional forest survey methods. The
development of UAV and related technologies has promoted the application in forest inventory, and the
demand for modern forestry survey has increased the research on drones in forestry. UAV-equipped
camera and laser sensors have also been exploited for tree height estimation.

UAV-based approaches for tree heights estimation can be classified into the following categories
based on equipped sensors, namely, (1) image-based approaches, (2) LiDAR point cloud-based
approaches, and (3) image and LiDAR point cloud-integrated approaches. Puliti et al. [5] used
Agisoft software (version, Manufacturer, City, US State abbrev. if applicable, Country) to obtain dense
point clouds of the study area from UAV images and established a linear regression model based
on ground data to estimate the number of trees, average tree height, dominant tree species height,
and cross-sectional area at breast height in Southeastern Norway. Zarco-Tejada et al. [6] used UAV
to generate a 3D Digital Surface Model (DSM) to estimate tree height; in addition, the correlation
coefficient with the field-measured tree height exceeded 0.8. Jing et al. [7] improved a multiscale
image segmentation algorithm to obtain a high-quality canopy map through Gaussian filtering
and a watershed algorithm. Chianucci et al. [8] used UAV images obtained by a consumer-grade
camera to perform a large-scale estimation of forest canopy attributes, objectively evaluated the
forest canopy coverage, and computed the leaf area index [9]. Panagiotidis et al. [10] reconstructed
3D ground structures from UAV image sequences for two study areas and extracted the heights
and canopy diameters of dominant trees. In addition, a UAV laser scanner can capture LiDAR
point cloud for accurate access to forest structure parameters. Studies have shown that UAV-based
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photogrammetry lacks the ability to penetrate dense canopies, whereas LiDAR data acquired from
Airborne Laser Scanning (ALS) can provide a complete vertical distribution of trees [5,11-15]. However,
although LiDAR point clouds can reflect the 3D internal structure of individual tree in a forest and are
cost-effective at a large scale, ALS frequently does not acquire sufficient point densities on the upper
canopy because large proportions of laser beam penetrate the upper canopy [5,16,17]; furthermore,
LiDAR point clouds are less intuitive because LIDAR does not capture spectral information, such
as the color texture of ground surface compared with UAV images. Lisein et al. [18] proposed a
photogrammetric workflow to establish a Canopy Height Model (CHM) of forest by combining UAV
images and LiDAR point clouds; the use of this workflow fully exploits the flexible revisiting period
of UAV to refresh the CHM and collect multitemporal canopy height series. Goodbody [19] used
ALS- and UAV-acquired photogrammetric point clouds to estimate tree height and crown diameter
for inventories; these authors determined that UAV-based photogrammetry helps to improve the
operational efficiency and cost-effectiveness of forest management.

For the tree height estimation of forest plantations in mountainous areas, a high-quality Digital
Terrain Model (DTM) is critical to CHM generation. The current highest resolution of free global terrain
data is approximately 30 m [20], which may be insufficient for discriminating subtle variations in terrains;
thus, the CHM is difficult to be generated accurately in mountainous areas. Although ALS can produce
high-resolution DTMs, this method requires a higher cost to collect ground data in a small area than
the consumer-grade UAV-based photogrammetry. A consumer-grade onboard camera equipped by a
UAV platform is suitable for estimating heights with respect to the finely detailed ground surface [21].
To estimate individual tree heights, high-resolution DTM and photogrammetric point clouds must
be generated to create a CHM that contains all the necessary information of vegetation height above
the ground level (AGL) [10,22]. UAV-based photogrammetry using Structure-from-Motion (SfM) and
Semi-Global Matching (SGM) algorithms has enabled generating very-high-resolution orthoimages
and constructing dense point clouds that reflect terrains through a series of overlapping and offset
images and a few Ground Control Points (GCPs) [23-27]; point cloud classification based on geometric
characteristics is commonly used to separate ground points from dense points for interpolating the
terrain beneath forest structures [28]. However, the occlusion of the canopy makes the reflection of
lower forest layers difficult to obtain using UAV image-derived technologies, i.e., the topographic
data under trees are difficult to acquire. Only a few ground points used to interpolate terrains may
be problematic and sensitive to noisy data [12,13]. Most previous studies of CHM generation using
UAV-based photogrammetry alone have been conducted over flat or gentle terrains [29-31]; works
on the CHM generation of mountainous areas under complex terrains using low-cost UAV-based
photogrammetric point clouds have been rarely reported. Generally, 3D points on the surface of trees
have a large slope. In this case, automatic classification methods typically separate ground points from
point clouds based on several assumptions, i.e., maximum angle, maximum distance, and cell size.
However, complex and steep terrain conditions, i.e., mountainous terrains that may have a large slope,
frequently occur in mountainous terrains. Thus, ground points with a large slope from 3D points
on the surface of trees difficult to distinguish through automatic classification methods based on the
assumption of the maximum slope in mountainous areas.

Bare-earth data not covered by vegetation are typically scattered in area of forest plantations
given the following reasons: (1) A modestly wide spacing of forest plantations is required in terms
of maintenance, stand stability, and quality of wood produced. Plantations can be scanned before
planting trees or when these trees are still sufficiently young to allow numerous open terrains among
them. Moreover, weeding is typically performed to eliminate or suppress undesirable vegetation
and may uncover bare ground. (2) Trees of forest plantations in mountainous areas are difficult to be
uniformly planted or felled considering differences in planting environment, i.e., climate and fertility.
Consequently, deforested areas are often unevenly distributed. The space left by felling and the tree
crowns without touching one another that occur between different growth stages may uncover the
bare ground. Thus, an automatic DTM generation through a neighborhood interpolation method from
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UAV-based photogrammetric 3D bare-earth points (BEPs) is feasible. Therefore, low-cost UAV-based
photogrammetric point clouds are explored to estimate tree heights of mountainous areas in the present
study. The 3D BEPs are separated from these 3D points that consist of leaves by a created inverse
vegetation index and a shadow index (SI) [32], and a Radial Basis Function (RBF) neural network [33]
against noisy data is exploited to generate DTM from these 3D BEPs. Subsequently, CHM is generated
using the height value in each pixel of the DSM and by subtracting the corresponding DTM value.
Tree heights are typically estimated using the CHM using local maxima. However, this condition is
a challenge for structurally complex forest structures because multiple local maxima are frequently
identified within an irregularly shaped crown. Smoothing filters are commonly used to reduce multiple
local maxima, but they will reduce tree height or even eliminate smaller trees [34]. In the present
study, a contour-surround constraint is used to eliminate multiple local maxima without reducing
tree heights.

This study aims to estimate tree heights of forest plantations in mountainous area using low-cost
UAV-based photogrammetric point clouds. In particular, DTM generation using an RBF neural network
and 3D BEPs is studied to produce high-quality terrain height values and a CHM rather than require a
prerequisite DTM of mountainous areas.

2. Study Area and Materials

2.1. Test Site

The study area is located at Shangrao (28°21'19”N, 117°57’40”E), which is approximately 200 km
east of Nanchang City, Jiangxi Province, China (Figure 1). The study site is subtropical monsoon
humid, and the mean annual rainfall and temperature are 2066 mm and 17.8 °C, correspondingly.
Two discretely distributed forest plantations illustrated in Figure 1 were included in this study. These
forest plantations in mountainous areas consisted of a mixture of forest stands, which vary from
natural to intensively manmade forests. The dominant tree species were Cunninghamia and pine,
accounting for approximately 35% and 30% of the total volume, respectively. The two forest plantations
completely covered the areas of approximately 24 ha. The elevation of these areas varied from 105 m
to 328 m above sea level. These areas were typical saddle-like terrains with high altitude in the
north-south direction and low altitude in the central areas; in addition, these regions exhibited a typical
mountainous topography characterized by slopes reaching 60° (mean slope: 23°), thereby offering an
opportunity to test the performance of tree height estimation in mountainous areas.

Google tarth

Figure 1. Two forest plantations selected from the study site in Shangrao, Southern China.
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2.2. Field Measurements

The field measurement was conducted in June 2018. GCP measurements were implemented by a
Real-Time Kinematic Global Positioning System (RTK GPS) that took approximately 3 h. A total of
32 trees for each of the forest plantations with DBH > 30 cm (that were typically focused on in the study
areas) were selected as the sample trees, which could also be clearly identified in UAV images and
easily measured in these positions. Individual tree height was measured using a Vertex hypsometer,
and the positions of trees were determined using the RTK GPS. All field measurements for the two
forest plantations were collected in the same month when the UAV images were acquired.

2.3. UAV Remotely Sensed Image Acquisition

The UAV remotely sensed images were acquired under the leaf-on period in June 2018 using
a low-cost small quadcopter, namely, DJI Phantom 4 PRO (City, US State abbrev. if applicable,
Country), which captured 20 megapixel RGB true color images through a 1 in a Complementary
Metal-Oxide-Semiconductor (CMOS) sensor consumer-grade camera, with a field of view of 84° and a
focal length of 8.8 mm (35 mm format equivalent) [35]. UAV autonomous flights through waypoints
predefined using the DJI mission planning software package, which maintained the nadir orientation
of the consumer-grade camera during the image acquisition, were performed to acquire remotely
sensed images for each plot. RTK GPS measurement was performed to collect five GCPs for each of
the forest plantations to georeference the UAV-based photogrammetric cloud points. Seven GCPs
for each of the forest plantations were also measured as checkpoints to validate the DTM accuracy.
To satisfy the GPS triangulation in the RTK GPS measurement and for the GCPs to be easily found
within UAV images, these GCPs were typically collected in places with adequate visible sky to obtain
sufficient satellites in view for calculating the correct position and to validate the photogrammetric
accuracy. The UAV image acquisitions were performed under good weather conditions, such as clear
and sunny, minimal cloud coverage, and winds <10 m/s. The flight altitude was set as AGL 120 m,
with ground sample distances of approximately 3.5 cm/pix. Across- and along-track overlaps were
set to 80% to ensure sufficient overlaps of acquired images in the mountainous areas with complex
terrains. Furthermore, 227 and 281 UAV images were acquired for Plantations 1 and 2, correspondingly.
The flight speed was set to 10 m/s, and total flying times of 22 and 27 min were set for Plantations
1 and 2, respectively. The interior orientation was calculated using Open Source Computer Vision
Library (OpenCV) [36] and 2D chessboard in a relative reference system to minimize the systematic
errors from camera; the distortions were modeled using a polynomial of four coefficients, including
two radial and two tangential distortion coefficients; the mean reprojected error of the adjustment was
0.5 pixels during the solution of camera parameters. The parameters of the camera carried on the DJI
Phantom 4 are listed in Table 1, which would be optimized by self-calibrating bundle adjustment.

Table 1. Parameters of the camera carried on the DJI Phantom 4. f; and f, are the focal lengths
expressed in pixel units; (cx, cy) is a principal point that is usually at the image center; k; and k, are the
radial distortion coefficients, p; and p; are the tangential distortion coefficients.

Parameters Value

Image size 4000 x 3000
fr 2687.62
fy 2686.15
cx 1974.34
cy 1496.10
kq —-0.13097076
k> 0.10007409
p1 0.00141688

P2 —0.00020433
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3. Method

This study aims to exploit a workflow to extract forest structure in mountainous areas using a
low-cost UAV platform that guarantees accuracy and efficiency of tree height estimation. The proposed
method is demonstrated in Figure 2, including the following stages: (1) Photogrammetric technologies
are used to reconstruct 3D structures and generate a high-resolution DSM of the two forest plantations
through a series of steps, i.e., image matching, 5fM, bundle adjustment, and SGM. (2) A DTM is generated
through automatic classification of point clouds, BEP extraction, and RBF neural network-based
interpolation. CHM is then generated using the height value in each pixel of the DSM and by
subtracting the corresponding DTM value. (3) Individual tree height is estimated from the CHM using
local maxima under a contour-surround constraint. (4) Accuracy assessment is performed on the
estimated and measured variables for the two forest plantations to evaluate the performance of tree
height estimation in mountainous areas.

UAYV images

Distortion
correction

Photogrammetry
-Feature extraction & matching
-SfM & bundle adjustment
-SGM-based dense matching

Autnmati.c classification BEP extraction . RBF-bast.e(l
of point clouds interpolation

Ground truth
data

Height Contour-surround
measurement constraint

Tree positions

Individual tree
position

Tree height
estimation

Figure 2. Workflow of the tree height estimation of forest plantation in mountainous areas using
UAV-based photogrammetry. UAV: unmanned aerial vehicle.

3.1. UAV-Based Photogrammetry

Low-cost UAVs (e.g., DJI Phantom quadcopters) typically carry a consumer-grade camera, thereby
causing large perspective distortions and poor camera geometry [5]. Image processing started with
the distortion correction of each UAV image using the camera parameters (Table 1) to minimize the
systematic errors. Then, OpenCV was used to remove distortion and resample UAV images. Feature
extraction and matching were performed using a sub-Harris operator coupled with the scale-invariant
feature transform algorithm that was presented in a previous work [37]; this operator can obtain
the evenly distributed matches among overlapping images to calculate accurate relative orientation.



Remote Sens. 2019, 11, 1271 7 of 21

However, low-cost GPS and inertial measurement units shipped with DJI Phantom resulted in poor
positioning and attitude accuracy, thereby posing challenges in the traditional digital photogrammetry
with respect to 3D geometry generation from UAV imagery. By contrast, SfM is suitable for generating
3D geometry from the UAV imagery given the advantage of allowing 3D reconstruction from the
overlapping but otherwise unordered images rather than being a prerequisite of accurate camera
intrinsic and extrinsic parameters. Self-calibrating bundle adjustment was conducted to optimize
the camera parameters, camera pose, and 3D structure using sparse bundle adjustment software
package [38], and absolute orientation was performed using five evenly distributed GCPs (Nos. 1-5 in
Figure 3a,b) for each of the forest plantations. In Figure 3a,b, the results of UAV-based photogrammetry
through the SGM algorithm [23] consisted of 2.40 x 107 and 3.91 x 107 points for Plantations 1 and 2,
respectively; these values correspond to a density of approximately 261 points/m?. Thus, the DSMs for
the two forest plantations were generated with a pixel size of 5 cm X 5 cm, as depicted in Figure 3c,d.
The SGM enables the fine details of the tree surface to be constructed.

Individe

Meters

105 m < 200
I I \ctcrs - _ Q =

0 50 100 200

(c)

Figure 3. Photogrammetric point clouds and DSMs of the two forest plantations. (a,b) are the
photogrammetric point clouds in 3D space with the true color of Plantations 1 and 2, respectively.
(c,d) are the DSMs of Plantations 1 and 2, correspondingly. Twelve GCPs are labeled for each of the
forest plantations, and the point clouds of individual trees are enlarged to be exhibited in (a,b). DSMs:
digital surface models; GCPs: ground control points.

In Figure 3a,c, seven GCPs (Nos. 6-12) for each of the forest plantations were selected as
checkpoints to evaluate the accuracy of DSMs. The residual error and Root Mean Square Error (RMSE)
were calculated on the basis of the seven checkpoints and their corresponding 3D points measured
using the DSM. The error statistics are summarized in Table 2. The X and Y RMSE values were
approximately 5 cm, which is nearly equal to the image resolution and a relatively small horizontal
error. The vertical RMSE values of the two forest plantations were less than 10 cm. Thus, these RMSE
values seemed relatively satisfactory and sulfficient to estimate the tree heights of the forest plantations
in mountainous areas.
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Table 2. Error statistics of checkpoints measured using DSMs. These errors are derived from differencing
with checkpoints that serve as a reference. DSMs: digital surface models; RMSE: root mean square error.

Site RMSE X (cm) RMSEY (cm) RMSE Z (cm) Total RMSE (cm)
Plantation 1 4.61 5.12 9.77 6.79
Plantation 2 5.37 5.62 8.70 6.63

3.2. DTM Generation

In contrast to LIDAR point clouds, UAV-based photogrammetric point clouds on the canopy of
trees do not reflect the ground terrain given the lack of the ability to penetrate the upper canopy;, i.e.,
directly separating ground points from image-derived point clouds is actually difficult. No accurate
and detailed DTM is typically available in complex mountainous terrains. However, bare-earth data
frequently exist in the forest plantations close to the terrain surface and allow tree heights to be modeled.
To ensure that terrain fitting interpolation in the open terrain without bare-earth data (i.e., covered with
abundant grass) is available, automatic classification of points and BEP extraction are jointly used in the
present study to obtain ground points for DTM generation. First, initial ground points are separated
from dense clouds using automatic classification with Photoscan software (version, Manufacturer, City,
US State abbrev. if applicable, Country), and three parameters, namely, maximum angle, maximum
distance, and cell size, are determined for Plantations 1 and 2 through multiple trials based on the most
ground points that can be detected correctly. Second, 3D BEPs are extracted to replace the adjacent
initial ground points, i.e., the heights of the initial ground points within 3 x 3 pixels around a BEP are
replaced with the height of the BEP. BEP extraction from UAV-based photogrammetric point clouds
is exploited to generate the DTM that mainly includes the following steps: (1) BEP detection and
(2) denoising and 3D surface interpolation. On the basis of the gap in the spectral characteristics of
RGB bands between bare land and vegetation, a bare-earth index (BEI) is created to extract 3D BEPs
using inverse vegetation index and Gamma transform. The BEI is defined as follows:

BEI = 10" - (1-GLI)?, 1)

where GLI denotes the green leaf index calculated using GLI = (2G — R — B) /(2G + R + B) [39], which
is selected in accordance with favorable vegetation extraction from UAV images [40], and R, G, B are
the three components of RGB channels; Gamma transform is exploited to enhance contrast of BEI
values for highlighting BEPs; v denotes the Gamma value, which is set to 2.5 that is approximately
estimated from the range of 0 to 255 of the BEI value in this study. The GLI value is set to 0 when
GLI £ 0, and the BEI value is set to 255 when BEI > 255. The BEI intensity maps of Plantations 1 and 2
are depicted in Figure 4a,b, but some shadow is considered bare land, i.e., shadow points may exist
in 3D BEPs. An SI [32] is also used to exclude the shadow of trees from 3D BEPs. The SI is defined
as follows: 4 R—G

Sl = p -arctan(m), 2)
where a pixel of SI > 0.2 is considered the shadow in this study. The value 0.2 is determined through
multiple trials based on nearly all shadows that can be detected. The shadow masks of Plantations 1
and 2 are exhibited in Figure 4c,d. In Figure 4e,f, the BEPs of Plantations 1 and 2 can be then obtained
from the BEI intensity maps with the corresponding shadow masks. BEPs in the vicinity of trees are
prone to be related to vehicle tracks or other infrastructure or significant geological accidents (e.g., rock
outcrops). The BEPs that are unrepresentative in the terrain must be removed manually.
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Figure 4. BEI maps, SI maps, and BEPs of the two forest plantations. (a,b) are the BEI intensity maps of

Plantations 1 and 2, respectively. (c,d) are the shadow masks of Plantations 1 and 2, correspondingly.
The BEPs of Plantations 1 and 2 are marked in (e,f), respectively. Red triangles denote the sample trees,
red line denotes the boundary of each plot, and the blue pixels denote the BEPs. BEI: bare-earth index;
SI: shadow index; BEPs: bare-earth points.

The RBF neural network performs exact interpolation [33]; thus, we use this network to interpolate
the height value of each DTM grid from the 3D BEPs. In Figure 5, the RBF neural network is an
artificial neural network that uses RBF as an activation function, typically including the input layer,
the hidden layer of a nonlinear RBF function, and the linear output layer [41]. The RBF neural network
interpolation is called exact interpolation, i.e., the output function of the RBF neural network passes
exactly through all 3D BEPs. The input layer is modeled as a real vector x € R3 of 3D BEP coordinates,
and the output layer is a linear combination of the RBF of the inputs x and neuron parameters that are
represented using f : R> - R! to generate a 1D output, i.e., a height value.
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Input Hidden layer Qutput

Radial Basis Neuron

Figure 5. Architecture of the RBF neural network. RBF: radial basis function.

In the interpolation operator from the 3D BEPs, the vector x is mapped to the corresponding target
output, which is the scalar function of the input vector x and can be computed using

N

Fx) =Y widllix i), 3)

i=1

where ||.|| is the norm operation and taken as the Euclidean distance here, N is the number of neurons
in the hidden layer, w; € W is the weight of neuron i in the linear output neuron, ¢; denotes the center
vector of the neuron i, ¢(.) denotes the nonlinear function that is a multiquadratic function used in this

study as follows:
o(r) =ry1+¢&, @)

where r denotes the distance between unknown and known data, and & is a smoothing factor between
0 and 1. In the training of the RBF neural network, the gradient descent algorithm is used to find the
weights W; therefore, the RBF neural network passes through the 3D BEPs. The objective function E is
defined as follows:

1 n
E= E;Gzi — fxa))%, (5)

where 7 is the number of samples, and #; is the height value of sample i. All weights W are adjusted at
each time step by moving them in the opposite direction of the gradient of E until the minimum of E is
found, the optimization of W is calculated as

Wt +1) = W(E) = - S5 = W)+ Y (= £ ) (Il ©
i=1

where 1) is the learning rate, which can be between 0 and 1; and ¢ is the iteration count. The noisy
3D BEPs must not be traversed because the RBF is a highly oscillatory function that will not provide
favorable generalization in this case [33], i.e., the RBF neural network-based interpolation performs
poorly with noisy data.

To minimize the impact of noisy data in 3D BEPs, Difference of Gaussian (DoG) operation and
moving surface function are jointly applied to detect and remove the noisy data. The 3D BEPs are
typically not evenly distributed in the study areas; thus, the noisy data detection is implemented in the
initial DTM of a regular grid generated from the 3D BEPs adopted in the present study. The noisy
data typically appear as the local maxima or minima of the height value in the initial DTM, break
the continuity of the terrain surface, and form a large contrast with the surrounding height values.
DoG [42] is a feature enhancement algorithm that is suitable for identifying features, considering that
the height value of noisy data changes drastically and can be considered features. In Figure 6b, the
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noisy data p are easily noticed in the DoG map. The mathematical expression D(x, Y, 0) of the DoG at
the pixel (x, y) is calculated as

D(x,y,0) = L(x,y,kio) — L(x, v, kjcr), (7)

where o is the initial scale factor of the DTM and typically set as 1.6; k; and k; are the multiple factors;
and L(.) is the convolutional operation expressed as follows:

L(x/ ]/,kO') - G(x, ]//kO') *DEM(X, y), (8)
1 _(x2 412 2 2
G(x,y, ko) = e (P412)/ (2R20%) o

where G(.) denotes Gaussian filtering, and = is the convolutional operator. A moving window with 3 x
3 pixels is used to find the local maxima or minima of height value within the DoG, which is considered
a candidate p for noisy data. The radius r of the surrounding height values centered on candidate p
contaminated by noisy data can be defined as

r=INT(m-0+0.5), (10)

where INT(.) denotes the integer operation, and m is a multiple factor that is determined when
the height values within a surrounding area do not have a significant oscillation. Specifically, in
Figure 6, for example, the radius r is increased at each time with m « m + 1, and then the surrounding
regions RmIxml Rm2Xm2 g4, RMIXM3 g4 generated with the radiuses of 2, 3, and 5 when m = 1,2, and 3,
correspondingly. The extended regions ex_R (i.e., closed loop areas) between the regions R"*" and
Rm+1)x(m+1) displayed in Figure 6¢ can be determined using

EX_R(TH, m4 1) — R(m+1)><(m+l) — RMXMM A R(mel)X(erl). (11)

200
100
0 0 y/m

(a) Gaussian images / () three-dimensional DoG map

4
L /\ RmEme

Figure 6. Example of the DoG operation and noisy point detection. DoG: difference of Gaussian.
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We use the mean /1 and standard deviation hetq of the height values within the extended regions
R®* to determine the final radius r of the surrounding height values. & and hgq are computed as follows:

— . 1
h(hi i€ R™) = ;'Z h;, (12)
ieRex
hea (i 2 i € R®) = 1 Z (n—ﬁ)2 (13)
std\/hi - ” = i .
1 ex

The corresponding radius r is considered the final radius when a newly added region R satisfies
the following conditions:

7 7 ’ (14)

hstd(m> < hstd(m - 1) <...= hstd(l)
g () = Traa (m = 1)| < ¢

where ¢ is a given threshold.

The final radius r can be determined using Equation (10). Candidate p is regarded as a noisy point
(p)

when the residual value h*’.
residual

within the radius r satisfies the following condition:

W= B Ty i e R > ke hga (2 i € R, (15)
where k is set as 3 in this study. The moving quadratic surface-based interpolation method is used to
correct the height value at Point p and eliminate the contamination that occurs when interpolating the
surrounding grid of the DTM. The used quadratic function is expressed as

Z =4 +a1x+az}/+a3x2 +a4xy+a5y2, (16)

where (x, y,z) denotes the coordinate of a 3D BEP; and ag, 43, . .., a5 denote the six coefficients of the
quadratic function, which can be solved from the 3D BEPs ((x;, yj,zi),i = 1,2,...,n) surrounding the
noisy point p using the least square algorithm expressed as follows:

-1

X =(ATA) A"z, (17)

1T x oy X xp

1 x 32ox

T 2 Y2 2Y2 Y2
whereX:[aO a1 ap 4dz da Ll5],AI . _2 . . ,andZ:

1 Xn yn x% xn]/n ]/n

T

[ 21 22 ... Zn ] . The correct height value of the noisy point p is then derived from the quadratic

surface model. The RBF neural network is (Algorithm 1) used again to perform the DTM generation
after noisy data removal that can be used for achieving the height interpolation against noisy data, and
the DTMs of the two forest plantations are presented in Figure 7a,b.
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313m

Meters
200

0 0Om

m 3
— —
0 50 100 ot Tl
(©)

Figure 7. DTMs and CHM s of the two forest plantations. (a,b) are the DTMs of Plantations 1 and 2,
respectively. (c,d) are the CHMs of Plantations 1 and 2, correspondingly. DTMs: digital terrain models;
CHMs: canopy height models.

Algorithm 1: RBF neural network against noisy data

Parameters: M and N are the width and height of the DSM, respectively; h and hggq correspond to the mean
and standard deviation of the height values z; r is the radius centered on candidate p; m is a multiple factor;
hESS)i dual is the residual value; and ¢ is a given threshold.
Generate the DTM using the RBF neural network from the ground points.
Compute the DoG map using the DTM.
for col = 1to M do

for row = 1to N do

if DoG(row, col) is the local maxima or minima, then

while !(giq (m) < hga(m —1) < ... < hgyq (1)) or U|hgea (m) — hega (m — 1)' <e)

mem+1
r —INT(m-0+0.5)
E(m) — % Y ki
ieRex
)
hstd(m) — % Y (hi _h)
i€Rex
end while
end if
hgiidual < ’h(p) —h(h; :i e R™T)
if hEZs)idual > k- hgg(h; - i € R™") then

p is regarded as a noisy point.
p(z) is then derived from the fitted quadratic surface model.
Update the height value of the ground points.
end if
end for
end for
Generate the DTM using the RBF neural network from the updated ground points again.
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3.3. CHM Generation

CHMs are generated by determining the DSM value in each pixel and subtracting the corresponding
DTM value that can be calculated as follows:

CHM = DSM - DTM. (18)

In Figure 7c,d, CHMs are generated using Equation (18) by finding the height value of the DSM in
each pixel and subtracting the corresponding DTM value. The value of CHMs in a pixel is set to 0 when
the DSM value is less than the DTM value. In addition, a 2 m-high filter is used to exclude the potential
ground pixels from the canopy, i.e., the CHM generation method used does not detect understory
vegetation that is less than 2 m high. The method proposed in the present study does not detect
understory trees because UAV-based photogrammetry lacks the ability to penetrate dense canopies.

3.4. Tree Height Estimation

After CHM generation, the initial location of an individual tree is determined by local maxima
techniques using a 1 m x 1 m moving window (i.e., 20 x 20 pixels computed by the pixel size of
the DSM) to achieve accurate individual tree extraction even for overlapping trees in structurally
complex forests. However, noisy pixels that are erroneously considered the vertex of an individual
tree inevitably exist, i.e., multiple local maxima are frequently identified as treetops. In this study, a
contour-surround constraint is used to eliminate the erroneous vertex. In particular, a vertex of the
tree must be located within all closed contours generated from the CHM of an individual tree. In
Figure 8, a vertex v with a height value 1" satisfies the definition v € R" (where R"/ denotes the closed
regions surrounded by contours with the same height value i}’ = h¥ —i+0.5) and is then considered a
true vertex of the individual tree; otherwise, the local maxima v’ illustrated in Figure 8 is considered
a pseudo vertex. The height of an individual tree is determined using the value at the vertex v in
the CHM.

Pseudo vertex t /_,x& s
—~ True vertex v

J(‘f\%
L !

g__P h f f
M1ﬂ\-‘_tiom|mdan
45m 9.0m 135m
(a) Individual tree (b) CHM (¢) Contour

Figure 8. Contour-surround constraint for pseudo vertex removal. (a—c) correspond to an individual
tree, the CHM of the individual tree, and the contour of the CHM. Red and blue triangles denote true
and pseudo vertices, respectively. CHMs: canopy height model.

3.5. Evaluation Criteria for Tree Height Estimation Performance

Linear regression analysis is used to model the relationship between the estimated and measured
tree heights to compare the estimation of tree heights from low-cost UAV-based photogrammetric point
clouds with field measurements, and the R-squared is calculated as a metric of accuracy evaluation.
Paired t-tests are used to evaluate the mean of differences, and the Mean Absolute Error (MAE) [10] is
also used to evaluate the residuals between individual tree heights estimated through the proposed
method and the field measurements. The MAE is computed as follows:

n
MAE = %Z|hf - (19)
i=1
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where 7 is the number of trees; and 1if and i are the estimated height and measured values, respectively.

The paired t-test of statistical analysis is commonly conducted to determine the mean differences
between the estimated and measured tree heights [10,22]. The null hypothesis may be either rejected or
not, i.e., determining a statistically significant difference, which is based on the paired mean different
at a 0.05 significance level. The paired samples t-test can be calculated as follows:

X
\/52/71’

where ¥ is the mean of the difference between two samples, s> is the sample variance, and 7 is the

t:

(20)

number of samples.

4. Results and Discussion

The performance of UAV photogrammetry over complex terrains plays a critical key in accurately
estimating tree heights. The height accuracy (i.e., height RMSE) achieved in the present study is also
compared with the results derived from other previous similar UAV photogrammetry studies conducted
under complex terrain conditions. In Table 3, the height RMSE value of our method is superior to
that of those reported by Tonkin et al. [43], Long et al. [44], Koci et al. [45], Gindraux et al. [46], and
Gongalves et al. [47] of 51.7, 17, >30, 10-25, and 12 cm, correspondingly. Our study performs better for
several reasons, including sufficient image overlap, evenly distributed GCPs, and 3D reconstruction
using SfM and SGM.

Table 3. Comparative table of height accuracies among UAV-based topographic surveys under complex
terrain conditions. UAV: unmanned aerial vehicle; AGL: above the ground level; RMSE: root mean
square error.

Terrain

Study Characteristic Platform AGL (m) Height RMSE (cm)
Tonkin et al., 2014 [43] Moraine-mound Hexacopter 117 51.7
Long et al., 2016 [44] Coastal Fixed-wing 149 17
Kodi et al., 2017 [45] Gullied Quadcopter 86/97/99 >30
Gindraux et al., 2017 [46] Glacier Fixed-wing 115 10-25
Gongalves et al., 2018 [47] Dune Quadcopter 80/100 12
Our study Mountainous Quadcopter 120 9.24

In the two study areas, 32 trees for each of the forest plantations are selected to evaluate the
proposed method for estimating tree heights in mountainous areas. The measured and estimated
height variables are summarized in Table 4. The tree heights of Plantations 1 and 2 range from 11.70 m
t0 26.73 m and from 11.94 m to 26.83 m, respectively. The measured heights of Plantations 1 and 2 are
close to the estimated heights in terms of the median and mean differences of approximately equal to
0.3 m or less. The differences in standard deviation between the measured and estimated heights of
Plantations 1 and 2 are approximately equal to 0.5 m.

The linear regression models depicted in Figure 9a,b exhibit a strong linear relationship between
the measured and estimated tree heights in terms of R? = 0.8345 and R?> = 0.8238, thereby also
demonstrating the good model fit for the estimated and measured values in Plantations 1 and 2,
correspondingly. The residual plots of Plantations 1 and 2 displayed in Figure 9c¢,d are calculated
to evaluate the residuals between the measured and estimated tree heights, and the corresponding
MAEs are less than 1.8 m. The MAEs close to 10% of the mean heights of the two plantations given
the BEPs in the terrain with steep slopes covered by shadow are excluded, thereby reducing the
accuracy of the terrain reconstruction and tree height estimation. The t-test values of Plantations 1
and 2 are calculated as 1.95 and 2.02, respectively. These values are lower than the t-table value of
2.037 (i.e., ty0p5/32 = 2.037). Therefore, the null hypothesis (i.e., no statistically significant difference)
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cannot be rejected at a 0.05 significance level. The error of tree height estimation using low-cost
UAV-based photogrammetric point clouds is relatively small. Our results are superior to those of
similar studies reported by Panagiotidis et al. [10] in related statistics, such as R* and MAE values, and
can be considered acceptable.

Table 4. Comparison of the measured and estimated height variables (unit: m) for the two forest
plantations at the tree level. 0% (min), 25% (lower), 50% (median), 75% (upper), and 100% (max) are
the quartiles that are used to extract the tree heights at the corresponding percentiles. std denotes the
standard deviation of tree heights.

Plantation 1 Plantation 2

Measured Height ~ Estimated Height =~ Measured Height = Estimated Height

min 11.70 10.84 11.94 11.69
p25 14.68 13.19 16.83 15.39
median 16.83 17.16 19.48 19.62
P75 19.57 20.34 22.64 22.48
max 26.73 27.08 26.83 29.62
mean 17.52 17.31 19.60 19.46
std 3.85 4.20 4.31 4.84

MAE 1.45 1.73

30 30 —
*
*

]

n
T

(]

[
T
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g
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—_
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T

—
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Figure 9. Linear regression models and residual plots of the ground-measured and UAV
photogrammetric estimated heights. (a,b) are the linear regression models of Plantations 1 and
2, respectively. (c,d) are the residual plots of Plantations 1 and 2, correspondingly.

To evaluate the performance of 3D BEPs in our method, we generated DTMs using the ground
points obtained from automatic classification to estimate the tree heights of Plantations 1 and 2.
Noncontour method for treetop identification is also compared. For a fair comparison, a DoG-coupled
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RBF neural network is used to generate DTMs, and the results are depicted in Figure 10a—d. Compared
with the proposed method, 3D BEPs improve the accuracy of tree height estimation with stronger
linear regression models and smaller residuals.

3
0 * 10
MAE =2.49 m
s |
Eos | . 6
. 4r ¢ * .
2 =
= =) L *e
£ 2 * *
€2 2 s .
5 E 0 —— “ . )
E F L0 ee 15 Teet0 ¢ 23, 30
] 1 *® Lo
215 + v =1.0713x - 1.3901 -4 r . . . .
= N R2=0.6716 6 |
_8 L
*e
10 7S . . . 1oL
10 15 20 25 30 .
Measured tree height (m) Measured tree height (m)
(a) (b)
30 ’9 10 -
- ¢ MAE =2.76 m
Exs b 6 r . R
= t . >
¥ z N * . . *°
= S22+ * -
€2 | 4 L e . e ‘ |
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Figure 10. Comparisons of linear regression models and residual plots obtained from the two other
methods. (a,c) are the linear regression models through the method based on point cloud automatic
classification of Plantations 1 and 2, respectively; the corresponding residual plots are (b,d). (e,g) are
the linear regression models through the proposed method without the contour-surround constraint of
Plantations 1 and 2, correspondingly; the corresponding residual plots are (f,h).
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The t-test values displayed in Table 5 indicate that the proposed method for estimating tree heights
of both forest plantations is insignificantly different from the measured tree heights, whereas the two
other methods are significantly different between the ground-measured and UAV photogrammetric
estimated heights because their t-test values are higher than f; o5/3,. Therefore, on the basis of the ¢-test
values of the two compared methods, the null hypothesis is rejected because both forest plantations are
different at a 0.05 significance level. The proposed method performs better for both forest plantations
than the two compared methods in terms of linear regression models, residuals, and t-test values. This
finding may be attributed to three reasons. First, compared with the initial ground points extracted by
automatic classification, the 3D BEPs obtained from the BEI maps are closer to the terrain surface, thus
providing increasingly accurate ground points that help generate DTMs with higher precision. Second,
the DoG-coupled RBF neural network can provide favorable generalization for DTMs from 3D ground
points with noisy data. Third, contour-surround constraint is an effective solution to eliminating
nontreetop maxima without reducing tree heights, whereas the DoG-coupled RBF neural network
without using contour-surround constraint performs worse in terms of R?> and MAE values.

Table 5. Comparison of the f-test values of the three methods for the two forest plantations. @ denotes
the method based on point cloud automatic classification, @ denotes the proposed method without the
contour-surround constraint.

@ ® Ours
Plantation 1 2.80 2.19 1.95
Plantation 2 2.74 2.31 2.02

5. Conclusions

The focus of this study was to estimate the tree heights of forest plantations in mountainous
areas using low-cost UAV-based photogrammetric point clouds. We generated high-density 3D point
clouds, and the horizontal and vertical RMSE values of DSMs were approximately equal to 5 and
10 cm, respectively. Our results showed that DTM generation using RBF neural network and 3D BEPs
is suitable for producing high-quality terrain height values and CHMs. Our method exhibited a strong
linear relationship and good model fit between the measured and estimated tree heights in terms of
R? = 0.8345 and R? = 0.8238 for the tested Plantations 1 and 2, correspondingly. The t-test values
indicated no statistically significant difference of the measured and estimated tree heights, and the
error of tree height estimation using low-cost UAV-based photogrammetric point clouds was relatively
small and could be considered acceptable. The overall results suggested that our method can be used
as an effective alternative to field measurements for estimating tree heights of forest plantations in
mountainous areas.

The proposed method still must be perfected to reconstruct the terrains with steep slopes and
shadow in the southwest region of Plantation 2. Moreover, the accuracy of the DTM must be improved
to estimate tree heights accurately. This study is suitable for open terrains throughout forests or
plantations but not natural forests and dense mature plantations. In future studies, we will optimize the
proposed method to achieve improved performance through multiple constraints, reduce low-quality
3D BEPs, and yield increasingly accurate DTMs over mountainous terrains.
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