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Abstract: Pedestrian walking speeds (PWS) can be used as a “body speedometer” to reveal health
status information of pedestrians and positioning indoors with other locating methods. This paper
proposes a pose awareness solution for estimating pedestrian walking speeds using the sensors built
in smartphones. The smartphone usage pose is identified by using a machine learning approach based
on data from multiple sensors. The data are then coupled tightly with an adaptive step detection
solution to estimate the pedestrian walking speed. Field tests were carried out to verify the advantages
of the proposed algorithms compared to existing solutions. The test results demonstrated that the
features extracted from the data of the smartphone built-in sensors clearly reveal the characteristics
of the pose pattern, with overall accuracy of 98.85% and a kappa statistic of 98.46%. The proposed
walking speed estimation solution, running in real-time on a commercial smartphone, performed
well, with a mean absolute error of 0.061 m/s, under a challenging walking process combining
various usage poses including texting, calling, swinging, and in-pocket modes.

Keywords: smartphone; multi-sensors; posture context; walking speed estimation

1. Introduction

Due to the development of microelectronics technology, modern smartphones are equipped with
a rich set of sensors and have been explored as a ubiquitous computing platform. With this platform,
particular attention has been focused on the estimation of the walking speed of pedestrians, which,
as a “body speedometer,” can reveal pedestrians health status information, such as joint strength [1]
and lifestyle [2], and predict future health [3]. A precise walking speed is necessary for the use of many
location-based services as well, especially in the indoor environment where most global navigation
satellite system (GNSS) signals are blocked.

The current pedestrian walking speed estimation methods can be divided into two categories:
radio frequency (RF)-based methods and sensor-based methods. In RF-based walking speed estimation
and activity recognition, there have been several interesting studies in recent years [4–9]. For example,
Shi [7] used the fluctuation in ambient FM radio signals to infer pedestrian attention levels by
interpreting changes in their walking speed and direction. Sigg [8] considered the detection of
activities from noncooperating individuals with features obtained on a radio frequency channel and
used the WiFi received signal strength information (RSSI) on a smartphone to estimate walking
speed [9]. Generally, these types of approaches exploit both the time and frequency domains of the
statistical features (e.g., mean, variance, kurtosis, and skewness), and use a machine learning method
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(i.e., k-nearest neighbor decision tree) to classify the walking speed. That is, the speed estimation
problem is transformed into a classification problem. Therefore, only a qualitative walking speed can
be determined.

The sensor-based algorithms use smartphone inertial sensors (e.g., accelerometer, gyroscope,
and magnetometer) to estimate the pedestrian walking speed and can be further divided into
two subcategories, i.e., machine learning (ML)-based methods [10–14] and speed model-based
methods [15–30]. The ML-based methods have the potential to exploit associative information within
the data beyond an explicit model chosen by the system designer [10]. In principle, rather than
using a certain physical model to estimate the walking speed, the ML-based approach expresses the
complex relationship between the measurements from the inertial sensors and the walking speed by
training a black-box model [11]. Several research studies have focused on use of a regression model
and ML techniques to improve the precision of the walking speed estimation. Vathsangam [12]
proposed a nonlinear and nonparametric regression framework to estimate the walking speed
from an accelerometer fixed on a subject’s hip. Park [10] estimated the speed from the energy of
acceleration magnitude by applying regularized kernel methods on collected accelerometer data
to achieve a higher accuracy of walking speed estimation. Yeoh et al. [13] estimated the speed
by using a third-order polynomial model that fits the mean value of the average net acceleration
(ANA). However, the automatic selection and extraction of notable features remain a challenge.
Consequently, a deep convolutional neural network (DCNN) is applied to automatically identify and
extract the most effective features from the accelerometer and gyroscope data of the smartphone and
to train the network model for speed estimation [14]. Similarly, the deep learning method generally
requires a large amount of labeled training data. As the neural network grows larger and deeper,
it becomes more difficult to train the network to perform a task. The other group of sensor-based
method is model-based approaches, in which the smartphone can be regarded as a pedometer that
uses sensor measurements to detect step events. Cox [15] proposed a simple solution to estimate
walking speed based on the integration of the acceleration. Cho [16] proposed the opportunistic
calibration of the inertial sensor-based speed estimation using the GPS of a smartphone when the
user is walking outdoors. Other pedestrian navigation systems have also considered methods of
speed estimation, typically using inertial and magnetic sensors along with heuristic- or rule-based
speed estimation [10,17,18]. Masaru [19] generated magnetic signatures and obtained a walking
speed from walking distance and walking time by using dynamic time warping (DTW). It should
be noted that the accuracy of the step length model has a large effect on the final precision of the
model-based approaches. Several methods have been proposed to estimate the step length, including
human gait-based [20,21], step frequency-based [22,23], and step counting-based methods [24–26].
However, these pedestrian walking speed estimation methods suffer from various limitations such
as unsuitability for smartphone-based applications [27], a lack of consideration of different pose
context [28,29], user-dependency [22,23], and reliance on spatial constraints [24,25,30].

In this work, we aim to develop an adaptive pedestrian walking speed estimation solution
that provides pose context awareness and is therefore capable of achieving high accuracy using a
normal smartphone. This approach is tightly coupled with real-time pose identification and pedestrian
walking information using an adaptive step detection strategy. The multi-sensor data is collected from
sixty-one male and thirty-eight female subjects and labeled with the pose type, and these data are used
to evaluate the extracted features and train the classifier. To assess the performance of the proposed
pedestrian walking speed solution, various field tests are carried out in an indoor environment, and the
effectiveness of the solution is verified by comparison with the results from a Leica total station.

The rest of the paper is organized as follows: the system architecture and methodology of the
proposed system are demonstrated in Section 2. In Section 3, the experimental platform is described in
detail, and numerical results and a performance comparison are presented. Sections 3.3 and 3.3 provide
a discussion and conclusion of the whole work, respectively, and give suggestions for future research.
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2. Materials and Methods

The architecture of the proposed pedestrian walking speed estimation solution on a smartphone is
illustrated in Figure 1. In addition to the use of motion sensors (i.e., tri-accelerometer and tri-gyroscope),
the estimation process also takes into consideration information obtained from ambient light and
proximity sensors. All sensor data are gathered by the developed customized application developed
and the Android phone is run with a sampling frequency of 100 Hz. In Figure 1, after receiving the
data, the usage pose context awareness module, step detection module and pedestrian walk detection
module start to operate. If the walking detection module decides that the pedestrian is in static mode,
the zero speed is updated immediately. Alternatively, if the pedestrian is in walking mode, the pose
mode is detected by using multi-sensor data and the ML method every 0.6 s. Next, step detection
and step length estimation are executed to calculate the step frequency and current step length both
with the aid of context information. Finally, the pedestrian walking speed is derived from all of these
estimated results. The following sections describe each part of the pedestrian walking speed estimation
system as well as its features and advantages.

Figure 1. Scheme of speed estimation.

2.1. Usage Pose Context Awareness Based on Multi-Sensor Data

2.1.1. Usage Pose Context Definition

The usage pose context is defined as a series of motion patterns [31] that can be detected with
a consumer-grade smartphone. However, smartphones experience a large variety of unrestrained
and personal motions, which generate different patterns in sensors. In this section, the daily use
modes are divided into two major categories with four subcategories to cope with the complexity of
the modes. Based on observations of daily smartphone usage habits and contrasted with previous
studies [26,32,33], as shown in Figure 2, four basic usage pose contexts of smartphone covered in this
study are considered.

Figure 2. Four basic pose contexts.
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Relatively steady state: This category includes all situations in which the motion state of a mobile
device is relatively stable and there is no dramatic relative movement between the mobile device and
the user’s body. This includes the following cases:

• Hand texting: This case is the smartphone use case. To perform operations such as text messaging
or reading the news, the user’s eyes, hand, and screen should remain relatively stationary.

• Hand calling: In hand calling, the user makes a phone call while walking or remaining stationary.
Intuitively, user’s ear, hand, and phone should remain relatively stationary.

• In pocket: The user carries the mobile device in a pocket.

Relatively dynamic state: This class refers to the hand-swinging case in which the user is walking
while holding the mobile device in his/her swinging hand. Relatively cyclical swinging occurs between
the smartphone and the user’s body while walking

2.1.2. Feature Extraction

Feature selection and extraction play vital roles in processing of the pattern recognition and have a
significant effect on the performance and the final precision. In this section, statistics for multi-sensors
time-series data are collected to detect the posture context, including the motion context and usage
environment context. The readings from accelerometer and gyroscope can reflect dynamic changes
in the usage mode, which are used to calculate the pitch and roll of a smartphone. The statistics for
pitch and roll in the time series can be used to mine the pose pattern. Statistics for light and proximity
sensors data are used to perceive the smartphone usage environment context, such as bright or dark
locations, and the proximity to the body. For example, if we know that the light sensor value and
proximity sensor value are both quite low, we can speculate that the mobile device is near the ear or in
a pocket. Therefore, the mobile device usage environment should be detected simultaneously.

As shown in Figure 3, the coordinate system of the sensors in a smartphone is defined with the
screen of the phone and its default orientation. Pitch and roll are the rotation around the x-axis and the
rotation around the z-axis, respectively.

Figure 3. Smartphone reference frame.

When the pose mode changes, for example, texting mode transit into swinging mode, the pitch
and roll change synchronously and sensitively and demonstrate different patterns. As shown in
Figure 4, in a relatively steady state (hand texting, hand calling, in the pocket), the mobile device
remains relatively static with the body. Therefore, the pitch and roll angles are relatively significant in
those processes, whereas in a relatively dynamic state (hand swinging), pitch and roll angle change
only periodically.

The statistics of the pitch, roll, and the readings from the light and proximity sensors in the sliding
window are studied in this research. The details are listed in Table 1. The size of the sliding windows
N is another critical factor that affects the performance. The size of the sliding window should be long
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enough to be able to observe transitions of a sudden motion mode but short enough to maintain the
efficiency of the algorithm. The windows size N is selected as 0.6 s with a 100 Hz sampling frequency
in this paper.

Figure 4. Example of the pitch and roll data in different poses.

Table 1. Descriptions of the features.

Features Sensor Description

Paµ Accelerometer/Gyroscope Mean of the pitch angle over the moving window
Pamed Accelerometer/Gyroscope Median of the pitch angle over the moving window
Pamax Accelerometer/Gyroscope Maximum value of the pitch angle over the moving window
Pamin Accelerometer/Gyroscope Minimum value of the pitch angle over the moving window
Parms Accelerometer/Gyroscope Root mean square of the pitch angle over the moving window
Parange Accelerometer/Gyroscope Range of the pitch angle over the moving window
Raµ Accelerometer/Gyroscope Mean of the roll angle over the moving window

Ramed Accelerometer/Gyroscope Median of the roll angle over the moving window
Ramax Accelerometer/Gyroscope Maximum value of the roll angle over the moving window
Ramin Accelerometer/Gyroscope Minimum value of the roll angle over the moving window
Rarms Accelerometer/Gyroscope Root mean square of the roll angle over the moving window
Rarange Accelerometer/Gyroscope Range of the roll angle over the moving window

Lµ Light Mean of the light value over the moving window
Lmed Light Median of the light value over the moving window
Lrms Light Root mean square of the light value over the moving window
Pµ Proximity Mean of the proximity value over the moving window

Pmed Proximity Median of the proximity value over the moving window
Prms Proximity Root mean square of the proximity value over the moving window

2.1.3. Classification

Various ML algorithms, such as naïve Bayes [34], k-nearest neighbor [35,36], decision tree (DT) [36],
neural network [37], support vector machines [38,39], and random forest (RF) [40], etc. are used for the
purpose of posture context recognition. Meanwhile the merits and drawbacks of those ML methods
are compared and analyzed in many studies [41,42]. These studies demonstrated that RF offers a
number of advantages, such as a straightforward learning process, ease of parallelization, a shorter
training time, and a higher travel prediction accuracy. Consequently, only the RF methodology is used
to solve this real-time classification problem in this paper.

Finding the mean noise is the core step of this methodology. RF is an ensemble of binary
decision trees, which grow to their maximum depth and reduce the relevance of the individual
decision trees by using randomization. This randomness introduces robustness against noise to
the algorithm. According to the strong law of large numbers, as the number of decision trees in a
random forest increases, the generalization error converges to a limit, and thus the overfitting can be
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effectively avoided. The generalization error is dependent on the strength of the individual trees and
their correlation.

2.2. Pedestrian Walking Speed Estimation

2.2.1. Walk Detection

Pedestrian walk detection (PWD) is a highly critical step in estimating the walking speed and
determining the geospatial location. PWD can effectively avoid unnecessary and expensive computing
during the non-motion and promotes the accuracy of the speed estimation. The geospatial location
of the user does not significantly change in static state, such as standing still, texting, reading news,
answering a phone call, or turning around to find a location. However, with the unconstrained and
personal variation in the use of smartphones, there is no absolute static state or zero speed during the
speed estimation task or pedestrian navigation.

In this paper, two thresholds were set to detect the pedestrian walking state by using the
accelerometer and gyroscope readings. Due to the units of angular rate and acceleration being
different, the norm of the output vector from tri-accelerometer and tri-gyroscope was used to detect the
pedestrian walk. The dynamic response of the accelerometer is slow, and its range of measurement is
restricted. The gyroscope offers advances in excellent dynamic performance and sensitivity; however,
the data suffer from the changes of the temperature and unstable torques and thus produce drift errors.

δmin <
1
N ∑

k∈Ωn

(∥∥∥ya
k − ya

k

∥∥∥2
+ α
∥∥∥yg

k

∥∥∥2
)
< δmax (1)

where N is the size of the sliding windows for PWD which was selected as 0.6 s, ya
k, and yg

k represent
the readings of the tri-accelerometer and tri-gyroscope, respectively, and ya

k represents the mean value
of the accelerometer output vector in the sliding window. α = 9.8 is a scale coefficient of gyroscope
output vector. δmin and δmax represent the minimum and maximum PWD thresholds, respectively.

2.2.2. Preprocessing

In general, the output of the tri-accelerometer and tri-gyroscope might appear in the form of
harmonic oscillation waveforms caused by walking behaviors [32]. Using the repetitiveness and
periodicity of the pedestrian’s walking, the number of steps that a pedestrian has traveled can
be computed.

Recently, some algorithms based on accelerometers data processing have been developed for step
detection. In those approaches, the magnitude of the three axes amag,k are used to analyze the step, and
amag,k can be expressed as:

amag,k =
√

ax,k
2 + ay,k

2 + az,k
2 (2)

However, the use of the magnitude to do the step detection task neglects the information of pose
context implicit in the attitude of smartphone.

In this paper, the pedestrian steps were detected with knowledge of the different posture modes
and its own corresponding sensor data. When a user walks with the smartphone in texting mode,
calling mode, or pocket mode, the accelerometer signal can clearly present a cyclic pattern. When the
user walks with the smartphone in swing mode, there is synchronization between the arm and foot
motion, as has been shown by biomechanical studies. This synchronization relationship between the
swinging arm and the reaction moment about the vertical axis of the foot is explained in the context of
the dynamics of a multi-body articulated system [43]. Specifically, as a pedestrian walk, the positive
torque produced by the arm swing makes the foot move forward. Therefore, a sinusoidal pattern in
the gyroscope reading is used to detect the walking step.
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As shown in Figure 5, for texting mode, the y-axis and z-axis acceleration signals show obvious
periodicity, and the feature signal γT,k can be expressed as:

γT,k =
√

ay,k
2 + az,k

2 (3)

where ay,k and az,k denote the readings of accelerometer on the y- and z-axes.

Figure 5. Internal sensors data in different poses.

For calling mode, the x-axis and y-axis acceleration signal shows obvious periodicity, and the
feature signal γC,k can then be expressed as:

γC,k =
√

ax,k
2 + ay,k

2 (4)

where ax,k ay,k denotes the readings of accelerometer on the x- and y-axes.
For pocket mode, the magnitude of the tri-axis accelerometer is used to detect the step. The feature

signal γP,k can then be expressed as:

γP,k =
√

ax,k
2 + ay,k

2 + az,k
2 (5)

where ax,k ay,k and az,k denotes the readings of accelerometer on the x-, y- and z-axes.
For swing mode, the z-axis gyroscope signal shows an obvious periodicity, and the feature signal

γS,k can be expressed as:
γS,k =

∣∣gz,k
∣∣ (6)

where gz,k represents the readings of gyroscope on the z-axis.
To minimize the impact of the mobile device shaking and sensor drift, and to improve the

robustness of the step detection algorithm, a 10th order Butterworth filter [44] with a 3-Hz cut-off
frequency was used for preprocessing of the time-series sensors feature signal. The purpose of the
above pre-processing phase was to extract the signal’s fundamental frequency that is induced by step
events only and therefore only from an undistorted signal [45]. In this manner, the interference from
high-frequency noise and unstable output sensors data can be reduced. In Figure 6, the raw data and
the output after filtering are compared.



Remote Sens. 2019, 11, 55 8 of 18

Figure 6. Comparison of the raw data and the output after filtering.

2.2.3. Step Detection with Adaptive Magnitude and Temporal Thresholds

Pedestrian walking is a continuously changing process that has the three characteristics of
periodicity, similarity, and continuity. With the consideration of those characteristics and calculation
time, two adaptive thresholds were established from two different aspects. For the vertical aspect,
magnitude thresholds were used to detect the step point using peak detection approach. The magnitude
of a step point should be the local maximum and larger than the adaptive threshold. The threshold was
adapted dynamically based on the magnitudes of previous steps. The threshold consists of the average
and standard deviation of the magnitude of the acceleration in a fixed window. However, increasing
the window size might degrade the step detection accuracy during the transition of a step mode or
device pose, because the threshold calculated from a larger window might be unable to effectively
handle the variation in the recent statistics. From the horizontal aspect, temporal thresholds were
used to constrain the step point in the step frequency dimension. Walking is an ongoing and relatively
stable process, and therefore, the time interval between two steps and the time change of two steps
should be within the range of normal human levels. On the basis of this analysis, the following criteria
are defined in this paper:

Criteria 1. The feature signal of the candidate step point should be the local maximum:∣∣∣γmag,k

∣∣∣ > max
(∣∣∣γmag,k−1

∣∣∣, ∣∣∣γmag,k+1

∣∣∣) (7)

Criteria 2. The feature signal of the candidate step point should exceed the adaptive threshold
according to the current motion mode:∣∣∣γmag,k

∣∣∣ > µγmag,win −ωM
σγmag,win

α
(8)

where µγ and σγ represent the mean and standard deviation of the magnitude in a fixed window,
respectively, and α and ωM represent two magnitude scale constant based on the current pose context.

Criteria 3. The walking step frequency should be within the range of the frequency threshold
from υmin to υmax, which is the range of the normal level:

υmin < υstep < υmax (9)

The proposed adaptive step detection is outlined in the pseudo code in Table 2 where ya
k and yg

k
are the samples of tri-accelerometer and tri-gyroscope vector at sample time k, respectively, and Twin



Remote Sens. 2019, 11, 55 9 of 18

is calculated according to Equation (1) for PWD. Mc is the current pose context. µγ and σγ represent
the mean and standard deviation of the magnitude in a step fixed window, and α, ωM, υmin, and υmax

represent the adaptive constants based on Mc.

Table 2. Pseudocode of Step Detection Algorithm.

Input: ya
k−1, ya

k , ya
k+1, yg

k−1, yg
k ,yg

k+1, Mc
Output: Step point Sstep
Begin: calculate Twin according to Equation (1).

if Twin < δmin or Twin > δmax
return false

else
calculate γk according to Mc and Equations (3)–(6).

if |γk| > max
(
|γk−1|, |γk+1|, µγ −ωM

σγ

α

)
if υstep ∈ { υmin, υmax}

update µγ, σγ

return Sstep
end if

end if
end if

2.2.4. Step Length Estimation

Many algorithms have been proposed to estimate the step length, including human gait-based,
step frequency-based, and step counting-based methods.

Pratama [46] estimates the step length based on a static model that considers a constant relative
to height and sex, where H represents the height, and k is equals to 0.415 for male and 0.413 for
female subjects.

SL = k · H (10)

The approach of Weinberg [28] assumes that the gait impacts the vertical acceleration and uses
the difference between the maximum and minimum values of the vertical acceleration in each step to
estimate the step length. The model formula is:

SL = k · 4
√

accmax − accmin (11)

where accmax and accmin represents the maximum and minimum vertical acceleration values measured
in a single stride, respectively, and k is a constant model parameter.

The model proposed by Tian [47] estimates the step length based on the step frequency, height,
and sex of the subjects as:

SL = k · H ·
√

SF (12)

where H and SF represents the height of the subject and step frequency, and k is a model parameter
and that is tuned to 0.3139 for male and 0.2975 for female subjects.

Kim [29] develops an empirical method based on the dependence of the average acceleration on
the step length during walking. The step length is calculated using this method as:

SL = k ·
3

√√√√√ N
∑

k=1
|acck|

N
(13)

where acck is the acceleration measured on a sample in a single step and N is the number of samples
corresponding to each step.

Compared with the above step length model, in this paper, the empirical and linear model in
Reference [22] is used to estimate the step length, representing the relationship among the pedestrian’s
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height, step frequency, and step length. The equation used to estimate the step length is written
as follows:

SL =

(
0.7+a(H − 1.75)+

b(SF− 1.79)H
1.75

)
c (14)

where SL and SF represent the step length and step frequency, respectively, H is the height of the
pedestrian which is manually inserted in this step model, and a, b, and c are model parameters for
each person and can be calibrated by pre-training.

3. Results

3.1. Experimental Setup

Two experiments were carried out in the indoor environment to test the proposed algorithms.
In the first experiment, the performance of the usage pose context awareness algorithm was evaluated
based on field tests carried out in the lobby of the Library of Wuhan University. Sixty-three male
subjects and thirty-eight female subjects took part in this experiment. As shown in Figure 7, the subject
heights varied from 155–192 cm, and their ages ranged from 17 to 53. Because of the subjects’ different
patterns in smartphone use, we subdivided the calling, swinging, and pocket modes into left-hand use
and right-hand use. The percentages of swinging, pocket, and calling modes with the use of the left
hand were 6.93%, 21.78%, and 9.9%, and the percentages of the three modes with the use of the right
hand were 93.07%, 78.22%, and 90.1%, respectively. In the training process, sixty percent of the subjects’
recorded multi-sensors data that were used to train the classifier, and in the testing part, the other forty
percent of the subjects’ data were used to test the performance of the classifier. Four smartphones,
including Huawei Mate9, Huawei P9, Huawei P9 Plus, and Huawei Honor 8, were used in the
experiment, and all with Android platforms. The sensor data, including the accelerometer, gyroscope,
light sensor, and proximity sensor data, were collected and labeled by an android application in real
time, and the sampling rate of the sensors was set to 100 Hz.

Figure 7. Statistics on subjects participating in our data collection: The height and age distributions of
the subjects and the left-hand use and right-hand use ratio of subjects for different poses.
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The second experiment was an evaluation of the walking speed estimation algorithm. In total,
four smartphones (the same models as in the first test) were used in the experiment. Six men and six
women participated in this experiment, with heights from 158–183 cm and of ages 22–53. The sensors
data, including the accelerometer, gyroscope, light sensor, and proximity sensor data, were collected
using an Android application in real time, and the sampling rate of sensors was set of at 100 Hz.
The ground truth of the walking speed was measured using the Leica Nova TS60 total station, which
can track a 360-degree prism automatically and supply one observation every 0.15 s with 3-mm
precision. As shown in Figure 8, a participant carried the 360-degree prism on his/her back and
walked 80 m with four different postures. The ground truth of the step count was read from videos
taken during the entire experiment.

Figure 8. Experimental site. A Leica Nova TS60 total station was placed at the end of the corridor and
automatically tracked a 360-degree prism. Participants carried the 360-degree prism on their back and
held the smartphone in their hand.

3.2. Perfomance Evaluation of Usage Pose Awareness

Figure 9 provides the precision and recall rate of the proposed pose context awareness. The average
precision rate of the proposed algorithm was 98.833% and the average recall rate was 98.828%. Table 3
shows a confusion matrix of the classification results. For the proposed algorithm, an overall accuracy
(OA) of 98.85% and a kappa statistic (KS) of 98.46% were obtained. User’s accuracy (UA) and producer’s
accuracy (PA) were above 97.88% in all the classes, and the commission error (CE) and omission error
(OE) were within 2.12% in all the classes.

Figure 9. Average accuracy of the proposed posture context awareness algorithm. The rightmost two
bars are the average precision and recall rate of the four different poses.
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Table 3. Confusion matrix of pose recognition with seven categories.

Predicted Class

Actual class

Class Texting Swinging Pocket Calling Total PA OE

Texting 1219 2 8 0 1229 99.19% 0.81%
Swinging 2 1031 5 1 1039 99.23% 0.77%

Pocket 3 3 1018 16 1040 97.88% 2.12%
Calling 4 5 2 1101 1112 99.01% 0.99%

Total 1228 1041 1033 1118 4420
UA 99.27% 99.04% 98.55% 98.48% OA 98.85%
CE 0.73% 0.96% 1.45% 1.52% KS 98.46%

We also divided the swinging, pocket, and calling modes into two subclasses of left-handed and
right-handed use, and tested the performance of the extracted feature and classifier further. As shown
in Table 4, the overall accuracy (OA) and kappa statistic (KS) of the seven categories were 98.85% and
98.46%, respectively, which were both lower than the previous classification results, but the proposed
method still delivered a high level of precision. From the result, it is clear that the recognition accuracy
of left-hand use was lower than that of right-hand use. This was due to the following two reasons.
First, as shown in Figure 7, fewer subjects were tested with their left hand than with their right hand,
which resulted in insufficient samples and imbalanced training data. Second, the extraction features for
the patterns of left-handed and right-handed use were highly similar, and misclassification within the
major categories could lead to a remarkable decrease in the precision of the posture context awareness.
For example, the users’ accuracy of all pocket mode was 98.55%, but the users’ accuracy of left-handed
pocket mode and right-handed pocket mode were 94.55% and 96.43%, respectively.

Table 4. Confusion matrix of pose recognition with seven categories.

Predicted Class

Actualm class

Class T S(L1) S(R2) P(L) P(R) C(L) C(R) Total PA OE

T 1219 0 2 0 8 0 0 1229 99.19% 0.81%
S (L) 0 58 0 0 0 0 0 58 100% 0%
S (R) 2 0 973 2 3 1 0 981 99.18% 0.82%
P (L) 0 0 0 208 16 2 4 230 90.43% 9.57%
P (R) 3 0 3 10 784 2 8 810 96.79% 3.21%
C (L) 2 0 1 0 1 119 3 126 94.44% 5.56%
C (R) 2 2 2 0 1 0 979 986 99.29% 0.71%

Total 1228 60 981 220 813 124 994 4420
UA 99.27% 96.67% 99.18% 94.55% 96.43% 95.98% 98.49% OA 98.19%
CE 0.73% 3.33% 0.82% 5.45% 3.57% 4.02% 1.51% KS 97.70%

1 Left-handed use. 2 Right-handed use.

3.3. Pedestrian Walking Speed Estimation Results and Analysis

Table 5 shows the performance of the proposed step detection algorithm for every combination
of pose information. The twelve subjects taking part in this experiment and the ground truth and
estimated step count are list in the Table 5. The average precision of texting, swinging, pocket, and
calling modes were 99.78%, 99.32%, 99.85%, and 99.78%, respectively. The experimental results
demonstrate that the performance of the proposed algorithm was not greatly affected by any pose and
achieved a high level of precision (99.68%) consistently over any combination of poses. The result of
the eighth subject with the swing pose was the worst (86.14%) because the swing step of this subject
was homolateral. In this subject’s walking pattern, the swing arm and leg are on the same side, but the
subject regulated the swinging posture deliberately during the experiment.
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Table 5. Metrics for evaluating the adaptive step detection method with different pose.

Subject
Truth
Steps

(T)

Estimated
Steps

(T)

Truth
Steps

(S)

Estimated
Steps

(S)

Truth
Steps

(P)

Estimated
Steps

(P)

Truth
Steps

(C)

Estimated
Steps

(C)

S1 128 128 124 123 121 124 125 126
S2 113 115 112 112 112 112 114 115
S3 118 119 116 115 117 115 115 115
S4 103 103 102 101 100 102 102 103
S5 119 118 111 112 109 103 121 117
S6 126 126 121 117 123 117 122 123
S7 126 125 117 116 126 127 122 119
S8 106 108 101 115 106 106 104 105
S9 116 116 108 109 107 109 111 112
S10 102 103 103 107 102 104 103 104
S11 110 110 103 106 106 108 108 108
S12 121 120 114 108 109 113 116 113

Average 115.67 115.92 111 111.75 111.5 111.67 113.58 113.33

In this test, participants carried the 360-degree prism and walked 80 m with four different poses.
a comparison of the performance using five step length estimation models was carried out, and we
analyzed their precision in texting, pocket, swinging, and calling modes. Figure 10 illustrates the
maximum and minimum values, lower and upper quartiles, and median walking length obtained
using the five step length models, including the static [46], Weinberg [28], Tian [47], Kim [29], and
Chen [22] models, in four posture modes. In Figure 10, the red line represents the median of estimation
distance and the green line represents the actual distance (80 m). The performance of the Chen method
showed the highest precision and greatest robustness by significant margins. For texting mode, the
length-estimating errors of the Chen method were within (76.75 m, 85.95 m) and the 25% and 75% errors
were 78.46 m and 82.83 m. For calling mode, the length-estimating errors were within (75.36 m, 87.37 m)
and the 25% and 75% errors were 77.50 m and 82.40 m. For pocket mode, the length-estimating errors
were within (69.62 m, 87.82 m), and the 25% and 75% error were 77.05 m and 82.39 m, respectively.
For swinging mode, the length-estimating errors were within (73.92 m, 109.51 m), and the 25% and
75% error were 76.97 m and 84.15 m, respectively.

Figure 10. Comparison of the walking distance estimation method in different poses.
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The definition of the evaluation parameters is listed in Table 6. The absolute error rate and the
standard deviations (std) of four different poses are compared in Table 7. The average error column
presents the mean absolute percentage error of four poses.

Table 6. Evaluation parameters definition.

Evaluation Parameters Definition

Estimated speed SL
Ground truth speed SLtruth
Absolute error rate SL = |SL−SLtruth |

SLtruth

Mean absolute percentage error MSL = 1
N

N
∑

k=1
Ek

Estimated speed std σSL =

√
1
N

N
∑

k=1

(
SLk − SL

)2

Table 7. Step length error comparison.

Method
Texting Calling Pocket Swinging Average

Error (%)Error (%) Std (m) Error (%) Std (m) Error (%) Std (m) Error (%) Std (m)

Static Model 11.42 5.11 19.26 7.12 14.54 11.72 30.82 16.09 19.01
Weinberg 11.49 5.62 9.36 5.34 11.15 6.74 14.68 11.87 11.67

Tian 12.60 5.57 9.89 5.35 9.89 7.50 10.24 8.07 10.66
Kim 19.26 7.12 11.42 5.11 10.69 6.59 17.05 17.52 14.61
Chen 3.14 2.91 3.66 3.40 4.81 5.07 6.99 9.18 4.65

The results indicate that the absolute error of the Chen [22] method was much lower than those
of the other four methods, which were 3.14%, 3.66%, 4.81%, and 6.99% in the four posture modes.
The static model resulted in particularly high errors with an average of 19.01%, whereas the Kim
method obtained an average error of 14.61%. The Tian and Weinberg approaches achieved better
results, with average error rates of approximately 11%. The average error rate of the distance estimation
was reduced to 4.65% with the Chen step length estimating algorithm.

Tables 8 and 9 show the proposed pedestrian walking speed estimation result from the second test.
Twelve subjects took part in this experiment and the average of the ground truth and the estimated
speed of four poses are listed in Table 8. The average PWS estimation absolute error was 0.061 m/s.
The proposed algorithm combined with the texting pose produced the best result. The error of the
texting pose was between 0.006 m/s and 0.09 m/s, and the 50% and 95% errors were 0.031 m/s and
0.089 m/s, respectively. The estimation errors of the calling mode were within (0.022 m/s, 0.122 m/s),
and the 50% and 95% error were 0.039 m/s and 0.068 m/s, respectively. The estimation errors of the
pocket pose were within (0.013 m/s, 0.176 m/s), and the 50% and 95% errors were 0.046 m/s and
0.126 m/s. The mean error of the swing motion was 0.094 m/s, which was higher than those of the
other three posture modes, and the 50% and 95% errors were 0.058 m/s and 0.11 m/s, respectively.
The means, standard deviations, and variance of the error are also listed in Table 9.
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Table 8. Metrics for evaluating the pedestrian walking speed estimation method with different pose.

Subject

Truth
Speed

(T)
(m/s)

Estimated
Speed

(T)
(m/s)

Truth
Speed

(S)
(m/s)

Estimated
Speed

(S)
(m/s)

Truth
Speed

(P)
(m/s)

Estimated
Speed

(P)
(m/s)

Truth
Speed

(C)
(m/s)

Estimated
Speed

(C)
(m/s)

S1 1.12 1.14 1.12 1.15 1.12 1.16 1.12 1.18
S2 1.34 1.38 1.34 1.32 1.34 1.36 1.34 1.24
S3 1.24 1.21 1.24 1.18 1.24 1.23 1.24 1.26
S4 1.43 1.40 1.43 1.40 1.43 1.38 1.43 1.38
S5 1.32 1.41 1.32 1.44 1.32 1.27 1.32 1.38
S6 1.21 1.30 1.21 1.18 1.21 1.29 1.21 1.27
S7 1.16 1.17 1.17 1.10 1.17 1.28 1.17 1.11
S8 1.48 1.42 1.48 1.44 1.48 1.52 1.48 1.59
S9 1.36 1.38 1.36 1.32 1.36 1.18 1.36 1.38

S10 1.37 1.35 1.37 1.33 1.37 1.25 1.37 1.88
S11 1.49 1.55 1.49 1.55 1.49 1.53 1.49 1.52
S12 1.31 1.33 1.31 1.27 1.31 1.29 1.31 1.26

Table 9. Walking speed estimation error of the different pose.

Stat. Texting Calling Pocket Swing Average

Mean (m/s) 0.042 0.048 0.063 0.094 0.061
Std (m/s) 0.028 0.028 0.051 0.133 0.074
Var (m/s)2 0.001 0.001 0.003 0.018 0.005
Max (m/s) 0.090 0.122 0.176 0.507 0.507
95th (m/s) 0.089 0.068 0.126 0.110 0.121

Median (m/s) 0.031 0.039 0.046 0.058 0.043
Min (m/s) 0.006 0.022 0.013 0.015 0.006

4.Discussion

Overall, our studies established an adaptive pedestrian walking speed estimation system on
a consumer-grade smartphone. Evaluations of our methods with different criteria showed that an
adaptive step detection method coupled tightly with pose context can accurately estimate pedestrian
walking speed. From the results, extracted features from multi-sensors, including accelerometer,
gyroscope, light, and proximity sensors, express the four basic pose features accurately. We also
demonstrated the adaptive step detection method aided with real-time pose context recognition, which
was not greatly affected by any pose and achieved a high level of precision consistently over any
combination of poses.

Numerous recent ML-based works [10–14] predicted the PWS with a pre-trained black-box model;
however, automatic feature extraction, generalization, and unbiased dataset remained a challenge
on this task. Therefore, we tackled the problems of multi-pose context pedestrian walking speed
estimation in a model-based way [20–29]. Compared with previous studies [28,29], knowing pose
context beforehand can improve the PWS estimation precision. The results confirm that the constraints
on how the smartphone is carried were reduced in this task, and average absolute speed error
achieved was 0.061 m/s. Multi-pose PWS estimation has great potential for indoors smartphone
positioning and tracking systems. Our future study will focus on fusing the PWS with multiple
measurements (e.g., absolute position, angle-of-arrival, ranging, and time-of-advent) for smartphone
indoor positioning.

Although experiments have proven that our pose identification method performed well on four
basic trained poses, as an ML application, the performance of our method may be limited for an
untrained pose or activity. In future work, we will focus on improving the generalization of the system
and extending our method to additional postures and activities. Besides, we also aim to set up an
unbiased dataset that covers a wider range of ages, heights, genders, and handedness of the subjects.
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5.Conclusions

This paper proposed an adaptive pedestrian walking speed estimation solution aided by pose
awareness on the smartphone platform. In this solution, the real-time smartphone-posed context
was coupled with an adaptive step detection method to precisely estimate the pedestrian walking
speed using the multi-sensors tightly. Field tests were carried out to verify the proposed pose context
awareness and adaptive step detection algorithms. The proposed awareness solution was reliable
and could achieve a 98.85% overall accuracy and a 98.46% kappa statistic. The performance of the
proposed adaptive step detection algorithm was almost unaffected by the pose in the test, and was
able to consistently achieve a high level of precision (99.68%) over any combination of posture in the
tests. The performance of the proposed solution developed on a commercial smartphone resulted
in a mean absolute of 0.061 m/s over the different posture modes in real time. In future work,
we will focus on improving the robustness of the system and extending it to additional postures and
activities. Additionally, we plan to fuse the pedestrian walking speed with other measurements for
indoor positioning.
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