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Abstract: Continuous monitoring of crop growth status using time-series remote sensing image
is essential for crop management and yield prediction. The growing season of summer corn in
the North China Plain with the period of rain and hot, which makes the acquisition of cloud-free
satellite imagery very difficult. Therefore, we focused on developing image datasets with both a high
temporal resolution and medium spatial resolution by harmonizing the time-series of MOD09GA
Normalized Difference Vegetation Index (NDVI) images and 30-m-resolution GF-1 WFV images using
the improved Kalman filter model. The harmonized images, GF-1 images, and Landsat 8 images
were then combined and used to monitor the summer corn growth from 5th June to 6th October,
2014, in three counties of Hebei Province, China, in conjunction with meteorological data and MODIS
Evapotranspiration Data Set. The prediction residuals (∆PRK) in NDVI between the GF-1 observations
and the harmonized images was in the range of −0.2 to 0.2 with Gauss distribution. Moreover, the
obtained phenological curves manifested distinctive growth features for summer corn at field scales.
Changes in NDVI over time were more effectively evaluated and represented corn growth trends,
when considered in conjunction with meteorological data and MODIS Evapotranspiration Data Set.
We observed that the NDVI of summer corn showed a process of first decreasing and then rising in
the early growing stage and discuss how the temperature and moisture of the environment changed
with the growth stage. The study demonstrated that the synthesized dataset constructed using this
methodology was highly accurate, with high temporal resolution and medium spatial resolution and
it was possible to harmonize multi-source remote sensing imagery by the improved Kalman filter for
long-term field monitoring.
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1. Introduction

Local climate and local crop management strategies are important factors that determine crop
yield in a given area. Light, heat, and water are necessary for the photosynthesis of crops, and farmers
can intervene in farmland appropriately according to crop growth needs [1]. Continuous monitoring
of crop growth and environmental changes is of great significance for crop management and yield
estimation [2]. Time-series remote sensing images from satellites are important data sources for
monitoring crop growth.

For long-term vegetation monitoring targets, the images with high temporal resolution and low
spatial resolution, e.g., MODIS and AVHRR, are one of the preferred data sources [3,4]. The MODIS
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synthesized vegetation index products have many applications in monitoring global climate change,
material and energy cycles and the growth of surface vegetation. Guindin-Garcia et al. [5] integrated
the MODIS eight-day and 16-day products to quantitatively estimate green leaf area index (GLAI)
over corn fields and evaluate the potential and limitations of the satellite data. Doraiswamy et al. [6]
evaluated the applicability of the eight-day MODIS composite imagery in monitoring crop growth and
yield estimation and the results showed that these images were very reliable. Sakamoto et al. [7,8]
proposed a method which could identify the growth period of maize and soybean with two-step
filtering based on MODIS data. However, the low spatial resolution (i.e., 250 m or 500 m) will cause a
lot of errors by mixing multiple objects which have great differences in spectral curves and phenological
characteristics in one pixel. Wang et al. [9] monitored and evaluated the growth condition of spring
maize based on MODIS vegetation index products, MODIS LAI products and Global Land Surface
Satellites LAI product. Moreover, the medium-resolution satellites (i.e., Landsat and GF-1) have
developed rapidly and can well express the detailed features of the surface [10–12]. If the time-series
is complete enough, the medium-resolution satellites can reflect the growth status of crops over the
whole growing period. Due to both the low temporal resolution and because most crops grow during
periods of high rainfall and heat, including the summer corn planted in eastern China, the quality
of the images obtained during that period can be reduced due to clouds and smog. It also leads to
the difficulty of obtaining high quality time series images even for satellites with higher temporal
resolution, such as GF-1(four-day and 16 m). Most satellites cannot take high temporal resolution and
high spatial resolution imagery at the same time, e.g., MODIS (daily and 500 m) and Landsat-8 (16-day
and 30 m); therefore, it is difficult to obtain complete high-quality time-series image datasets from a
single sensor covering the whole growing season of summer corn in China.

Spatiotemporal image fusion is one of the most effective ways to solve this problem [13,14].
The spatiotemporal image fusion method combines the characteristics of high temporal resolution
images with high spatial resolution images, which facilitates the characterization of the details of the
land surface being surveyed. The method can also help to resolve apparent contradictions between
high temporal resolution and high spatial resolution imagery datasets [15]. Spatiotemporal remote
sensing image fusion is a practical and low-cost method. It not only utilizes remote sensing images with
high temporal and spatial resolutions, but also promotes the utilization of current earth observation
data [16].

Spatiotemporal data fusion based on machine learning is one notable algorithmic method that
has shown potential in recent years [17]. Sparse representation is used to realize super-resolution
reconstruction of remote sensing images and enhance the spatial detail expression ability of low
spatial resolution images which mainly used to improve the serious problem of mixed pixels in
complex terrain coverage areas [18]. Yanovsky et al. [19] improved the resolution of microwave
images based on sparse optimization and compressive sensing, and the research results showed that
the data fusion products were better than all the statistical indicators of the original AMSU-B and
AVHRR. Wang and Atkinson [20] designed the Fit-FC method, including regression model (RM) fitting,
spatial filtering, residual compensation and fusion of Sentinel-2 (MSI) and Sentinel-3 (OLCI) images,
to create approximately daily Sentinel-2 images. Using these advanced methods, super-resolution
reconstructions of remote sensing images can be achieved, which enhances the resolution of low
quality images and increases the detail of spatial expression. This is mainly used to resolve the serious
problems of mixed pixel types in areas with complex terrain [21].

Gao et al. [22] introduced the spatial and temporal adaptive reflectance fusion Model (STARFM)
method, which can blend MODIS and Landsat images for applications that require high resolution
in both time and space. The STARFM model takes spatial variation and time variation information
into account, and it is one of the most widely used space-time models. It is used in time series NDVI,
LAI monitoring [23,24], estimation of regional evapotranspiration [25], ground surface temperature
monitoring [26,27], and gross primary production (GPP) monitoring [28]. Other scholars [29–34] have
improved the STARFM model based on Gao’s research. Among them, one of the most widely used
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is the ESTARFM algorithm, which is an enhanced spatial and temporal adaptive reflectance fusion
model. The experimental results showed that ESTARFM [31] had a better prediction accuracy than
STARFM. However, the ESTARFM model is sequentially input high time resolution data with high
spatial resolution and high temporal resolution data and target during two periods, thereby generating
high spatial resolution data of the target period. Thus, when the difference between the two moments
is relatively large, the data generated during the target period will produce greater uncertainty.

Kalman filtering is a linear simulation and prediction algorithm that can be used for image fusion
and for predicting new images. It provides a mathematical framework for predicting unmeasured
variables from indirectly noisy measurements. As a predictive tool, Kalman filter is mainly used to
estimate the state of dynamic systems, such as process control [35,36], flood forecasting [37], radar
tracking [38], GNSS navigation [39,40] and performance analysis of estimation systems. Sedano
et al. [41] used a Kalman filter algorithm to achieve spatiotemporal fusion of existing Landsat TM
and 250-m NDVI MODIS (MOD13Q1) images for predictions of synthetic Landsat NDVI values.
Huang et al. [42–45] used a Kalman filter algorithm to produce a 30-m-resolution LAI time-series,
with a 4-day time-step using the Landsat TM LAI data and the S-G filtered MODIS LAI time-series.
They then applied the 30-m-resolution LAI time series to model crop growth. Using the methods
described in the references above, the Kalman filter can be applied using basic parameters, and it has
the flexibility of being independent of the number of medium-resolution images obtained. The Kalman
filtering algorithm uses a linear relationship to represent the time update of images, and considers
the relationship between the image of the target and its forward and backward time by recursive
algorithm. Nonetheless, the lack of observation data in the target period will lead to large errors in the
measurement update.

Fortunately, the ESTARFM model is good at producing the details of observation data [15,31].
Therefore, we improved the Kalman filtering algorithm using the observation data producing operator
of ESTARFM model, where the input of the images was generated by the ESTARFM model as an
observation into the Kalman filtering algorithm. The harmonized image datasets with high temporal
resolution same to MODIS image and medium spatial resolution (30 m) were produced using the
improved Kalman filtering model by harmonizing GF-1 WFV images and Landsat 8 OLI images.
The growth condition of summer corn from 5 June to 6 October 2014 was then analyzed in combination
with meteorological data and evapotranspiration (ET) and latent heat flux (LE) data. The target of
this research is to evaluate the potential and practicality of harmonizing multi-source remote sensing
images using the improved Kalman filtering model and applying it to the crop growth monitoring.

2. Materials and Methods

2.1. Study Area

The study area is located in Zhuozhou, Gaobeidian and Dingxing County of Baoding City, Hebei
Province, China, which ranges from 115◦29′E, 39◦5′N to 116◦24′E, 39◦35′N, as shown in Figure 1.
This area is located in the North China Plain and has a temperate continental monsoon climate.
The average annual temperature is approximately 9 ◦C–15 ◦C, the annual solar availability rate is
approximately 60%, the annual precipitation is about 550 mm, and the water and heat conditions
are suitable for growing crops. Corn and winter wheat are the main crops; others include soybean
and cotton.

The summer corn is mostly planted before the winter wheat is harvested in the study area.
Generally, the summer corn emerges in mid-June, and this is also the harvesting time of winter wheat.
It enters the jointing stage in the early July, and enters the heading stage in the early August. From the
late August to early September, it enters the milk-ripening period, and reaching the maturity stage
in the middle of September [46–48]. This is the whole phenological period of summer corn in the
study area, which is used to determine the time ranging of acquisition dates for multi-source remote
sensing images.
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Figure 1. The study area, and locations of the three counties in Hebei Province, including the distribution
of agrometeorological stations.

2.2. Data Sources and Preprocessing

GF-1 was the first satellite of China’s high-resolution earth observation system and was successfully
launched on 26 April 2013. The spatial resolution of GF-1 WFV images is 16 m, including four bands
of blue, green, red and near-infrared, with revisiting period of four days. The GF-1 WFV images
were downloaded from the China Centre for Resources Satellite Data and Application website
(http://www.cresda.com/EN/). The acquisition dates of studied GF-1 images were shown in Figure 2.
Effected by the cloud, smog and raining, only eight GF-1 WFV images were available here in the whole
corn growing period.

Landsat 8 was successfully launched by NASA on 11 February 2013. This image could be
downloaded freely from the USGS EarthExplorer website (http://earthexplorer.usgs.gov/). The imaging
coverage size is 185 km by 185 km, with the revisiting period of 16 days. The published data indicate
L1T and can be geometrically corrected for terrain form. In general, the datasets can be used directly
without geometric correction. The preprocessing of GF-1 and Landsat 8 images included georeferencing,
radiometric calibration, atmospheric correction, resampling and masking, which was done using
the ENVI® v.5.2 software package (Exelis VIS, Boulder, CO, USA). First, radiometric calibration and
atmospheric correction were done using FLAASH algorithm of ENVI® v.5.2. Then, the GF-1 images
were georeferenced with Landsat 8 as the base map, with a resultant error of less than one pixel. Finally,
the spatial resolution of the GF-1 images were resampled to 30 m using the nearest neighbor method
and the datasets were cut down to represent only the research area.

MODIS is an important optical sensor for observing global biological and physical processes.
MODIS sensors were carried on the sun-synchronous polar orbit satellites Terra and Aqua, which
were successfully launched in 1999 and 2002, respectively. The MOD09GA reflectance product and
MODIS Evapotranspiration Data Set (MOD16) [49,50] were used in this study. For the MOD09GA,
there were seven bands ranging within blue, green, red, and near-infrared wavelengths at 459–479 nm,
545–565 nm, 620–670 nm, and 841–876 nm, similar to the band ranging of GF-1 images. There were
11 MODIS reflectance images in total in the whole corn growing season in the study area which were
taken simultaneously on DOY 156, DOY 178, DOY 227, and DOY 252 with GF-1 images. For the
MOD16, global evapotranspiration (ET) and latent heat flux (LE) datasets which we used were regular
1 km2 land surface ET datasets for the global vegetated land areas at 8-day. Notice that, the 8-day ET
data (mm/8 day) is the sum of ET during these 8-day time periods, and the 8-day LE data (104 J/m2/day)
is the average daily LE over the corresponding time period [51]. The downloaded MODIS images
are preprocessed using MRT (MODIS Reprojection Tool) tool. First, the data are organized using a

http://www.cresda.com/EN/
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consistent day-numbering system. Then, the image sine projection format is converted to UTM 50N,
for which the geographic coordinate system selected is WGS84. The output pixel size is 500 m by
500 m, and the “nearest neighbor” algorithm method was selected for downscaling to 30 m. A suitable
cutting range for the study area was set, and the images were saved in GeoTIFF format. Finally, the
files were saved with the above property settings, *.prm files were generated, and the command line
was called to achieve data batch processing.
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area in 2014.

The meteorological datasets and LAI data were collected from 20 National Agrometeorological
Observation Stations in Hebei Province. These automated weather stations were installed for long-term
climate observation and provided data on daily maximum, minimum, and average temperatures,
as well as daily precipitation. As can be seen from Figure 1, meteorological datasets are single-point
datasets, and all of the stations lie outside the study area, so the data need to be spatially processed.
In this study, we used the Kriging method to produce a dataset with a spatial resolution of 30 m by
30 m from the agrometeorological station data. Then, the average value of the data in the study area
was calculated, including daily maximum, minimum, average temperatures, and daily precipitation.
The LAI measurements were carried out on 10 samples of summer corn in the study area in the DOY
205 and DOY 224, which corresponded to the flare opening stage and the tasseling and anthesis silking
of summer corn, respectively.

2.3. The Improved Kalman Filter

The Kalman filter method is a linear fitting and prediction algorithm. It was published in the
“Journal of Basic Engineering Transactions” by Kalman in 1960 [52]. It can combine information from
observational systems and system modeling to minimize residual errors and produce more accurate
predictive information [53]. The method consists of three hypotheses: (i) the posterior probability obeys
a Gaussian distribution; (ii) the system is linear; and (iii) both the system noise and the measurement
noise are subject to Gaussian distribution. The method is described in Equations (1) and (2):

xk = Axk−1 + wk−1 (1)

zk = Hxk + vk, (2)

where xk and xk−1 are the estimated values of the current state k and the previous state k − 1 of the
model, respectively. For image harmonizing, xk and xk−1 are the reflectance images on time k and k − 1
respectively (Figure 3). The connection of time k and k − 1 is done by state-transition matrix A, and the
observed value zk is linearly related to the current state estimation xk. In addition, H is a measurement
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sensitivity matrix, wk−1, vk are process noise N(0,Q) and measurement noise N(0,R), both of which
obey a Gaussian distribution.

The Kalman filter is applied in two steps: the time update and the measurement update. In the
time update, the state-transition matrix A can be represented in linear regression. The linear regression
is used to describe the phenological trajectory between two moments, which can be represented by
linear equations. In this paper, 211 sampling plots were selected within the images. Based on these
plots, a linear relationship between the k−1 state and the k state of MODIS data was established,
as shown in Equation (3). The slope and intercept of the linear regression line modeled a and b,
respectively, which were used to transfer the prior estimation of the time change trend. The process
noise wk−1 is calculated by weighted standard error, and the weight is residual error. The uncertainty
Pk of the time update is calculated by Equation (4).

x−k = a ∗ x̂k−1 + b (3)

P−k = AP−k−1AT + wk−1 (4)

In the measurement update, a posteriori estimate value x̂k of the k state is calculated from the
weighted sum of the observed value zk and prior estimate x−k , as shown in Equation (5). The weights are
defined as Kalman gain Kk and are updated by uncertainty Pk. Rk is the measurement noise covariance
matrix, and T represents the matrix transposition operation, as in Equations (6) and (7).

x̂k = x−k + Kk
[
zk −Hkx−k

]
(5)

Kk = P−k Hk
T
[
HkP−k Hk

T + Rk
]−1

(6)

Pk =
(
1−KkHk

)
P−k (7)

For the Kalman filter algorithm, it is vital to update the a priori estimate for the current point-in-time
to obtain a posteriori estimate. Unfortunately, there are generally insufficient observation data resulting
from cloud, smog and raining, etc. To solve this problem, there are usually two solutions: one is to use
the posterior estimation of the previous moment, which is suitable for the case of small interval between
two moments; the other is to use the low spatial resolution image of the current moment instead.
Obviously, the two methods will produce more uncertainty for image harmonization. Therefore, we
developed the improved Kalman filter by carrying out a priori estimate for the studied point-in-time
using ESTARFM model for the NDVI images. NDVI is the combination of red band and NIR band
reflectance, aiming at enhancing the difference between vegetation and non-vegetation [54,55]. During
this process, we first calculated the NDVI products based on the preprocessed reflectance images,
including GF-1 images and MODIS images. Secondly, we used the NDVI products of MODIS images
and GF-1 images to generate a set of 30-m resolution observation data (zk) using ESTARFM model.
Finally, the time trajectory of time series MODIS NDVI (sub-model 1) and the updated observation
data resulting from ESTARFM model (sub-model 2) were used to harmonize GF-1 images and
MODIS images.

The main idea of updating the observation data for studied point-in-time using ESTARFM model
is to establish the correlation of the two resolution images and to minimize the systematic error.
The ESTARFM algorithm code which we used in this study is from Zhu [31] and the download address
is (https://xiaolinzhu.weebly.com/open-source-code.html). The algorithm uses mobile windows, which
size is ω and determines the predicted values ẑk(mω/2, nω/2, k, B) of moving pixels in the center at k
state. It can be calculated as follows, according to Equation (8):

ẑk(mω/2, nω/2, k, B) = Tki ∗ ẑki(mω/2, nω/2, k, B) + Tkii ∗ ẑkii(mω/2, nω/2, k, B) (8)

https://xiaolinzhu.weebly.com/open-source-code.html
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where (mω/2, nω/2) is the central pixel, and the B represents the image bands. ẑi(mω/2, nω/2, k, B) and
ẑii(mω/2, nω/2, k, B) represent the fine-resolution data at i and ii state which is integrated by similar
pixels in the moving window as Equation (9). Tki and Tkii are time weight of state ki and kii as
Equation (10). In these equations, we default that ki < k < kii.

ẑI(mω/2, nω/2, k, B)

= zI(mω/2, nω/2, kI, B) +
N∑

j=1
w j ∗ v j ∗

(
zlow

(
m j, n j, k, B

)
− zlow

(
m j, n j, kI, B

)) (9)

TI =

1/

∣∣∣∣∣∣ ω∑α=1

ω∑
β=1

zlow
(
mα, nβ, kI, B

)
−

ω∑
α=1

ω∑
β=1

zlow
(
mα, nβ, k, B

)∣∣∣∣∣∣
∑

I=i,ii

1/

∣∣∣∣∣∣ ω∑α=1

ω∑
β=1

zlow
(
mα, nβ, kI, B

)
−

ω∑
α=1

ω∑
β=1

zlow
(
mα, nβ, k, B

)∣∣∣∣∣∣
 (10)

where zI expresses the low temporal resolution and high spatial resolution images, and zlow expresses
the high temporal resolution and low spatial resolution images, the value of I is i and ii, N is the
number of and similar pixels embrace the central pixel, and

(
m j, n j

)
is the location of the jth similar

pixel, w j and v j represent the weight and the conversion coefficient of the jth similar pixel, respectively.
The algorithm flow of the improved Kalman filter is shown in the Figure 3.
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with the ESTARFM model.

The Kalman filtering algorithm is a recursive algorithm, which can perform forward filtering
x̂Fk and backward filtering x̂Bk. For the state k, the weighted sum of forward filtering and backward
filtering can improve the reliability of a posteriori estimation, and weights are calculated from forward
uncertainty PFk and backward uncertainty PBk, as shown in Equations (11) and (12):

x̂FBk = x̂Fk[PFk/(PFk + PBk)] + x̂Bk[PBk/(PFk + PBk)] (11)

1/PFBk = (1/PFk) + (1/PBk) − 1/Rk (12)

2.4. Accuracy Assessment of Image Harmonizing

In this study, we used two observation images (DOY 178 and DOY 227) to verify the accuracy
of the model. Owing to these two images were not involved in image harmonizing process, the
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verification observation data and synthetic data were independent of each other. We compared the
NDVI images observed by satellite with the harmonized NDVI images, and calculated the prediction
residuals (∆PRK) of each pair of images to evaluate the accuracy of the fused images. The prediction
residual images of ESTARFM model and improved Kalman filtering model and their probability
density images were analyzed to evaluate the ability of the two models to fuse data. The prediction
residual was computed as:

∆PRK =
NDVIobk −NDVIhak

NDVIobk
(13)

where ∆PRK is the prediction residual at pixel level, NDVIobk is the pixel value in the observation
image, and NDVIhak is the pixel value of harmonized image. The improved Kalman filter model
and the data analysis algorithms were running under MATLAB (The Mathworks, Inc., Natick, MA,
USA) environment.

3. Results and Analysis

3.1. Accuracy Assessment Results of Image Harmonizing

The spatiotemporal fusion of images using the improved Kalman filter preserves the high temporal
resolution of low spatial resolution images, but the product results also inherits high spatial resolution
characteristics. The spatial resolution of the harmonized images is 30 m, and the temporal resolution is
determined by the time interval of the MODIS source images. For example, if all MOD09GA images
are available, then the temporal resolution of the harmonized images is daily.

Similar spatial details can be used to evaluate qualitatively the accuracy of image harmonizing
using the improved Kalman filter, and temporal variation trends can be obtained. To reveal the spatial
details of harmonized image clearly, we chose a farmland with an area of about 5000 m × 5000 m,
as shown in Figure 4a–e, which is consist of farmland (about 75%), residential areas (about 20%) and
other areas (about 5%).
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Figure 4. The subset area was chosen to demonstrate results for better visualization: (a) is the study
area; (b–e) are the subset area of GF-1 image (R\G\B = Band 3\2\1) in DOY 156, 178, 227 and 252.

The Figure 5 represents spatial values for the NDVI calculated using GF-1 image, MODIS image
and harmonized image, respectively. As it can be seen from Figure 5, there are only four image pairs
of GF-1 image and MODIS image on DOY 156, DOY 178, DOY 227 and DOY 252. Excepting for
these four image acquisition dates, there are seven MODIS images without simultaneous collected
GF-1 images. In order to verify the accuracy of spatiotemporal fusion model, the image acquired
on DOY 178 and DOY 227 are not used for image harmonizing, and only for assessing the image
harmonizing accuracy. Figure 5 shows that the harmonized images on DOY 156, DOY 178, DOY 227
and DOY 252 have a similar spatial variation pattern with the simultaneous MODIS images, visually.
Moreover, the harmonized images on DOY 178 and DOY 227 have very similar spatial details with
the simultaneous GF-1 images. These two similarities reveal the harmonized images carry on the
time trajectory of MODIS time-series images and detailed spatial specifics of GF-1 images. From the
time-series harmonized images and MODIS images, the corn phenological growing changes in the
study area can be inferred clearly. NDVI shows a tendency to increase slowly at early growing stage,
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and change to increase quickly at the middle growing stage, and then decrease slowly at the end of
growing stage. From the zoomed time-series images, we can see that the phenological changes are
basically consistent for the harmonized images and MODIS images.
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the harmonized NDVI images by improved Kalman filter (b), and the original MODIS NDVI images (c),
during the summer corn growing season (form DOY 156 to DOY 252).

Normally, the NDVI values with the maximum probability density can show the temporal and
spatial variations and differences for studied summer corn more clearly, because they represent the
overwhelming majority of summer corn plants growing condition. Figure 6 shows the time series of
NDVI value with the maximum probability density resulting from time-series GF-1 images, harmonized
images and MODIS images. Specifically, the NDVI value with the maximum probability density
generally ranges from 0 to 0.5 before DOY 163, and increases to around 0.5 on the DOY 178, and
increases to a range from 0.6 to 0.9 on DOY 194. Moreover, there are two peaks for the probability
density distribution of NDVI values of GF-1 and harmonized images on DOY 227, with one lower peak
around 0.4 and another higher peak around 0.8. Unfortunately, the time-series MODIS images show a
single peak only, which cannot capture this little spectral variation. This comparation reveals that the
harmonized images can carry on the fine spatial resolution of the GF-1 images. Another comparation
is about the difference of three maximum probability density curves of GF-1, MODIS and harmonized
images on DOY 178 shown in Figure 6. The mean NDVI value of three maximum probability density
functions are all around 0.5. However, the maximum probability values of them are 3.9, 6.2 and 4.9 for
GF-1 image, MODIS image and harmonized image, respectively. This indicates that the harmonized
images can carry on the fine spatial resolution of the GF-1 images. In terms of the range of NDVI
values, it is obvious that the ranges of GF-1 and harmonized images are broader than MODIS image,
which reveal that there is a finer spatial detail expression ability in low vegetation coverage area and
high vegetation coverage area on GF-1 image and harmonized image than on the MODIS image.

Figures 7 and 8 show the spatial details of NDVI pattern for GF-1 image, MODIS image and
harmonized image on DOY 178 and DOY 227, respectively. Figures 7a and 8a indicate the position of
zoomed subset areas for analyzing of NDVI pattern on DOY 178 and DOY 227. Figure 7b–d are the
NDVI calculated from harmonized image using the improved Kalman filter, the original GF-1 NDVI
images, the harmonized image using ESTARFM model respectively. We can see that from Figure 7b–d,
there is a similar NDVI spatial variation pattern on harmonized images (Figure 7b,d) with the original
GF-1 NDVI images (Figure 7c), northwest of this zoomed area is lower than other regions. This reveals
that the harmonized images carry on the spatial details of the original GF-1 NDVI images. Figure 7e,g
are the ∆PRK between the original GF-1 NDVI images (Figure 7c) and harmonized images using the
improved Kalman filter (Figure 7b) and ESTARFM model (Figure 7d) respectively. We can see that the
NDVI of harmonized images using the improved Kalman filter are higher in vegetation area than that
in the original GF-1 NDVI images (negative difference value), lower in non-vegetation area (positive
difference value). Diversely, the NDVI of harmonized images using ESTARFM model are mostly higher
than GF-1 image (negative difference value) in the whole zoomed area. In addition, Figure 7f shows
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that the ∆PRK ranging between harmonized images using the improved Kalman filter and the original
GF-1 NDVI images is −0.2~0.2. Figure 7h shows the ∆PRK ranging between harmonized images using
ESTARFM model and the original GF-1 NDVI images is −0.25~0.25. This reveals that the harmonizing
accuracy using improved Kalman filter is higher than that using ESTARFM model. Similar conclusions
can be obtained by Figure 8.
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Figure 6. The NDVI probability density distribution of summer corn planted area (the X-axis is the
NDVI value and the Y-axis represents the probability density of each NDVI value) for the original GF-1
NDVI images (a), the harmonized NDVI images by improved Kalman filter (b) and the original MODIS
NDVI images (c), during the summer corn growing season (form DOY 156 to DOY 252).
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(R\G\B=Band 3\2\1); (b) the harmonized NDVI image by the improved Kalman filter; (c) the original 

Figure 7. Spatial-temporal fusion results and predicted residuals of DOY 178: (a) the GF-1 image
(R\G\B=Band 3\2\1); (b) the harmonized NDVI image by the improved Kalman filter; (c) the original
GF-1 NDVI images; (d) the harmonized NDVI using ESTARFM model; (e) the ∆PRK of the Figure 7b,c;
(f) the probability density distribution of ∆PRK in Figure 7e; (g) the ∆PRK of the Figure 7d,c; (h) the
probability density distribution of ∆PRK in Figure 7g; (f) and (h): the X-axis is the ∆PRK value and the
Y-axis represents the probability density of each ∆PRK value.
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Figure 8. Spatial-temporal fusion results and predicted residuals of DOY 227: (a) the GF-1 image
(R\G\B=Band 3\2\1); (b) the harmonized NDVI image by the improved Kalman filter; (c) the original
GF-1 NDVI images; (d) the harmonized NDVI using ESTARFM model; (e) the ∆PRK of the Figure 8b,c;
(f) the probability density distribution of ∆PRK in Figure 8e; (g) the ∆PRK of the Figure 8d,c; (h) the
probability density distribution of ∆PRK in Figure 8g; (f) and (h): the X-axis is the ∆PRK value and the
Y-axis represents the probability density of each ∆PRK value.

Furthermore, the quantitative assessment is done to validate the image harmonizing accuracy
using the improved Kalman filter and ESTARFM model. Figure 5 shows that there are four GF-1 high
spatial resolution images used for the time series images harmonizing, which are acquired on DOY
156, DOY 178, DOY 227 and DOY 252 respectively. There are only two image pairs that there are
simultaneous GF-1 image, harmonized image and MODIS image on DOY 178 and DOY 227.

In order to verify the accuracy of the improved Kalman filter, the image acquired on DOY 178 and
DOY 227 are not used in time-series image harmonizing, which are used only for image harmonizing
accuracy assessment in this study. If these two images are used for practical image harmonizing, the
accuracy of which will be higher than the accuracy results listed in Table 1. As it can be seen from
Table 1, the image harmonizing accuracy using the improved Kalman filter is higher than that using the
ESTARFM model in DOY 178 and DOY 227. For the harmonized image on DOY 178, the coefficient of
determination (R2) between the harmonized image using the improved Kalman filter and GF-1 image
is 0.65, which is higher than the harmonized image using ESTARFM model (R2 = 0.55). Moreover,
the root mean square error (RMSE) of the improved Kalman filter (RMSE = 0.08) is lower than that
of the ESTARFM model (RMSE = 0.09). Similarly, the harmonizing accuracy on the DOY 227 using
the improved Kalman filter is higher (with R2 = 0.84, RMSE = 0.07) than that using ESTARFM model
(R2 = 0.82, RMSE = 0.08).

Table 1. Accuracy assessment results using two image harmonizing methods.

Model R2 RMSE p-Value

DOY 178
ESTARFM model 0.55 0.09 <0.01

Improved Kalman filter 0.65 0.08 <0.01

DOY 227
ESTARFM model 0.82 0.08 <0.01

Improved Kalman filter 0.84 0.07 <0.01

3.2. Summer Corn Growth Mornitoring Results Using Harmonized Time-Deries Images

The harmonized time-series remote sensing images are the very ideal data source for summer
corn growth monitoring because the growth difference can be reflected on the spectral variation
and difference. In this study, we monitored the summer corn growth condition and changing using
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time-series NDVIs from harmonized images. Moreover, the MODIS ET and LE products (MOD16) and
meteorological data (rainfall, temperature in the corn growing season) were combined to analyse the
summer corn growth behavior, in other words, how the summer corn growth status (i.e. NDVI) change
with the change of rainfall, temperature and evapotranspiration. The time-series NDVI changing curve
from DOY 156 to DOY 252 is used to analysis the summer corn growing and changing in study area.
In addition, the changing slope and difference between neighboring NDVIs are calculated and used to
quantize the summer corn growing and changing. The changing slope and difference of NDVI curve
are calculated as follows:

SlopDOY(k) =
NDVIDOY(k+1) −NDVIDOY(k−1)

DOY(k + 1) −DOY(k− 1)
(14)

DifferenceDOY(k) = NDVIDOY(k+1) −NDVIDOY(k−1) (15)

Figure 9 is changing curve of time-series NDVI from harmonized remote sensing images over
the summer corn fields. In addition, the simultaneous rainfall and daily temperature change curves
from DOY 156 to DOY 252 are compared and analyzed synchronously. In study area, an interplanting
system of winter wheat and summer corn was implemented in the study area to ensure two crops each
year. From DOY 156 to DOY 174, the winter wheat was in the mature stage, while the summer corn
was in the seeding and emergence stage. On DOY 156, the average rainfall was 1.4 mm, and the ET
reaches 6.5 mm/8 day and LE reaches 2 × 106 J/m2/day. From DOY 156 to DOY 174, the temperature
increased continually, of which the average highest temperature during the day reached 29.8 ◦C, with
an average temperature of 23.4 ◦C. The winter wheat began to turn yellow and dry, so the NDVI
decreased and the slope value was therefore less than 0.

From DOY 174 to DOY 195, the summer corn is in the jointing stage. During this period,
the average rainfall was 2.8 mm. The rainfall on DOY 164 and DOY 196 was 0.08 mm and 1.17 mm,
respectively. So the ET and LE increased continually. The temperature continued to increase, and the
average highest temperature during the day reached 32.6 ◦C, with an average temperature of 26.5 ◦C.
At this time, the climatic condition is favorable for the rapid growth of corn leaves. Therefore, the
NDVI increased rapidly and the slope values and differences are all greater than 0.

From DOY 196 to DOY 227, the summer corn is in the heading stage. During this period, the
average rainfall is 2.3 mm and the temperature continued to be in a higher range. The average highest
temperature during the day reached 31.9 ◦C, with an average temperature of 26.0 ◦C. The water content
in the vegetation increased, and the ET increase its maximum level from 16.1 to 24.9 mm/8 day and LE
increase from 4.9 to 7.6 × 106 J/m2/day, then they gradually decreased. Especially, there was an obvious
rainfall and warming process on the DOY 198 to DOY 200 where the rainfall reached 28 mm and the
average temperature increased by 5 ◦C. Likewise, the ET and LE increased rapidly from DOY 193 to
DOY 201. It shows that the MOD16 product has high accuracy, which could reflect the changes of ET
and LE on a regional scale, but also shows that the ET and LE are closely related to precipitation and
temperature. The NDVI reached the maximum in the whole growing stage. The slope value and the
difference were all greater than 0. However, it could be seen from the diagram that the NDVI gradient
from DOY191–194 to DOY 194–195 NDVI is negative, indicating a small decrease in NDVI. The reason
for this variation may be that the time difference between the three images is very small, and the
influence of errors is therefore larger. We concluded that this stage was the key stage of high growth
rate of summer maize. The LAI measured on the ground showed that the average LAI value increased
from 2.5 (DOY 205, flare opening stage) to 3.4 m2/m2 (DOY 224, tasseling and anthesis silking).

From DOY 227 to DOY 246, the summer corn is in the milking stage, and it needs a larger leaf
area for photosynthesis to transform the organic matter into corn grain. The photosynthesis of corn
leaves depends on the adequate availability of suitable light, heat, and water. During this period, the
precipitation in the study area reached the peak value, which averaged 6.8 mm, and the ET and LE
are still at a higher stage but they are gradually decreasing. At the same time, the average highest
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temperature reached during the day was 29.4 ◦C, with an average temperature of 23.5 ◦C, and the day
and night temperature difference was greater than 10 ◦C. These factors are beneficial to photosynthesis
and the transformation of organic matter; therefore, the leaf area of the corn remained in a larger range.
On the DOY 241, a continuous rainfall process can be seen, but at this point the temperature decreased.
Then, the ET is increased by 1 mm/8 day and LE is increased by 2 × 105 J/m2/day.

From DOY 246 to DOY 279, the summer corn was in the ripening stage. During this growing
stage, the dry matter accumulation process of summer corn almost stopped, and the dry weight of the
grains reached their maximum. Precipitation began to decline, the average precipitation dropped to
1.2 mm, the vegetation began to lose water, and the ET and LE also descended. The temperature and
evaporation rates were reduced, and the average highest temperature during the day reached 23.7 ◦C,
with an average temperature of 17.9 ◦C. The corn leaves began to turn yellow, leaf area decreased, and
NDVI began to decline rapidly. The slope and differences were all below 0.

From this time-series diagram, we can see that the summer corn grows quickly with the quick
increasing NDVI at early growing stage, stable in the middle growing stage and decreases in the late
growing stage. Moreover, the NDVI, ET and LE all increase after the rainfall in the early growing stage.
Generally, this delay would be four to five days.Remote Sens. 2019, 11, 1266 13 of 18 
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Figure 9. Harmonized remote sensing images over the summer corn fields: temporal variation of
NDVI and LAI (a), slope and difference of NDVI (b), rainfalls and temperatures (c), ET (d) and LE (e)
from DOY 150 to DOY 280, 2014, in study area.

4. Discussion

4.1. The Improved Kalman Filter Model

Kalman filter is an algorithm for optimal estimation of system state which uses linear equation
of system state and observation data. When we predicted the missing GF-1 image by Kalman filter,
we found that the model was uncertain due to the lack of observation value. Consequently, we
generated a set of observation data, firstly through ESTARFM model and applied it to Kalman filter.
In our work, the result manifested that the improved Kalman filter had good performance in predicting
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GF-1 images. As shown in Figure 5, the harmonized images using improved Kalman filter depicted the
growing and changing of summer corn well, and was in good agreement with the temporal changing
curve of MODIS images which had a low spatial resolution. Importantly, compared with the ESTARFM
model, the improved Kalman filter added the function of filtering on time series, and through the
forward and backward filtering of Kalman filter, the weighted average was carried out according to
the uncertainty to achieve a smooth effect. We used the real observations (DOY 178 and DOY 227)
which were not involved in synthesis as validation data. As could be seen from the Figures 7 and 8,
the synthesized dataset constructed using this methodology was highly accurate, with high temporal
resolution and medium spatial resolution.

Although there are important discoveries revealed by our studies, there are also limitations.
First, the problem of missing data due to weather (e.g., clouds, raining and smog) has not been
thoroughly solved. In spite of the synthesis algorithm based on multi-source data platform alleviates
this problem to some extent, it is possible to not get an image for a month. Especially in our research
area, this phenomenon is particularly serious. Chen et al. [56] compared four kinds of image fusion
methods, including ESTARFM, and showed that the ESTARFM performed more stably than other
models. However, the results of Walker et al. [57,58] showed that MODIS 8-day composite datasets
had more acceptable correlations for distinguishing phenology variations at shorter time frames than
16-days. Long time intervals will lead to large changes in vegetation cover and NDVI due to vegetation
growth, which will have a negative impact on the quality of the predicted image. To some extent,
the improved Kalman filter alleviates this contradiction, but it cannot be ignored. Second, the BRDF
effect of MODIS images also has a beneficial effect on the results. Kim et al. [59] reminded of the BRDF
effects in MODIS images can be considerable because of the large swath width. In practice, we used
NDVI to reduce the BRDF effect. Furthermore, the selection of sampling plots was done manually,
which greatly reduces the image processing ability. The meaning of Equation (3) is to capture the
changes of vegetation growth over time on existing low-resolution images and use it to predict the
high-resolution prior estimation at the next moment. Therefore, the selection of quadrats is very
important as it requires pure corn pixels. Huang et al. [44] pointed out that the higher pixel purity
could improve the accuracy of LAI of time series and crop yield estimation. We selected relatively pure
corn pixels manually according to land-use classification data (excluding those cloudy and serious
mixed pixels). The process of manual selection was time-consuming and laborious, which greatly
reduced the efficiency of the algorithm.

In the future, we will try to introduce Synthetic Aperture Radar (SAR), which is not affected by
weather conditions such as clouds and rain into the improved Kalman filter model and develop an
automatic method to select sampling plots.

4.2. Application Potential of Crop Growth Process Monitoring

Corn is an important grain crop in North China Plain. According to planting time and variety,
corn can be roughly divided into spring corn and summer corn. In the two-year three-cropping area,
the planting area of summer corn is much larger than that of spring corn. The growing season of
summer corn is from June to October. The rainy season is in July and August, and it is also the key
period of maize growth, which is closely related to the final yield. The lack of clear sky observations
from optical satellite due to weather factors such as clouds and smog is widespread in other agricultural
regions of China [60]. Because of the shortcomings of temporal resolution or spatial resolution,
single sensor remote sensing satellite cannot satisfy the requirement of long-term monitoring of crop
accurately. It is one of the important methods for crop growth monitoring in the field scale based on
time-series spatial-temporal fusion images harmonized by multi-source remote sensing data sources.

Previous studies [2,9,26,41] have demonstrated that the availability and great potential of long
time series remote sensing images in crop growth monitoring. In this paper, the result manifested that
the improved Kalman filter could be used to harmonize the time-series multi-source remote sensing
images for summer corn growth monitoring. Finally, we analyzed the growth situation of summer corn
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in the study area based on NDVI time-series dataset synthesized from multi-source remote sensing
data and discussed how the temperature and moisture of the environment changed with the growth
stage. The growth process of summer corn obtained from synthetic remote sensing images could be
directly applied to follow-up studies, such as precise farmland management of irrigation, fertilization
and pesticides and yield estimation over large areas. Furthermore, our results suggested that the
application potential of synthesizing multi-source data in crop growth monitoring is enormous and it
was a low-cost method to obtain complete time-series images in the field scale at the present stage.

5. Conclusions

This paper presented a method for monitoring summer corn crop growth by harmonizing
multi-source remote sensing images. We harmonized the high spatial and temporal resolution images
using improved Kalman filter based on daily MOD09GA reflectance images with the 250 m spatial
resolution and GF-1 WFV images with 30-m-resolution. The growth status of summer corn in a
designated research area was analyzed during part of 2014 in conjunction with MOD16 ET and LE
product and meteorological data.

We were able to draw a number of conclusions from our research. First, the high temporal and
spatial resolution images reconstructed using the improved Kalman filter had higher precision than
ESTARFM model only; it not only inherited the phenological trends in the MODIS data, but also
preserved the spatial detail levels of the GF-1 datasets; moreover, the prediction accuracy of satellite
images after corn silking is higher than that of early stage. Second, the vegetation indexes calculated
from the multi-source image datasets, including NDVI, can be used to monitor the growth of crops at
all stages when the analysis is combined with MOD16 ET and LE product and meteorological data.
This includes slope and differences calculated from NDVI values. Third, before the milking stage,
NDVI values for summer corn increased with the increase of temperature and precipitation. After the
milking stage, NDVI first stabilized for a period of time and then decreased with the decrease of
temperature and precipitation. The ET and LE data had a close relationship with the temperature and
precipitation data.

In conclusion, the harmonized multi-source remote sensing datasets can effectively reflect crop
growth. The improved Kalman filter model can help resolve issues arising from incomplete satellite
imaging datasets, particularly in areas with adverse climatic conditions. This monitoring method
should be applied to other crops and to a broader range of source data, including that associated with
diseases, insect pests, and final crop yield totals, in the future.
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