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Abstract: Translational motion of a target will lead to image misregistration in interferometric
inverse synthetic aperture radar (InISAR) imaging. In this paper, a strong scattering centers fusion
(SSCF) technique is proposed to estimate translational motion parameters of a maneuvering target.
Compared to past InISAR image registration methods, the SSCF technique is advantageous in its high
computing efficiency, excellent antinoise performance, high registration precision, and simple system
structure. With a one-input three-output terahertz InISAR system, translational motion parameters
in both the azimuth and height direction are precisely estimated. Firstly, the motion measurement
curves are extracted from the spatial spectrums of mutually independent strong scattering centers,
which avoids the unfavorable influences of noise and the “angle scintillation” phenomenon. Then,
the translational motion parameters are obtained by fitting the motion measurement curves with
phase unwrapping and intensity-weighted fusion processing. Finally, ISAR images are registered
precisely by compensating the estimated translational motion parameters, and high-quality InISAR
imaging results are achieved. Both simulation and experimental results are used to verify the validity
of the proposed method.

Keywords: interferometric inverse synthetic aperture radar (InISAR); image registration; translational
motion parameters estimation; strong scattering centers fusion; terahertz radar imaging

1. Introduction

Historically, the application of inverse synthetic aperture radar (ISAR) imaging in target recognition
is limited, owing to the fact that the technique only captures the projected two-dimensional (2-D)
characteristics of the target. To overcome this drawback, interferometric ISAR (InISAR) that provides
three-dimensional (3-D) information of the target has been developed [1–11]. InISAR systems are
generally composed of several fixed channels, with one as both a transmitter and receiver and the
rest as full-time receivers. The 3-D geometry of the target can be reconstructed based on the phase
difference of different ISAR images. Until now, nearly all researches regarding InISAR imaging have
been carried out in the microwave band, while limited research about InISAR imaging with terahertz
(THz) radars is available in the current literature. Compared to InISAR imaging with microwave
radars, THz radars can more easily achieve a higher carrier frequency and wider absolute bandwidth,
which provide higher spatial resolution and more detailed information of the target. Furthermore,
THz InISAR imaging holds large potential in maneuvering target surveillance and recognition in space
and near space, and it is of great significance to study and advance this technique.
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With the noticeable progress of THz sources and detectors over the past few decades, it has become
possible to achieve imaging and recognition with a THz radar system. For now, we can summarize
the imaging radar system in the THz band into three main categories: raster-scanning radar system,
mixed-scanning radar system, and an SAR/ISAR system. The raster-scanning radar system focuses the
beam to a fixed area using several lenses, and the 3-D imaging result is obtained by recording the data
of each scanning area. Representatives of such systems include Jet Propulsion Laboratory [12–17] and
Pacific Northwest National Laboratory [18,19]. The imaging frame rate is determined by the number of
scanning pixels and oscillation frequency of the scanning mirrors, which makes it time-consuming to
obtain a target image. Besides, the system structure is complex and can be easily damaged. Compared
to the raster-scanning radar system, the mixed-scanning radar system substitutes one-dimensional
(1-D) raster scanning with 1-D electrical scanning or 1-D mechanical scanning, and the imaging speed
can be greatly improved. Representatives of mixed-scanning radar systems include Chinese Academy
of Sciences [20–22] and China Academy of Engineering Physics [23,24]. The mixed-scanning radar
system can achieve 3-D imaging near real time, but some defects still exist (e.g., the imaging field
of view is limited, and the target needs to be stationary). The SAR/ISAR system acquires the target
image through relative motion between radar and target. The resolution depends on the bandwidth of
the sweep signal and the length or relative rotation angle of the synthetic aperture. Representatives
include FGAN-FHR [25–27], the US Defense Advanced Research Projects Agency (DARPA) [28], and
so on [29–33]. Compared to the former two THz radar systems, the SAR/ISAR system has a relatively
simple system structure and low hardware cost, and it has no limitation of target distance. However, the
SAR/ISAR system can only achieve 2-D imaging. The THz InSAR/InISAR system has the advantages
of the SAR/ISAR system and also has the ability to achieve 3-D imaging. Thus, it is meaningful to
establish an InSAR/InISAR system in the THz band.

As we know, the translational motion of a target will lead to image misregistration in InISAR
imaging, and an image registration process is necessary to be carried out first. In recent years, some
research regarding image registration in InISAR systems have been presented. These image registration
methods can be summarized into three categories. The first is based on the correlation coefficient
of ISAR images such as the time domain correlation method and the frequency domain searching
method [4]. However, in order to guarantee registration precision, the searching step of motion
parameters should be controlled within a very limited range in the THz band, which significantly
increases the computational complexity. The second is based on the selection of a reference distance,
such as the respective reference distance compensation method and the reference distance deviation
compensation method [5,6]. In these methods, the reference distance is chosen as the total distance from
the transmitter to reference center and the reference center to corresponding receiver. There is no need
to estimate the motion parameters, and the method is suitable for both three-antenna and multiantenna
configurations. However, in a real InISAR imaging scene, it is highly challenging to acquire the
accurate distances from the reference center to the other receivers (except the one as both a transmitter
and receiver). The third is based on estimation of the motion parameters of target. Reference [7]
presents a procedure based on a multiple antenna-pair InISAR imaging system with nine antennas
to estimate angular motion parameters. The angular motion parameters measurement is based on
the spatial spectrums of the whole target, and the phase wrapping of motion measurement curves is
avoided by using a pair of antennas with a short baseline. However, there are some shortcomings
in this method. Firstly, the multiple antenna-pair configuration increases the system complexity and
hardware cost, especially in high-frequency applications. Secondly, the spatial spectrums in a fixed
range cell usually contain information of several scattering centers, which would introduce the “angle
glint” phenomenon to the motion measurement curves. Thirdly, the method does not consider the
influence of noise, but the motion parameter measurement precision of the weak scattering centers is
sensitive to noise. In addition to the limitations of the above methods, most research just gives the
simulation results and are short on experimental validation.
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Unlike SAR images, high-frequency ISAR images of moving targets usually consist of several
dominating reflectors such as corner reflectors formed by the tail, fuselage, and wings of the aircraft.
Taking the computing efficiency, practicability, robustness, and precision into consideration, a strong
scattering centers fusion (SSCF) technique is proposed in this paper to estimate translational motion
parameters using these dominating reflectors, which overcomes the defects in the aforementioned
image registration methods. With a one-input three-output THz InISAR system, translational motion
parameters both in the azimuth and height directions are accurately estimated. Strong scattering
centers (SSCs) are extracted in the image domain with a rectangular filter operation, which eliminates
most of the noise. Motion measurement curves are derived from the spatial spectrums of mutually
independent SSCs so that the “angle scintillation” phenomenon can be effectively suppressed. Then,
the translational motion parameters are obtained by fitting the motion measurement curves with phase
unwrapping and intensity-weighted fusion processing. Finally, image registration is achieved by
compensating the estimated motion parameters to the radar echoes, and the InISAR imaging results
are obtained with a simple interference operation.

This paper is organized as follows: in Section 2, the signal model is established. The SSCF
technique is described in detail in Section 3. In Section 4, the simulations of the point targets model
under different signal-to-noise ratio (SNR) and equivalent verification experiments with a multichannel
THz radar system are carried out. A discussion is given in Section 5. Conclusions are presented in in
Section 6.

2. Signal Model of Interferometric Inverse Synthetic Aperture Radar (InISAR) Imaging

The configuration of the InISAR system is demonstrated in Figure 1. Antenna O acts as both the
transmitter and receiver, while antennas A and B operate in the receiving mode only. L1 and L2 denote
the lengths of the baselines OA and OB, respectively. A target coordinate system xoz is built referencing
the right-angle layout of the three antennas. P(xp, yp, zp) is an arbitrary scattering center located on
the target whose projections on planes xoy and yoz are P1 and P2, respectively. y0 denotes the initial
distance from antenna O to the reference center o, and RAP, RBP, and ROP denote the initial distances
from P to three antennas, respectively. Suppose the transmitting linear frequency modulated (LFM)
signal from antenna O is

s(t̂, tm) = rect(
t̂

Tp
) exp[ j2π( fct + γt̂2/2)], (1)

where

rect (u) =
{

1 |u| ≤ 0.5
0 |u| > 0.5

, (2)

then, Tp is the pulse width, fc is the carrier frequency, γ is the chirp rate, tm is the slow time, t̂ is the fast
time, and t = tm + t̂ is the full time.
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Figure 1. Schematic of the three-receiver interferometric inverse synthetic aperture radar (InISAR) 
imaging configuration. 

Figure 1. Schematic of the three-receiver interferometric inverse synthetic aperture radar (InISAR)
imaging configuration.
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Ignoring the signal envelope, the received signal at receiver i (i = O, A, B) from P is

si(t̂, tm) = σP exp{ j2π[ fc(t−
ROP(t̂, tm) + RiP(t̂, tm)

c
) +

γ

2
(t̂−

ROP(t̂, tm) + RiP(t̂, tm)

c
)2]}, (3)

where c is the wave propagation velocity, σP is the reflection coefficient of P, and RiP(t̂, tm) represents
the distance from receiver i to P at time t. These distances are:

ROP(t) =
√
(xP + ∆Rx(t))

2 + (yP + y0 + ∆Ry(t))
2 + (zP + ∆Rz(t))

2, (4)

RAP(t) ≈ ROP(t) +
L2

1 − 2L1(xP + ∆Rx(t))

2y0
, (5)

RBP(t) ≈ ROP(t) +
L2

2 − 2L2(zP + ∆Rz(t))

2y0
, (6)

where ∆Rx(t), ∆Ry(t), and ∆Rz(t) represent the displacement of P from time instant 0 to time t in the x,
y, and z directions, respectively. The approximations of RAP(t) and RBP(t) are based on the assumption
that the imaging scene satisfies the far-field condition.

Based on the ‘stop–go’ model approximation and de-chirping processing, the received signal after
range compression is

si(y, tm) = σPsin c{
2γTp

c [y− (ROP(tm)+RiP(tm)−2ROo(tm))
2 ]}

× exp{− j 2π
λ [ROP(tm) + RiP(tm) − 2ROo(tm)]}

, (7)

where ROo(tm) is the reference distance

ROo(tm) =

√
∆Rx2(tm) + (y0 + ∆Ry(tm))

2 + ∆Rz2(tm). (8)

Within the short time of data acquisition, the translational velocities of the aircraft are assumed as
constant (i.e., ∆Rx(tm) = Vxtm, ∆Ry(tm) = Vytm, ∆Rz(tm) = Vztm). After migration through range cell
(MTRC) correction and azimuth compression, the ISAR images of three channels can be obtained as

sO(y, fa) = APsin c{
2γTp

c
(y− yP)}sin c{Ta[ fa +

2PV
λ

]} exp( jϕ0), (9)

sA(y, fa) = APsin c{
2γTp

c
(y− yP)}sin c{Ta[ fa +

2PV
λy0

−
L1Vx

λy0
]} exp[ j(ϕ0 + ϕ1)], (10)

sB(y, fa) = APsin c{
2γTp

c
(y− yP)}sin c{Ta[ fa +

2PV
λy0

−
L2Vz

λy0
]} exp[ j(ϕ0 + ϕ2)], (11)

where AP is the scattering intensity of P in the ISAR images, Ta is the total data acquisition time,
P = (xP, yP, zP) is the coordinate vector, and V = (Vx, Vy, Vz) is the translational motion vector. ϕ0 and
ϕi (i = 1, 2) denote the constant phase and interferometric phases, respectively, and they are expressed
as

ϕ0 = −
2π
λ
(yP +

x2
P + y2

P + z2
P

y0
), (12)

ϕ1 =
2π
λ

2L1xP − L2
1

2y0
, (13)

ϕ2 =
2π
λ

2L2zP − L2
2

2y0
. (14)
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From Equations (9) to (11), it can be seen that the Doppler shifts of ISAR images are L1VxTa/λy0

and L2VzTa/λy0, respectively. Obviously, the Doppler shifts will lead to pixels misregistration between
ISAR images. Therefore, image registration must be accomplished before interferometric imaging. It is
clear that image registration is essentially the compensation of the translational motion parameters
Vx and Vz. Once these motion parameters are achieved, the Doppler shifts can be eliminated by
compensating the radar echoes of antenna A and antenna B with them.

3. The Strong Scattering Centers Fusion (SSCF) Technique

In this subsection, the proposed SSCF technique is described in detail. This method can
settle problems such as the “angle glint”, sensitivity to noise, and phase wrapping in motion
parameter estimation.

The details of the proposed SSCF technique are described as follows.
Step 1) After data preprocessing (i.e., range alignment, autofocus [34,35], and MTRC correction),

the spatial spectrums of radar echoes are obtained as sO(m, k), sA(m, k), and sB(m, k), 1 ≤ m ≤M and
1 ≤ k ≤ N, where M and N denote the number of samples and the number of pulses, respectively. Then,
the ISAR images can be obtained as sO(m, n), sA(m, n), and sB(m, n) after azimuth compression, where
1 ≤ n ≤ N.

Step 2) Based on a fixed threshold, strong scattering areas on the object can be extracted from the
three ISAR images. Firstly, the strongest scattering center in the first strong scattering area of antenna
O can be easily found. Subsequently, the corresponding scattering centers in ISAR images of antenna
A and antenna B can be confirmed, since they are distributed in the same range cell. This scattering
center is then extracted in the image domain with a rectangular filter, whose length is determined by
the main lobe width (3 dB) of the extracted scattering center. The noise is filtered in this step. This
process is iterated to search for the localized strongest scattering center in all the strong scattering areas
until the strongest scattering center in the last strong scattering area has been extracted.

Step 3) The extracted data of all SSCs in the image domain are rearranged to form new image
matrices sO(m′, n), sA(m′, n), and sB(m′, n), where 1 ≤ m′ ≤ M′, and M′ denotes the number of
SSCs. By performing an inverse Fourier transformation on variable n, the new spatial spectrums are
obtained as sO(m′, k), sA(m′, k), and sB(m′, k), respectively. Here, each row of the spatial spectrums
contains information of only one scattering center. The phase difference curves s∗O(m

′, k)sA(m′, k) and
s∗O(m

′, k)sB(m′, k) can be calculated as

ϕxm′(k) = −
2π
λ

L2
1 − 2L1(xm′ + Vxm′k∆t)

2y0
, (15)

ϕzm′(k) = −
2π
λ

L2
2 − 2L2(zm′ + Vzm′k∆t)

2y0
,

where ∆t is the pulse repetition interval, and Vxm′ and Vzm′ are the estimated translation velocity of
the m′th strong scattering center.

Step 4) In the THz band, the wavelength is very short. On the other hand, in order to guarantee
the precision of altitude measurement, a relative long baseline is required [7]. Therefore, the values of
ϕxm′(k) and ϕzm′(k) usually exceed the range [−π,π], and the phase unwrapping operation is necessary.
Here, the one-dimensional path integral method is adapted to achieve phase unwrapping of the motion
measurement curves, and the theory is

∆ϕ(k) =


ϕ(k + 1) −ϕ(k)

∣∣∣ϕ(k + 1) −ϕ(k)
∣∣∣ ≤ π

ϕ(k + 1) −ϕ(k) + 2π ϕ(k + 1) −ϕ(k) < −π
ϕ(k + 1) −ϕ(k) − 2π ϕ(k + 1) −ϕ(k) > π
ϕnew(k + 1) = ϕnew(k) + ∆ϕ(k)

, (17)
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where ϕ(k) and ϕnew(k) are phases before and after phase unwrapping, respectively.
Step 5) The motion measurement curves along the x axis and z axis are calculated as

Rxm′(k) = ϕxm′new(k) ·
λy0

2πL1
+

L1

2
= xm′ + Vxm′k∆t, (18)

Rzm′(k) = ϕzm′new(k) ·
λy0

2πL2
+

L2

2
= zm′ + Vzm′k∆t. (19)

The estimated velocities of each SSC can be obtained by fitting these time-dependent curves.
Finally, the estimation values of translational motion parameters are acquired by intensity-weighted
fusion of all SSCs:

Vx =

M∑
m′=1

Vxm′Am′

M∑
m′=1

Am′

, Vz =

M∑
m′=1

Vzm′Am′

M∑
m′=1

Am′

; (20)

where Am′ is the mean scattering intensity of the m′th SSC in the ISAR images.
By compensating the radar echoes of antenna A and antenna B with the estimated motion

parameters, the coordinates of the target are finally obtained from s∗O(y, fa) sA(y, fa) and
s∗O(y, fa)sB(y, fa),

xP =
λy0

2πL1
ϕ1 +

L1

2
, zP =

λy0

2πL2
ϕ2 +

L2

2
. (21)

The derivation of the value of yP is omitted here, as it can be directly obtained from the range
scale in the ISAR images. To summarize the above analysis, a block scheme of the InISAR imaging
procedure based on the SSCF technique is presented in Figure 2.
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Figure 2. The flowchart of InISAR imaging based on the strong scattering centers fusion
(SSCF) technique.

Regarding the InISAR imaging theory, the Doppler shift between ISAR images should be less than
one-eighth of the Doppler cell after image registration to guarantee a relatively high InISAR imaging
precision. Thus, the velocity estimation error ∆V should satisfy

|∆V| <
y0λ

8LTa
. (22)

Equation (22) is applied as the criteria to evaluate the performance of the SSCF technique in
this paper.
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4. Results and Analysis

4.1. The Point Target Simulation Results

In order to verify the effectiveness of the proposed SSCF technique, an InISAR imaging simulation
of a moving airplane model is presented. The parameters in the simulation are shown in Table 1. The
airplane model contained 64 scattering centers, and the size of the airplane model was 21, 24, and 7.5
m in length, width, and height, respectively. For a vivid visualization, the model was depicted in four
different views from four visual angles in Figure 3, with (a), (b), (c), and (d) corresponding to the 3-D
view and projections on the xoy, xoz, and yoz planes, respectively. Three SSCs were assigned at the tail,
wing, and fuselage, respectively, as highlighted with red circles in Figure 3. The ratio of scattering
intensity between these SSCs and the others was 3:1. As a result, several ordinary scattering centers
were distributed in the same range cell with the SSCs. The target was assigned to move at a constant
velocity along the x direction, which led to image misregistration between ISAR images of antenna O
and antenna A.

Table 1. Parameter settings of the radar system and target.

Parameter Setting Value

Carrier frequency 220 GHz
Bandwidth 5 GHz
Pulse width 50 us

Pulse repetition frequency 1000 Hz
Pulse number 1000

Sampling frequency 20 MHz
Target speed (300, 0, and 0 m/s)

Antenna O location (0, 20,000, and 0 m)
Antenna A location (0.5, 20,000, and 0 m)
Antenna B location (0, 20,000, and 0.5 m)
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After range alignment, autofocus, and MTRC correction processing, three ISAR images were
obtained. Based on the system parameters in Table 1, we calculated the Doppler shift between ISAR
images of antenna A and antenna O at 5.5 cells. The range profiles of ISAR images at y = 0 of antenna
A and antenna O are shown in Figure 4. It was obvious that there was a Doppler shift of six cells on the
peak positions. To compare performances between the conventional method in [7] and our method,
we added a pair of antennas with 0.04 m length of baseline to the conventional method because it used
short baselines to achieve phase unwrapping of motion measurement curves.
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Figure 5 shows the spatial spectrums of radar echoes, and Figure 6 shows the phase difference
curves of the spatial spectrums, both with (a) corresponding to the conventional method and (b)
corresponding to our method. The SNR was 0 dB in this simulation. It can be seen from Figure 5a that
the multiple scattering centers in a fixed range cell introduced a serious “angle glint” phenomenon. The
“angle glint” phenomenon was eliminated by extracting the SSCs, as shown in Figure 5b. The influence
of the multiscattering centers in motion parameter estimations is visualized in Figure 6a. Firstly, the
“angle glint” phenomenon and noise introduced serious nonlinearity to the phase difference curves,
which destroyed the real phase difference relationship and deteriorated the estimation precision of
motion parameters. Secondly, without the short baseline, different scattering centers had different
phase wrapping positions, and the one-dimensional path integral method was not applicable in this
condition. In contrast, the curves in Figure 6b were linear, and the phase wrapping positions of each
curve were constant. Noise was effectively filtered with the filter operation in the image domain, which
ensured an excellent linearity of the motion trajectory even under a low SNR.
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Based on the one-dimensional path integral method, the phase difference curves of the three SSCs
after phase unwrapping were acquired, as shown in Figure 7. All curves were absolutely linear with no
fluctuation. Subsequently, translational motion parameters were easily estimated based on polynomial
curve fitting and intensity-weighted fusion operation. In this simulation, the estimated velocities of
the conventional method and our method were 68.678 and 300.057 m/s, respectively, which meant the
conventional method was invalid under this low-SNR simulation environment. The estimated velocity
of our method was nearly the same as the real velocity, which verified the effectiveness of the proposed
SSCF technique. By compensating the estimated velocity of our method to the echo signals of antenna
A, the final imaging results are shown in Figure 8, with (a) corresponding to the range profiles at y =

0 of antenna A and antenna O and (b) corresponding to the final InISAR imaging results. It can be
seen from Figure 8a that the Doppler shift was eliminated, and image registration was achieved. In
Figure 8b, the red circles are the real positions of the target, and the blue dots are the InISAR imaging
results. It was clear that the InISAR image and the target model were precisely overlapped.
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Figure 8. Imaging results after image registration. (a) ISAR images at y = 0 of antenna O and antenna
A. (b) InISAR imaging results.

At the end of this simulation, the antinoise abilities of the two methods were evaluated. With our
simulation parameters, the maximum allowed mean absolute error (MAE) of the estimated velocity in
this simulation was derived as 6.8 m/s on the basis of Equation (22). The MAE of the estimated velocity
is defined as

MAE =
N∑

i=1

|Vi −V|/N, (23)

where Vi is the ith estimated velocity, V is the real velocity, and N is the number of simulation
times. Here, the MAE of the estimated velocity was provided based on 100 Monte Carlo simulations
under different SNR environments, as shown in Figure 9. The MAE of the conventional method
was larger than 6.8 m/s when the SNR was under 30 dB, which meant the antinoise performance
of the conventional method was very poor. This method was only suitable for extremely high SNR
environments. The MAE of our method was under 6.8 m/s when the SNR was larger than −30 dB. The
low MEA in estimated velocity proved the excellent antinoise ability of the proposed SSCF technique.
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Figure 9. The mean absolute error (MAE) under different signal-to-noise ratio.

In order to show the superiority of the proposed SSCF technique over the past methods,
performance comparisons of the frequency domain searching (FDS) method in [4], respective reference
distance compensation (RRDC) method in [5] and [6], angular motion parameters estimation (AMPE)
method in [7], and proposed SSCF technique in this paper are listed in Table 2. The algorithm
reconstruction times (excluding the echo generation process) were obtained on a desktop computer
with Intel core i7-7820X 3.60GHz CPU and 32GB RAM using Matlab codes. The reconstruction time
of the FDS method depended on the initial value and searching step of motion parameters. In this
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experiment, the initial value and searching step were set as 200 and 3 m/s, respectively, and a typical
single-parameter optimization algorithm was adapted. From Table 2, it was seen that the FDS method
was too time-consuming to fulfill the requirement of real time imaging. The RRDC method had
the fastest imaging speed, but the radar needed to have ranging function. Besides, it was highly
challenging to acquire accurate distances from the reference center to the other receivers (except the
one as both a transmitter and receiver). The AMPE method needed a complex system structure, and
the antinoise ability was poor. The SSCF technique proposed in this paper was advantageous in its
high computing efficiency, excellent antinoise performance, and simple system structure. Therefore,
the SSCF technique was more suitable for image registration in InISAR imaging.

Table 2. Comparison of algorithm performances.

Method Reconstruction
Time

Number of
Channels

Anti-Noise
Ability

Need Ranging
Function

Frequency domain Searching (FDS) 23.145 s 3 Strong No
Respective Reference Distance

Compensation (RRDC) 0.699 s 3 Strong Yes

Angular Motion Parameters
Estimation (AMPE) 0.744 s 9 Weak No

Strong Scattering Centers Fusion
(SSCF) 1.657 s 3 Strong No

4.2. Experimental Results

In order to further verify the effectiveness of the proposed SSCF technique, equivalent verification
experiments in the laboratory environment were carried out. The schematic diagram of the THz
radar system and the photograph of the front-end setup is shown in Figure 10. The five antennas
were arranged in two rows, with three receiving antennas in the upper row and one transmitting
antenna and one receiving antenna in the other row. R1 and R2 formed the vertical interferometric
baseline, and R2 and R3 formed the horizontal interferometric baseline. Both the vertical and horizontal
baseline lengths were 2.1 cm. R4 was ignored in the InISAR experiment. Besides InISAR imaging,
this system also had many other potential applications such as InSAR imaging, ViSAR imaging, and
micromotion target 3-D imaging. The THz radar system was based on the linear frequency modulated
pulse principle. A chirped signal ranging from 217.1 to 222.1 GHz was transmitted, and the echo
signals were received by the four receiving antennas.
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Figure 10. The terahertz radar system. (a) Schematic diagram. (b) Photograph of the front-end setup.

The experimental configuration is shown in Figure 11. In the experiment, the THz radar was put
on a one-dimensional horizontal guide platform, and the velocity of radar was 1 m/s. The vertical
distance between the radar and the target was 10 m, and the initial connection from the target to the
radar platform was perpendicular to the motion direction. This was a typical SAR imaging scenario,
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but it was equivalent in that the radar was static, and the target moved along the horizontal direction,
which matched the InISAR scenario described in this paper. To decrease the SNR of the radar echoes,
the power transmitted from the radar was reduced to 10 mW. The pulse width was 163.8 µs, the pulse
repetition frequency was 2500 Hz, the sampling frequency was 12.5 MHz, and the data acquisition
time was 1 s. The target was an Airbus A380 model. The length, wingspan, and height of the model
were 45, 52, and 17 cm, respectively.
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Figure 11. The experimental configuration.

The reflected signals received by R1, R2, and R3 were used to form the InISAR images, and
the reference signal was the reflected signal of a corn reflector located at the same position of the
airplane model received by R2. Thus, the imaging geometry is the same as the discussed L-shaped
three-antenna configuration. During the imaging process, nonlinearity of the signal frequency and
the inconsistencies of the amplitudes and phases among channels were compensated together with
the reference signal, and a phase gradient autofocus algorithm [36] was adopted to compensate the
influence of guide platform vibration. The ISAR images of channels R2 and R3 were interpolated three
times and shown in Figure 12. Taking the strong scattering center at the right wing as an example,
there are five Doppler cells that deviated along the azimuth direction.
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Figure 12. The ISAR images of A380 model. (a) Channel R2. (b) Channel R3.

Based on a threshold of 3 dB, the ISAR image of six SSCs were extracted, as indicated in Figure 12.
The spatial spectrums of these SSCs were then acquired. The phase difference curves of spatial
spectrums between channel R2 and R3 are shown in Figure 13, with (a) and (b) corresponding to the
conditions before and after phase unwrapping processing, respectively. As illustrated in Figure 13a, all
curves were linear, and the phase wrapping position of each curve was constant. With our experimental
parameters, the maximum allowed error in velocity estimation for precise image registration was
0.0812 m/s on the basis of Equation (22). Based on the motion measurement curves in Figure 13b,
velocity along the horizontal direction was estimated as 0.9737 m/s, which satisfied the estimated
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precision of parameters for image registration. After compensating the velocity to the echo signal of
channel R3, image registration was achieved. Finally, the InISAR imaging results were obtained, as
shown in Figure 14, with (a), (b), (c), and (d) corresponding to the 3-D view and projections on the xoy,
xoz, and yoz planes, respectively. From the InISAR imaging results, we saw that the key parts in the
A380 model such as the engine, wing, and vertical fin could be clearly identified, and the imaging
results were clear and close to the real airplane model. These results further verified the effectiveness of
the proposed SSCF method. In this chapter, we did not compare the performance between our method
and the conventional method because the baseline length in this equivalent verification experiment
could not be any shorter. Phase wrapping in the motion measurement curves was inevitable. In this
condition, the conventional method was not applicable.
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5. Discussion

Taking the algorithm’s efficiency, practicability, robustness, and precision into consideration, the
simulation and experimental results have verified that the SSCF technique proposed in this paper is the
most suitable method for image registration in THz InISAR imaging. Until now, there has been limited
research on InISAR imaging with terahertz radars. This paper takes the lead in putting forward a THz
InISAR imaging system, and it has carried out InISAR experiments in the laboratory environment. In
the next stage, long-distance experiments that connect a traveling-wave tube amplifier will be carried
out to verify the SSCF technique proposed in this paper.

6. Conclusions

In this paper, a translational motion parameter estimation method based on SSCF technique
was proposed to achieve image registration in InISAR imaging under a low-SNR environment. The
“angle glint” phenomenon and phase wrapping in motion measurement curves were solved, and the
interference of noise was also removed with the rectangular filter operation in image domain. Based on
this method, the estimation accuracy of translational motion parameters can fulfill image registration
requirements when the SNR was larger than −30 dB. Both simulation and experimental results are
presented to verify the validity of the proposed method. The method also can be extended to target
with a more complicated motion feature. Until now, the experiments were carried out in a laboratory
environment, but the work in this paper can provide support to the remote application of THz InISAR
imaging systems in the future.
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