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Abstract: With the widespread application of location-based services, the appropriate representation
of indoor spaces and efficient indoor 3D reconstruction have become essential tasks. Due to the
complexity and closeness of indoor spaces, it is difficult to develop a versatile solution for large-scale
indoor 3D scene reconstruction. In this paper, an annotated hierarchical Structure-from-Motion (SfM)
method is proposed for low-cost and efficient indoor 3D reconstruction using unordered images
collected with widely available smartphone or consumer-level cameras. Although the reconstruction
of indoor models is often compromised by the indoor complexity, we make use of the availability of
complex semantic objects to classify the scenes and construct a hierarchical scene tree to recover the
indoor space. Starting with the semantic annotation of the images, images that share the same object
were detected and classified utilizing visual words and the support vector machine (SVM) algorithm.
The SfM method was then applied to hierarchically recover the atomic 3D point cloud model of each
object, with the semantic information from the images attached. Finally, an improved random sample
consensus (RANSAC) generalized Procrustes analysis (RGPA) method was employed to register
and optimize the partial models into a complete indoor scene. The proposed approach incorporates
image classification in the hierarchical SfM based indoor reconstruction task, which explores the
semantic propagation from images to points. It also reduces the computational complexity of the
traditional SfM by avoiding exhausting pair-wise image matching. The applicability and accuracy
of the proposed method was verified on two different image datasets collected with smartphone
and consumer cameras. The results demonstrate that the proposed method is able to efficiently and
robustly produce semantically and geometrically correct indoor 3D point models.

Keywords: indoor mapping; 3D reconstruction; semantic classification; 3D modeling; hierarchical SfM

1. Introduction

Indoor 3D models deliver precise geometry and rich scene knowledge about indoor spaces, which
have great potential in object tracking and interaction, scene understanding, virtual environment
rendering, indoor localization and route planning, etc. [1–3]. Given the rapid development of
location-based services (LBS) and indoor applications, fast acquisition and high-fidelity reconstruction
of complete indoor 3D scenes has become an important task [4]. Most of the current model acquisition
technologies are based on light detection and ranging (LiDAR) surveys [5,6], Kinect depth cameras [7,8],
or image-based approaches such as robot simultaneous localization and mapping (SLAM) [9]. Despite
the improvements that have been achieved, methods that rely on professional instruments and
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operation result in high capital and logistical costs [10]. In addition, outdoor reconstruction systems
can usually efficiently output a city-scale model from one sampling, for example, from long-range
photographs taken by unmanned aerial vehicles (UAVs) or street images captured by moving survey
vehicles. However, indoor survey methods can only obtain a short-range model in a limited space,
which limits the reconstruction efficiency of indoor models. Hence, in contrast to outdoor 3D models,
indoor 3D model coverage remains insufficient. In order to satisfy the requirements for low-cost and
large-scale indoor modeling, reconstruction methods such as Structure-from-Motion (SfM) [11], which
recover 3D scene points from any unmanned images, can supplement the existing methods.

The SfM algorithm has made significant progress in city-scale model reconstruction [12]. It exploits
the scale-invariant feature transform (SIFT) features, epipolar geometry, and bundle adjustment to
determine the metric information and produces a point cloud model, without making any assumptions
of the input image or the acquisition framework [13]. The main SfM approaches are the incremental
SfM algorithms [14], which start with an image pair and then expand to the whole scene by sequentially
adding related cameras and scene points. However, these incremental methods are limited by their
computational efficiency, and they involve exhaustive pair-wise image matching and repeated bundle
adjustment calculation. This is usually alleviated by adopting parallel computation [12], multi-core
optimization [11], or by removing the redundant images to form a skeletal subset graph [15]. Other
algorithms such as the revised bundle adjustment method can be used to speed up the optimization [16],
and the spanning tree algorithm can be used to optimize the image connection [17], improving the
efficiency of the computation. However, errors tend to be propagated in an incremental manner with
the visual connections [18].

Globally optimized SfM has been one solution to this problem [19,20]. Instead of simultaneously
involving all the images in the pair-wise matching, globally optimized SfM independently estimates
the relative camera rotations between pair-wise views, and then uses these separate rotations to solve
the camera translations and structure in the global optimization step [21]. The global pose registration
approach is less sensitive to drift but is not robust to noise, and it is prone to being compromised by
a bad initialization [22,23]. Another alternative solution, which is robust to drift and initialization,
is to exploit a hierarchical reconstruction [24,25]. By partitioning the image dataset into smaller and
more tractable components, these methods construct a tree-structured SfM where the reconstructions
are executed independently and merged together along the tree into a global framework [26]. With a
compact and balanced tree, these methods outperform their counterparts because they distribute the
errors evenly throughout the reconstruction and bridge over degenerate configurations [27]. These
methods also reduce the computational complexity by one order of magnitude [13].

With the advent of rapid and low-cost image data acquisition technologies such as smartphone
cameras and crowdsourcing platforms [28], SfM has revealed its potential in indoor spaces. However,
as a result of the incomplete indoor model reconstruction, the set of disconnected 3D pieces recovered
from SfM has been laid on a 2D floor plan to assist with indoor sightseeing [29]. Furthermore, due
to poor texture images the model develops defects in the form of disconnected parts or unwanted
indentations that require the use of volumetric depth map fusion to achieve a dense reconstruction [30].
Despite the achievements made, these approaches are incapable of producing satisfactory indoor
models. Unlike exterior mapping, which focuses on the flat surfaces of building facades [26], indoor
reconstruction faces many challenges, including highly cluttered scenes, occlusions, and diverse
structural layouts [31]. This implies a need for reconstruction approaches that not only can recover the
structural layout of the indoor scenes, but also the complex semantic objects that are abundant indoors.

To fulfill these requirements, recent indoor reconstruction methods have aimed at not only
recovering well-regularized 3D polygon models [32,33], but have also emphasized dense object
reconstruction and semantic annotation [34,35] since it is the widespread semantic objects that define
how people occupy an indoor space and how location-based services are provided. Furthermore,
semantic regularities have been proven to be an efficient means for determining the geometrical
structure of incomplete models [36,37] and recognizing the objects of interest and the objects’
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contextual relationships in the reconstruction [38]. However, the point clouds obtained by LiDAR
or RGB-D cameras are intrinsically blind to recognition and require laborious per-frame semantic
labeling or additional semantic recognition. In contrast, the SfM pipeline has the advantage of
one-to-one correspondence between the images and points, where the semantic information can be
propagated directly.

Based on the above observations, a novel semantically guided hierarchical SfM indoor
reconstruction approach is proposed in this paper, which integrates image clustering, object
segmentation, and 3D point model reconstruction into the same pipeline. Firstly, a classification
scheme combining bag-of-visual-words (BOVW) and the support vector machine (SVM) was applied
to cluster the image dataset into classes containing a particular object. In this study, we did not need
to add the extra step of employing deep learning methods for image recognition and classification
since feature extraction (i.e. SIFT features) is an essential step in the SfM system, and the BOVW and
SVM can make full use of SIFT features to accelerate the reconstruction process. To propagate semantic
information from 2D images to 3D models, the image clusters were then arranged in an annotated
hierarchical tree with each one independently reconstructed using SfM. Finally, an improved random
sample consensus (RANSAC) generalized Procrustes analysis (RGPA) algorithm [26] was exploited to
register and optimize the separate reconstructions into an integrated, semantically and geometrically
complete 3D model. The proposed method inherits the computational efficiency and robust properties
of hierarchical SfM, with further improvements that incorporate image semantic information in
the data partitioning and model reconstruction. As a result, the proposed method efficiently and
robustly recovers a complete indoor point model with coarse level objects and annotations from
image collections.

The main contributions of the proposed method are as follows. (1) We present a low-cost and
efficient indoor 3D reconstruction method using unordered images collected with widely available
smart phones or consumer-level cameras, which alleviates the dependence on professional instruments
and operation. (2) Unlike traditional SfM methods, we integrate image clustering, object segmentation
(coarse-level), and 3D point model reconstruction into the same pipeline. (3) We perform the SfM
in an annotated hierarchical manner, whereby the cluttered images are independently classified and
reconstructed along a hierarchical scene tree, thus improving the computational efficiency while
balancing the distribution of error. (4) We present a strategy to search for matching points while
running the RGPA to align point clouds during atomic point cloud registration, which improves the
efficiency and robustness of the registration process.

2. Methodology

In this part, we detail the annotated hierarchical SfM approach based on image classification and
RGPA, which can quickly and robustly identify the widespread objects in an indoor environment
as well as recover the complete 3D scene. The workflow of the proposed annotated hierarchical
SfM approach is illustrated in Figure 1. The cluttered objects are recognized and reconstructed
independently along a hierarchical scene tree, which recovers the indoor space. Starting with the
semantic annotation of the images, the images sharing the same object are detected and classified
utilizing visual words and the SVM algorithm. The SfM method is then applied to hierarchically
recover the atomic 3D point cloud of each object with the semantic information from the images
attached. Finally, RGPA is used to merge the separate models into a complete structure.
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Figure 1. The workflow of the proposed annotated hierarchical SfM approach.

2.1. Semantic Information Extraction and Image Classification

The traditional indoor point cloud segmentation and annotation approach is based on structural
inference about the “blind” points, which ignores the semantic information that inherently exists in
raw image collections. While every point in the reconstructed indoor model has a corresponding pixel
in the raw image, the model semantic recognition can be reformulated by assigning labels to an image
according to its semantic category. Therefore, we exploited the image classification strategy to extract
the semantic information in the indoor images, and we propagated this information to the point cloud
of the indoor model.

Image classification is usually conducted by extracting locally invariant features with SIFT.
However, due to the inherent object clutter and variation, as well as changes in the viewpoints,
lighting, and occlusion of the images, indoor scene classification cannot be performed satisfactorily
using pure SIFT features. This is because the SIFT descriptors are low-level local features that are
not capable of characterizing a particular class. To robustly characterize the indoor scene features for
classification, we combined the Fisher vector (FV)-encoded BOVW model and SVM to recognize and
classify the images. The BOVW algorithm clusters similar features as a visual word, and counts the
occurrence of each word in the image to form the feature vector, which improves the semantic level
and enhances the expression of class-level features. The FV encoding was used in the BOVW model
to encode the visual words with Gaussian mixture model (GMM) gradient vectors and derive visual
words (clusters of feature descriptors) with an extended dimension, thereby reducing the number of
words needed and improving their generalization, and consequently outputting more efficiently and
effectively to the classifier.

Suppose that X = { xt} , t = 1, . . . , T represents the feature sets of an image that contains T SIFT
descriptors, then the Fisher kernel for this image is the summation of each normalized gradient vector
of the local feature descriptors [39]:

T

∑
t=1

F−1/2
λ GX

λ =
T

∑
t=1

F−1/2
λ ∇λ log p(X|λ) (1)

where Fλ = Ex

[
GX

λ GX′
λ

]
is the Fisher information matrix [40]; GX

λ is the gradient vector of one local
feature descriptor; and p is the probability density function, with the parameters denoted by λ.

The Fisher kernels are related to the visual vocabularies by means of the GMM, i.e.,
λ = {wk, uk, ∑k}, k = 1, . . . , K. Each Gaussian corresponds to a visual word, where the weight
wk is the number of times word k occurred, uk represents the mean of the words, and the covariance
matrix ∑k is the variation around the mean.
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Therefore, the occurrence probability γt(i) can be denoted by:

γt(i) = p(i|xt, λ) =
wi pi(xt|λ)

∑N
j=1 wj pj(xt|λ)

(2)

While xt is the probability observation generated by the i-th Gaussian, L(X|λ) = log p(X|λ),
σ2

i = diag(∑i), and the subscript d denotes the d-th dimension of a vector. Then, the resulting
derivation is:

∂L(X|λ)
∂wi

=
T
∑

t=1
[ γt(i)

wi
− γt(1)

w1
] for i ≥ 2

∂L(X|λ)
∂ud
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i )

2 ]
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i
=
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γt(i)[

(xd
t−ud

i )
2

(σd
i )

3 − 1
σd

i
]

(3)

From these equations, it is clear that the FV-encoded visual word approach is superior to the
BOVW model, as it not only considers the gradient with respect to the weight parameters, i.e., the
occurrences of the i-th word, but also the means and standard deviations. By incorporating the gradient
statistics into the feature vector representation, the FV approach can achieve competitive results in
both efficiency and effectiveness, whereas the BOVW model would otherwise require a large quantity
of words.

After obtaining the FV-encoded image feature vectors, they immediately serve as the input to SVM
for the classification, which attempts to achieve the optimal separating hyperplane between two classes
in order to minimize the desired classification error [41]. In detail, suppose D = {(x1, y1), . . . , (xm, ym)}
is a set of training samples, xi ∈ Rn and the corresponding decision values yi ∈ {1,−1}, i = 1, . . . m,
SVM aims to find the best separating hyperplane wTx + b with the largest distance between the two
classes. The problem can be equivalently formulated as:

min
w,b

1
2

wTw, s.t. yi(wTxi + b) ≥ 1, i = 1, . . . , m (4)

For the non-separable data, SVM handles the problem by utilizing the slack variable ξi. The
optimization problem can then be reformulated as:

min
w,b

1
2 wTw + C

m
∑

i=1
ξi

s.t. yi(wTφ(xi) + b) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , m
(5)

where C is the punishment factor for the regularization, balancing the margin and the tolerance of
noise. A larger value of C will assign a higher penalty to errors. In the proposed approach, the K-class
problem is transferred into K2-class problems to make the approach more practical. The output of FV
is passed for the training in SVM as sample xi. We used the Gaussian kernel, which shows the best
performance for SVM. The radial basis function is given by:

K(xi, xj) = exp(−γ‖xj − xi‖2) (6)

In the process, principal component analysis (PCA) is exploited to compress the dimension of
the feature descriptors. PCA can achieve dimensionality reduction using linear projection, while
preserving the property of linear separability.

We exploited the FV-encoded BOVW model to extract more appropriate feature descriptions for
the indoor space, and we classified the originally unordered mass of images with SVM. The result is a
set of well-categorized images, which accordingly depict the diverse indoor objects.
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2.2. Object Oriented Partial Scene Reconstruction

We now have well-classified images of the indoor scene. In the next step, the SfM algorithm
is exploited to reconstruct the object models separately from the classified images. Indoor model
reconstruction has long been limited by the scattered objects in indoor spaces. However, it is exactly
these objects that play a significant role in the reconstruction. This is because the type and style of
objects reflect how people occupy the indoor space. For example, computers and desks imply that an
indoor space is an office; beds imply a bedroom, etc. Fortunately, the object information has already
been provided in the above step, which classifies the images with semantics and indicates which
object the captured image belongs to. Based on this, we constructed a tree structure that hierarchically
divides and reconstructs the indoor space, with each leaf node representing the image patch of a
particular object. The SfM algorithm is then applied to reconstruct the indoor object models separately
and in parallel, from leaves to roots. The proposed approach combines semantic annotation, object
recognition, and reconstruction in a collaborative process, which recovers the indoor model with a
compact pipeline while maintaining semantic and geometric completeness.

Furthermore, the traditional incremental SfM tends to suffer from extremely high computational
complexity as the image sets grow larger. On the other hand, dividing the images into smaller patches
improves the computational efficiency and balances the error distribution at the same time. The SfM
algorithm reconstructs the scene structure and the camera pose by extracting and matching the feature
correspondences to recover a feature track from different views. Bundle adjustment, which estimates
the optimal 3D structure and the calibrated parameters by minimizing a least square function, is
adopted to optimize the camera parameters and feature locations.

arg min∑
∥∥xij − f jP(Oj(Xi − cj))

∥∥2 (7)

where P is the projection function: P(x, y, z) = (x/z, y/z). Xi(i = 1, . . . , N) denotes the 3D points
and N is the number of points. Oj, cj, f j(j = 1, . . . , M) denote the orientation, position, and the focal
length of the j− th camera, respectively. The SfM problem is to infer Xi, Oj, cj, f j from the observation
xij. According to the SfM projection function x′ij = f (Xi), the re-projected coordinates of the 3D
point on the corresponding image can be calculated from the camera parameters, represented by
x′ij = f jP

(
Oj
(
Xi − cj

))
. Therefore, the BA problem can be solved by minimizing the sum of distances

between the re-projected coordinates x′ij of each 3D point and its corresponding image feature point
xij. We solved this non-linear least squares minimization problem with the Levenberg- Marquardt
algorithm [42]. Accurate initial camera estimates are the starting point when adding cameras to solve
the minimum distances. First, the set of images with the largest number of matching key points are
selected as the initial camera parameter, and the intrinsic parameter from image EXIF tags is used to
initialize the focal length of the camera [14]. The external parameter of one of the initial cameras is
set to [I|0], the other is set to [R|t]. Next, we optimize the camera parameters by adding one camera
per iteration. The camera that observed the highest number of key points that match those observed
by one of the initial camera pairs is added incrementally. Finally, we optimize camera parameters by
matches observed by the added new camera. The procedure is repeated until all the cameras are used
for 3D reconstruction.

In summary, we introduced the SfM algorithm into indoor model reconstruction. Based on the
concept of semantic division of the indoor image sets in the above step, the diverse objects in the
indoor space are recognized and annotated to guide the object model reconstruction. In this way, we
can obtain the geometrically and semantically complete point cloud model of each object existing in
the indoor space in a joint semantic annotation, object recognition, and reconstruction framework.
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2.3. Point Cloud Registration and Optimization

After obtaining the separate object models in the last step, we then merge the separate point cloud
models of the obtained indoor objects into a complete indoor model using the RGPA algorithm. This
complete model is used during point cloud registration to find the set of n similarity transformations
T , {R1, t1, α1, . . . , Rn, tn, αn} between the cloud points and the reference shape F = (F1, . . . , Fm) that
minimizes the cost function [26,43].

ε(T, F) =
n

∑
i=1

m

∑
j=1

ui,j
∥∥Fj − αiRiDi,j − ti)

∥∥2
2 (8)

where Ri represents the rotation matrices, ti represents the translation vectors, and αi represents the
scale factors that define the seven degrees of freedom similarity transformation. The input point
clouds are represented by matrices D1, . . . , Dn. Each Di is composed of m three-dimensional points
Di = (Di,1, . . . , Di,m). n, m, are the number of point clouds and reconstructed 3D points in the
point cloud, respectively. ui,j ∈ {0, 1} is a binary indicator that is only active when the matched
pairs were detected between the cloud points. In the RANSAC generalized Procrustes analysis
(RGPA) algorithm, all the models are aligned successively by alternating computation of similarity
transformation and reference updating. The model to be aligned is first matched with the reference
to obtain the similarity transformation based on the matched points per iteration, and then the
transformed model is aligned with the reference to update the reference. RANSAC [44] is used in
estimating the similarity transformation by choosing the transformation with the most inliers. The
whole algorithm terminates when all the models have been aligned. The selection of matching points
between point clouds is illustrated in Figure 2. Since these matching points are reconstructed from the
SIFT features extracted from the images, the points are selected reversely from the images to identify
the reconstructed points that match. These matched points between images are chosen as matched
points between image classes. Based on the matching points, the similarity transformation matrices
are computed.
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Figure 2. An example of matched point selection. D1 − D4 are cloud points recovered from class one,
which are marked in red. D3 − D5 are cloud points recovered from class two, which are marked in
green. D3 and D4 are matched points that can be recovered from both classes, which are marked in
yellow. The matched points are selected by conducting extra-class matches between images I2 and I3.
The matched feature points between images are chosen as the matched points between classes.
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Since the alignment is based on the matched points between models, the problem becomes how
to determine the matching points, which has not been detailed in previous work. We introduce an
automatic matched points searching algorithm based on images, which reversely identify the matched
points in images that reconstruct the SfM models. This intrinsically accords with the SfM pipeline in
which the 3D points are re-projected by the 2D features in images. Consequently, the matched point
search problem can be reformulated as feature matching of images. The process is e illustrated in
Figure 2. Extra-class feature matching is first conducted on the marginal images, which are defined
by the images with the lowest number of matched features in the class. Extra-class matching obtains
the matched connection points between atomic point clouds from the matching relationship within
extra-class images and the correspondences between image pixels and 3D points determined by the
SfM system. The matched features of each class then search for their corresponding points in the point
clouds and finally obtain the matched 3D points between models.

After detecting the matched points between point clouds, the RGPA algorithm merges all the
models through an alternating alignment and reference updating process. An arbitrary model is
chosen as the reference Fr in initialization. In the alignment step, the similarity transformations are
calculated by aligning each point cloud Di with the reference Fr using RANSAC. Only the minimum
matched points exceeding the number of 20 are input for similarity transformation estimation. The
iteration of RANSAC trials are set to 250, which guarantees a success probability of over 99% under
a conservative estimate of 40% outliers. The transformed errors below the threshold are treated as
inliers per iteration. The transformation with the most inliers is selected as the result. After obtaining
the similarity transformation, a new reference is updated by superimposing all the aligned models.
The matched points from multiple models are averaged as the new reference points. In order to
counteract noise in the point cloud and limit the convergence error of the reference to an acceptable
range, the iteration is executed three times. The RGPA algorithm that aligns all the models in a group
is summarized in Algorithm 1.

In contrast with other approaches that require a large overlap between the to-be-aligned point
clouds, such as iterative closest point (ICP) [45], the RGPA algorithm can cope with situations with
sparse overlap by only requiring moderate coverage of images. This further avoids extra local
reconstruction between the point clouds or exhaustive pair-wise matching of all images to search for
matching points. By inversely searching for the matching points from images, the RGPA algorithm
automatically and efficiently aligns all the models. Another advantage of the RGPA algorithm is
ability to counteract noise, which is achieved by the dynamic selection of matching points in the
inlier estimation during the RANSAC trials and multiple iterations in the reference updating process.
Specifically, the randomly distributed inliers allow the model to be resistant to outliers and avoid
local optimization. In addition, the multiple iterations effectively remove outliers and maintain the
accuracy of the updated reference by detecting unreliable points that fail to converge to a steady
point. The outliers that are difficult to detect in the bundle adjustment in the SfM pipeline are easily
detected by the point clouds merging using the iterative RGPA. Furthermore, RGPA benefits from
aligning multiple cloud points with the reference shape and the constructed low-depth tree, which is
computationally efficient.

Through an iterative alignment and reference update module, the RGPA algorithm can obtain
a registered indoor model despite moderate noise, with reliable points gradually updated until
convergence; erroneous points are rejected by crosschecking the corresponding sets of point clouds.
With the above process, the separate object models are merged into a uniform and complete indoor
point model.
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Algorithm 1. RANSAC generalized Procrustes analysis for point cloud alignment.

Input: Group of point clouds with matched points S = {D1, D2, . . . , Dn}.
Initialization: Choose the reference shape F0

r = Fr, set iteration times numIter = 3
for i = 1 . . . numIter
for j = 1 . . . n
Extra-class image feature matching between the model Dj and the reference Fi−1

r ;
Search the matched 3D points in the point cloud based on the matched image features;
Align Dj to Fi−1

r using RGPA to obtain the similarity transformation Ti
j and the transformed model Di

j.

end

Superimpose the aligned model to obtain the new reference Fi
r = align

(
Fi−1

r , Di
j

)
.

end
Align all the models by using the converged reference: S = Fi

r
Output: merged structure S.

3. Experiments

To test the proposed annotated hierarchical SfM approach for indoor scenes, two sets of
experiments were conducted to reconstruct the indoor structure of the State Key Laboratory of
Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS) building of Wuhan
University. We first evaluated the accuracy of the indoor semantic classification using the bag-of-words
based SVM classification. Then, based on the classified images, we reconstructed the semantically
annotated point cloud model of the indoor scenes with SfM and the GPA algorithm, and compared
the efficiency with that of the state-of-the-art algorithm. Finally, the semantically annotated model
is presented.

The image datasets used in the experiments were collected by widely available smartphone
cameras (iPhone 7 and XIAOMI), and Cannon EOS 6D SLR. The first dataset is a meeting room in the
LIESMARS building, which includes 304 images that differ in viewpoint, size, illumination, and time.
The image dataset is divided into eight predefined classes, consisting of board, elevator, door, stair,
table, TV, window, and furniture. Each class contains different number of images. Exemplar images
are shown in Figure 3.
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We first tested the performance of the bag-of-words based SVM classification methods with the
above dataset. This experiment was conducted in MATLAB based on the LIBSVM package on a Lenovo
ThinkPad X240 laptop. To accurately classify the images into eight classes, three kinds of encoding
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methods were used to encode the image features: BOVW [46], vector of locally aggregated descriptor
(VLAD) [47], and FV [39]. Since the images belonging to a particular class were further fed into the
SfM pipeline for reconstruction, retrieval precision was also a significant indicator in our experiments.
We chose the RBF kernel for the SVM classification, and the one-to-all extension classification strategy.
To obtain a reasonable classification result, the number of training images was no less than 15% of the
whole dataset.

Table 1 reports the performance of the three classification methods. It is clear that all the
bag-of-words based classification approaches achieve satisfactory results, while the FV-encoded
approach outperforms the others. For the BOVW-based classification methods, the classification
accuracy improves with the increase of the number of words. However, the computation time also
increases accordingly. Compared to BOVW, which represents the feature vector with the original
128-dimension SIFT descriptors, the VLAD and FV methods convert the images into K×D dimensional
vectors. In FV, K represents the number of GMMs, and D is the length of the local feature descriptor;
the dimension was reduced by principal components analysis (PCA) to achieve higher efficiency. In
VLAD, D was reduced to 100, while in FV, the dimensionality was reduced to 80. Thus, given the
same number of words, the dimensionality of the histogram obtained by FV surpasses that of BOVW.
In other words, to obtain the same dimensions for the histogram, FV requires fewer words, while
achieving the highest classification accuracy and the highest retrieval accuracy.

Table 1. The results of the three kinds of classification algorithms.

Encoding
Method

Number of
Words

Classification
Accuracy

Mean Average
Retrieval Precision

Classification
Time (s)

BOVW 1000 0.942857 98.21% 62.45
BOVW 2000 0.957143 98.69% 220.97
VLAD 25,600 0.957143 99.25% 21.02

FV 20,480 0.985714 99.46% 57.19

After obtaining the image clusters belonging to the same class, we then independently
reconstructed the atomic point cloud models. The proposed annotated hierarchical SfM was
implemented using C++ on the basis of Bundler [14]. Table 2 lists the average reprojection errors of
the recovered models (Reproj. error); the time required for the SIFT-based image matching (matching
time), SfM reconstruction (construction time), and bundle adjustment (BA time); the number of images
involved (No. of images); and the classified images that were successfully recovered with camera
pose and points (Recovered views and Recovered points). The reconstructed atomic models of each
class are shown in Figure 4, where it can be seen that each model is reconstructed accurately and with
high efficiency.

Table 2. The construction information for the separate point clouds (time units: s).

Dataset Board Elevator Door Stair Table TV Window Furniture

Reproj. error (pixel) 2.81 2.19 2.65 2.63 3.07 1.86 1.94 2.43
Matching time 36 12 22 47 34 11 248 987

Construction time 56 22 20 44 26 30 87 336
BA time 2 2 1 2 2 2 2 4

No. of images 28 17 22 45 19 20 41 112
Recovered points 8317 3349 3949 5923 4973 2785 19,383 49,286
Recovered views 28 17 22 45 19 20 41 112
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After obtaining the atomic scene models, we then hierarchically aligned the atomic models
into a whole model. For simplicity, we use the category name of the classified images to denote a
reconstructed local point model. For example, the “board” point cloud model is an atomic point cloud
model reconstructed from the images belonging to the category of “board”. To give a quantitative
analysis of the proposed algorithm point for cloud registration, the “board” point cloud model was
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randomly chosen as the reference registration model, and the error was measured based on the “board”
results. After the registration process, the point-to-point distance was calculated between the “board”
point cloud model and its adjacent point model. The RMSE was derived from the point-to-point
distance and referred to as the registration error. The point model adjacent to the “board” point cloud
model was then used as the reference to calculate registration error for the neighboring point cloud.
The registration error for the rest of the atomic point models was analyzed in the same way. Table 3
lists the registration error of the proposed method and Figure 5 shows the model. It can be observed
that the alignment error is small, and the whole model is correctly reconstructed.

Table 3. The registration error.

Point Cloud Elevator Door Stair Table TV Window Furniture

Error(pixel) 0.19 0.24 0.11 0.0001 0.04 0.18 0.16
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Figure 5. The reconstructed model of the meeting room.

The second dataset used for reconstruction was the lobby of the LIESMARS building, which is a
challenging scene containing widespread objects and repetitive textures. We first classified the scene
into eight classes, and then reconstructed the atomic models. Table 4 lists the classification accuracy.
By dividing the whole image sets into smaller and more tractable ones, the atomic models could be
reconstructed correctly and efficiently, as shown in Table 5. Finally, the independent models were
aligned into a complete indoor scene, without misalignment and discrepancy. Table 6 and Figure 6
show the registration error (the reference is “front door”) and the reconstructed scene, respectively.

Table 4. The classification accuracy for the lobby dataset.

Encoding
Method

Number of
Words

Classification
Accuracy

Mean Average
Retrieval Precision

Classification
Time (s)

BOVW 1000 0.924793 98.54% 58.34
BOVW 2000 0.938769 98.34% 240.76
VLAD 25,600 0.977849 99.24% 30.87

FV 20,480 0.985714 99.47% 65.63
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Table 5. The reconstruction information for the atomic models of the lobby dataset (time units: s).

Dataset Front Door Status Board Office Corner Corridor Model Meeting Room

Reproj. Error (pixel) 2.79 1.94 2.47 2.48 2.04 2.00 2.66 2.39
Matching time 43 33 129 65 171 137 247 183

Constr. time 46 16 48 34 64 130 42 57
BA time 1 2 2 1 3 2 1 5

No. of images 20 13 27 27 42 45 34 35
Recovered points 19,688 19,408 99,459 26,328 51,552 63,545 72,999 92,713
Recovered views 20 13 27 27 42 45 34 35

Table 6. The registration error for the lobby dataset.

Point Cloud Status Board Office Corner Corridor Model Meeting Room

Error(pixel) 0.03 0.01 0.14 0.002 0.18 0.09 0.036
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Figure 6. The reconstructed model of the lobby dataset.

To demonstrate that the proposed approach can obtain an annotated point cloud model with
a high efficiency, we compared the proposed method with the state-of-the-art SfM reconstruction
method of VisualSfM (VSFM) [16]. The initial focal lengths were extracted from EXIF. Table 7 compares
the results of both methods on the two datasets. For the meeting room dataset, although both methods
yield correct structures, the camera pose accuracy of the incremental method is inferior to the proposed
approach. What is more, the computational time is exponentially larger than that of the proposed
method. VSFM recovers 287 images but fails to recover 17 images because of the insufficient inlier
projections, while the proposed method successfully recovers all of the images. For more cluttered
datasets, the problems related to VSFM could be severe. The second dataset has many repetitive
structures and textures, which usually cause mismatching, or incorrect epipolar geometry. The results
show that VSFM can recover five separate parts in the relative coordination but cannot merge them
into an entire scene. The proposed method successfully recovers the full scene, with a greatly reduced
computation time. From this result, we can conclude that the advantage of the proposed method
over VSFM in speed is evident. By semantically partitioning the whole dataset, the algorithm gains
robustness in reconstructing the complete scene. Furthermore, the semantic annotation from the
images is propagated to the point cloud model, and produces the semantic augmented indoor scenes
(see Figure 7). The semantic obtained in the proposed annotated hierarchical SfM pipeline is at a coarse
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level. However, it is meaningful for some specific indoor applications. For example, they can help to
accelerate the feature searching and matching process for real-time visual localization.

Table 7. Comparison between VSFM and the proposed method.

Dataset/Method
Meeting Room Dataset Lobby Dataset

Error (Pixel) Time (s) No. of Views
Recovered Error (Pixel) Time (s) No. of Views

Recovered

VSFM (Wu, 2013) 2.641 18,735 287 2.293 13,987 235
The proposed method 2.454 2025 304 2.040 1526 243
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room dataset; (b) the corresponding semantically annotated model for the lobby dataset.

Different level of semantics can serve for different indoor applications. Generally, fine-level point
model segmentation is performed as a next step to 3D scene reconstruction [48,49]. To show that
the reconstructed point model can achieve precise semantic labeling, an additional experiment was
also conducted as an example. We trained a deep network on the NYUDv2 RGBD indoor dataset
by combining the two popular 2D segmentation network Deeplab v3+ [50] and Densenet [51]. A
local dataset with 24 manually annotated images from the meeting room was used to fine-tune the
net. Figure 8 shows some of the segmentation results after fine-tuning on the local dataset, while
Table 8 shows the accuracy performance of each category. From the obtained pixel-wise segmentation
results on 2D, we propagated the fine-level semantics from the images to the point model just as the
coarse-level semantics did. The final labeled point model for the 3D scene of the meeting room can be
seen in Figure 9, which has a performance of 90.38% in labeling 12 object classes.
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Table 8. The semantic segmentation performance on 2D images.

Door Window Bridge Skatchboard Painting Television Chair Air-
Conditioning Desk Book Plant Sundries

Accuracy 0.96 0.98 0.95 0.98 0.95 0.99 0.96 0.94 0.92 0.87 0.85 0.83
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A quantitative evaluation of the two reconstructed point cloud models was also made for reference.
The point clouds collected with a terrestrial laser scanner (TLS) for the meeting room and lobby
were used as the ground truth, as seen in Figure 10a,c. The visual effects obtained by registering
the two SfM reconstructed point clouds to the TLS point clouds are shown in Figure 10b,d. The
differences between the SfM reconstructed point clouds and the reference TLS point clouds in terms of
point-to-point distance were statistically analyzed. Table 9 lists the accuracy measurements for the
two SfM reconstructed point clouds, that is, the RMSE of the registration error (the Euclidean distance
between these two types of points) [52]. The low registration errors shown in Table 9 indicate that
the annotated hierarchical SfM reconstructed point models created with the proposed algorithm are
comparable to the TLS point models, which demonstrates the effectiveness of the improved method.
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Figure 10. Comparison of hierarchical SfM reconstructed point cloud models (in red color) with the TLS
point cloud models. (a,c) are the TLS point clouds of the meeting room and lobby, respectively. Figures
(b,d) show the annotated hierarchical SfM reconstructed point models registered to the TLS points.

Table 9. Registration error of the proposed SfM reconstructed point clouds and TLS point clouds (cm).

Dataset Meeting Room Dataset Lobby Dataset

RMSE 2.14 3.24

4. Discussion

The proposed method can obtain an annotated indoor 3D point model from unordered images
collected by low-cost cameras with high-efficiency; nevertheless, there are still some outstanding issues
to consider. Based on the experimental results described above, it can be clearly seen that the models
reconstructed from most of image-based methods are negatively affected by the density of the detected
features. In the feature-sparse areas, such as the white wall without decoration and the glass in the
windows, only the skeleton can be accurately recovered, with the holes remaining unfilled. Extension
of the size of the datasets and improvements in more robust feature extraction methods could promote
the model quality to a certain degree. However, the most effective solution would be to exploit shape
priors in the dense model reconstruction to recover the complete model [53,54]. For example, shape
regulation that encodes the normal surface as identical could be applied to the glass in the windows,
the white wall orthogonal to the floor, and the floor connecting to the four orthogonal walls, to fill
in the missing parts and remove erroneous points in the original model. Recent achievements in
convolutional neural networks allow for predicting 3D geometry from a single image [55], which can
be used to repair the defects in the image-based 3D reconstruction.

Another factor that affects the completeness of the model is the weakly or indirectly observed
surfaces hidden in the input data, such as a floor underneath furniture or a wall facade behind
decoration. It is hard to recover partially occluded models, especially when they are observed by
very few images. To accurately recover the partly occluded objects, semantic priors and geometry
priors can be combined to determine the dense point cloud [36]. The semantic information is used to
segment the independent objects, and additional geometry optimization is carried out to fill in the
holes. In this way, partially hidden facades behind the decoration can be fully reconstructed. Exploring
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the deep visual image features and camera geometries to infer the depth maps is a practical way
to fill in some of the non-hidden openings, such as windows. Benefiting from the pioneering work
of [56], deep convolutional neural networks [57,58] now enable sophisticated depth estimation even for
unstructured images with ill-posed regions. By employing the method presented by [51] to compute
the depth maps for the two image datasets with the calibrated camera poses and sparse 3D points
recovered from the proposed SfM pipeline, we further reconstructed the dense 3D point models, as can
be seen in Figure 11. These results yielded a better visual effect, revealing that the proposed solution is
capable of reconstructing dense and well-represented indoor 3D point models.

Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 22 

 

 
(a) 

 
(b) 

Figure 11. Dense 3D point model reconstruction: (a) Meeting room; (b) Lobby. 

Another factor that affects the completeness of the model is the weakly or indirectly 
observed surfaces hidden in the input data, such as a floor underneath furniture or a wall 
facade behind decoration. It is hard to recover partially occluded models, especially when 
they are observed by very few images. To accurately recover the partly occluded objects, 
semantic priors and geometry priors can be combined to determine the dense point cloud 
[36]. The semantic information is used to segment the independent objects, and additional 
geometry optimization is carried out to fill in the holes. In this way, partially hidden facades 
behind the decoration can be fully reconstructed. Exploring the deep visual image features 
and camera geometries to infer the depth maps is a practical way to fill in some of the 
non-hidden openings, such as windows. Benefiting from the pioneering work of [56], deep 
convolutional neural networks [57,58] now enable sophisticated depth estimation even for 
unstructured images with ill-posed regions. By employing the method presented by [51] to 
compute the depth maps for the two image datasets with the calibrated camera poses and 
sparse 3D points recovered from the proposed SfM pipeline, we further reconstructed the 
dense 3D point models, as can be seen in Figure 11. These results yielded a better visual effect, 
revealing that the proposed solution is capable of reconstructing dense and well-represented 
indoor 3D point models. 

Data quality is another important issue that directly affects the quality of the 
reconstructed 3D models. In particular, sparse coverage between images can often cause 
discrepancy in the models. The division of images in the proposed hierarchical SfM naturally 
deals with the problem by reconstructing separate models and merging them into a complete 
one. Model discrepancy due to missing images can be solved by first reconstructing the 
models from the available images and then filling the gaps when new images are captured. 
This strategy can also be applied in model updating. Only the partial models that need to be 

Figure 11. Dense 3D point model reconstruction: (a) Meeting room; (b) Lobby.

Data quality is another important issue that directly affects the quality of the reconstructed 3D
models. In particular, sparse coverage between images can often cause discrepancy in the models. The
division of images in the proposed hierarchical SfM naturally deals with the problem by reconstructing
separate models and merging them into a complete one. Model discrepancy due to missing images
can be solved by first reconstructing the models from the available images and then filling the gaps
when new images are captured. This strategy can also be applied in model updating. Only the partial
models that need to be updated are replaced while the unchanged parts remain the same, avoiding
redundant capturing and reconstructing. Consequently, the annotated hierarchical SfM approach is an
appropriate scheme in data management and updating. Based on the discussion above, and despite
the additional improvements needed to obtain a denser model, the proposed method is viewed as
efficient and effective in reconstructing indoor scenes and it could serve as a complementary approach
for ubiquitous indoor reconstruction.
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5. Conclusions

In this paper, we proposed an annotated hierarchical SfM algorithm that detects objects, labels the
semantics, and seamlessly reconstructs the model from unmanned images. Compared with the existing
methods, the proposed method has many advantages. (1) By exploiting the semantic propagation from
images to the point cloud, we can simplify the semantic labeling procedure through image classification
in the preprocessing. (2) By organizing an entire indoor scene with a compact hierarchical tree, we can
reconstruct separately, and in parallel, the atomic point cloud with a reduced complexity. (3) Using
the improved RGPA algorithm to align and update the multiple point clouds into an entire model,
we can simultaneously merge the point clouds with a high accuracy. The experiments confirmed
that the proposed method is highly efficient and robust in indoor 3D scene modeling. However, we
do not propose replacing the existing LiDAR surveying or other methods with our approach. We
instead, consider the proposed annotated hierarchical SfM as a supplementary solution to the existing
methods. Given the rapid development of crowdsourcing platforms, the low-cost and ubiquitous
nature of SfM could enable the public to participate more fully in indoor 3D collection, thus alleviating
the dependence on professional instruments and operation.

The proposed method does have some limitations. Compared with the dense and regular point
clouds obtained by Kinect or LiDAR, the reconstructed image models may contain poorly recovered
parts in feature-sparse places. This missing structure needs additional dense reconstruction by further
exploiting the structure and semantic regulators. Furthermore, semantics are incidentally detected in
our proposed SfM pipeline, which is still at a coarse level and is limited by the number of predefined
classes. For more advanced indoor applications, this could be extended to include more detailed
semantics given the development of deep learning algorithms.
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