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Abstract: Leaf attribute estimation is crucial for understanding photosynthesis, respiration,
transpiration, and carbon and nutrient cycling in vegetation and evaluating the biological parameters
of plants or forests. Terrestrial laser scanning (TLS) has the capability to provide detailed
characterisations of individual trees at both the branch and leaf scales and to extract accurate
structural parameters of stems and crowns. In this paper, we developed a computer graphic-based
3D point cloud segmentation approach for accurately and efficiently detecting tree leaves and their
morphological features (i.e., leaf area and leaf angle distributions (leaf azimuthal angle and leaf
inclination angle)) from single leaves. To this end, we adopted a sphere neighbourhood model with
an adaptive radius to extract the central area points of individual leaves with different morphological
structures and complex spatial distributions; meanwhile, four auxiliary criteria were defined to ensure
the accuracy of the extracted central area points of individual leaf surfaces. Then, the density-based
spatial clustering of applications with noise (DBSCAN) algorithm was used to cluster the central area
points of leaves and to obtain the centre point corresponding to each leaf surface. We also achieved
segmentation of individual leaf blades using an advanced 3D watershed algorithm based on the
extracted centre point of each leaf surface and two morphology-related parameters. Finally, the leaf
attributes (leaf area and leaf angle distributions) were calculated and assessed by analysing the
segmented single-leaf point cloud. To validate the final results, the actual leaf area, leaf inclination
and azimuthal angle data of designated leaves on the experimental trees were manually measured
during field activities. In addition, a sensitivity analysis investigated the effect of the parameters in
our segmentation algorithm. The results demonstrated that the segmentation accuracy of Ehretia
macrophylla (94.0%) was higher than that of crape myrtle (90.6%) and Fatsia japonica (88.8%).
The segmentation accuracy of Fatsia japonica was the lowest of the three experimental trees.
In addition, the single-leaf area estimation accuracy for Ehretia macrophylla (95.39%) was still
the highest among the three experimental trees, and the single-leaf area estimation accuracy for crape
myrtle (91.92%) was lower than that for Ehretia macrophylla (95.39%) and Fatsia japonica (92.48%).
Third, the method proposed in this paper provided accurate leaf inclination and azimuthal angles for
the three experimental trees (Ehretia macrophylla: leaf inclination angle: R2 = 0.908, RMSE = 6.806◦

and leaf azimuth angle: R2 = 0.981, RMSE = 7.680◦; crape myrtle: leaf inclination angle: R2 = 0.901,
RMSE = 8.365◦ and leaf azimuth angle: R2 = 0.938, RMSE = 7.573◦; Fatsia japonica: leaf inclination
angle: R2 = 0.849, RMSE = 6.158◦ and leaf azimuth angle: R2 = 0.947, RMSE = 3.946◦). The results
indicate that the proposed method is effective and operational for providing accurate, detailed
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information on single leaves and vegetation structure from scanned data. This capability facilitates
improvements in applications such as the estimation of leaf area, leaf angle distribution and biomass.

Keywords: leaf attribute estimation; computer graphic; individual leaf segmentation; terrestrial laser
scanning (TLS)

1. Introduction

As the main organs of vegetation, leaves play a crucial role in vegetation growth [1]. Leaf attributes
are critical to describing the interactions between the land surface and the atmosphere, particularly
in close relation to many biological and physical processes, such as photosynthesis, respiration,
transpiration, and carbon and nutrient cycling [2]. Therefore, the estimation of leaf structural and
biophysical parameters is important for vegetation growth monitoring [3]. The leaf attributes extracted
in this paper include leaf area, and leaf angle distributions [4]. Leaf angle distributions can be described
by the leaf inclination angle and leaf azimuthal angle, which are defined as the angle between the
leaf surface normal and the zenith [5] and the clockwise angle between the north direction and the
projection of the principal axis of foliage on the horizontal plane [6], respectively.

The two major approaches for estimating leaf area involve the use of either direct or indirect
methods. Methods have been devised to facilitate the direct measurement of leaf area and included
image analysis [7] and the use of a conventional planimeter or an electronic leaf area metre [8,9].
Direct methods for measuring the leaf area yield accurate results but are extremely laborious and
time-consuming. Therefore, indirect methods have been developed and are typically preferred for this
measurement. Indirect methods, by which the leaf area is inferred via measurements of other variables,
such as gap probability [10] or light transmission through canopies, are efficient, non-destructive, and
amendable to automation [11]; most indirect methods rely on optical instruments, such as the LAI-2000
Plant Canopy Analyser [12], Architecture of Canopies TRAC [13], Hemispherical Photography [14],
and HemiView [15] instruments. Numerous attempts have been made to indirectly estimate LAI
using aerial or satellite remote sensing imagery [16,17]. Most of these attempts use approaches
based on light reflectance from the canopy [18], and virtually all provide canopy-level estimates
of LAI. These methods have had limited success, but estimates are often not precise enough to
support site-specific forest management decisions. However, existing methods for estimating leaf angle
distributions also involve direct or indirect approaches. A simple device consisting of a ruler, magnetic
compass, and protractor [19] and a mechanical instrument consisting of high-precision potentiometers
with three protruding arms [20] are commonly used to directly measure leaf inclination and azimuthal
angles. Although direct methods can produce highly accurate results, they are extremely laborious and
time-consuming [21]. An indirect method to estimate leaf inclination and azimuthal angles based on
digital photography was introduced [22] and has shown the potential to overcome the disadvantages
of direct methods. However, this photographic method is difficult to automate, and substantial user
interaction is required to identify suitable leaves upon which to measure leaf inclination angles [23];
in addition, this method must be carried out on towers, poles, ladders, unmanned aerial vehicles,
and other conventional platforms [24].

Terrestrial laser scanning (TLS), which is used in measuring vegetation structure information,
has advantages, such as a favourable directivity, high angular resolution, and strong
anti-interference capability. In recent decades, laser scanning measurements techniques have enabled
centimetre-level-accurate information to be acquired for individual trees. TLS is also a popular tool in
forest ecology. The use of TLS has been intensively studied, e.g., for the estimation of leaf area index [25],
crown structure [26], tree height [27] and diameter at breast height (DBH) [28], leaf area distributions
and leaf angle distributions. This research has led to the development of accurate and effective leaf
area extraction methods [29] and a leaf angle distribution estimation technique [30]. The individual
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tree 3D modelling methods [31,32] from laser scanning data were also applied for the detection of
various tree attributes. LiDAR-based leaf attribute retrieval has become an appealing concept due to
its ability to capture the structural information of canopies as 3D point cloud data. The point cloud
data acquired using this technique record geometrical information for each leaf, which has greatly
improved the accuracy of leaf attribute estimation and has been used in numerous studies to retrieve
leaf areas [33] and leaf angle distributions [34] from various vegetation types. A number of statistical
models have been used to estimate leaf area, including the Leaf Area Constant Model [35], a statistical
model based on linear measurements such as leaflet length and width [36], and allometric models
that use non-destructive measurements of leaf length and/or width for estimating the leaf area [37].
The regression-based method is used to estimate the leaf area of an individual tree on the basis of
a regression model with LiDAR-derived tree dimensions [38]. Computer graphics and different space
partitioning methods are applied for point cloud processing. For example, the leaf area and leaf edge
are accurately estimated by calculating the number of pixels of the RGB image [39], a voxel-based
approach to retrieve the leaf area distribution for individual trees [40,41], and a voxel-based gap
size algorithm to retrieve forest canopy clumping index [42]. For leaf area deduction, the projected
outer surface or projected tree row surface (PTRS) is linearly related to the leaf area [43]. In addition,
the non-destructive estimation of leaf area based on an artificial neural network approach has also
been studied [44,45]. Furthermore, a number of methods have been developed to estimate the leaf
angle distributions. Multi-angular spectral data have been applied for identifying vegetation leaf angle
distributions either from the structure sensitive index [46] or by model inversion [47]. The information
on leaf inclination angles from measurements of radiation penetration of the canopy can be retrieved
at different view angles [48]. A new method, the photographic method, was developed based on the
analysis of levelled digital camera images of canopies consisting of flat leaves, which allows a rapid,
non-contact and accurate estimation of leaf angle distributions [49]. Leaf normals can be estimated
using an algorithm that fits a plane to neighbouring LiDAR leaf intersection points [50]. Furthermore,
average leaf normals can be calculated by manually identifying leaves within LiDAR point cloud
data and using planar fits [51]. The method triangulates laser-leaf intersection points recorded by
the LiDAR scan to calculate normal vectors [34]. The non-photosynthetic and photosynthetic parts
of the tree be separated to more accurately estimate leaf attributes and tree crown characteristics via
approaches such as the geometric method using the 3D coordinates of each point [52] and the use of
a series of features for each point [53]. With these methods, progress has been made in the estimation
of individual leaf areas and leaf angle distributions, but the description of tree crown details using the
LiDAR technique still needs further improvement.

Although many studies have been performed using tree leaf attribute estimation based on TLS
data, initial TLS data points are extremely numerous and unorganised [54]. The current research faces
the following problems upon obtaining the forestry parameters from scanning data. (1) The scanning
data always experience a significant occlusion effect, which results in a large error in leaf attribute
estimation. (2) Because the point cloud data contain a large number of noise points and because of the
limitations of the performance of the instrument itself, it is complicated to extract parameters from
tree scanning point cloud data. (3) For individual leaf-scale information, it is still necessary to design
a computer graphic-based algorithm to accurately extract individual leaves from massive point clouds.

Considering leaves with different morphological structures and complex spatial distributions,
we aimed to devise a computer graphic-based 3D point cloud segmentation approach to automatically
detect single leaves by processing the whole point cloud of the tree crown to obtain individual leaf-scale
information, including leaf area and leaf angle distributions. The specific objectives of this study are as
follows. (1) Based on computer graphics methods, a sphere neighbourhood model with an adaptive
radius and four auxiliary defined criteria was adopted, enabling the centre points of every individual
leaf surface for three different tree species to be extracted efficiently. (2) Based on the extracted centre
point of each leaf combined with a 3D watershed algorithm, the segmentation of each leaf was achieved.
(3) After the segmentation of each leaf, the area of each leaf was calculated by triangulation, and leaf
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inclination and azimuthal angles were calculated by computing the vector angle of each leaf surface.
A qualitative comparison verification was carried out between the manual data and the data obtained
using our methods for investigating the usability of leaf segmentation and verifying the effectiveness
of the algorithm.

2. Materials and Methods

2.1. Study Site and Data Collection

The experimental trees were selected on the campus of Nanjing Forestry University
(32◦08’N, 118◦81’E, WGS-84) and included many well-isolated individual Ehretia macrophylla
(Ehretia macrophylla Wall), crape myrtle (Lagerstroemia indica L) and Fatsia japonica (Fatsia japonica
(Thunb.) Decne. et Planch.) trees. All object trees with broad leaves and canopies with varying densities
were scanned using a TLS (Leica C10) instrument, and one side-lateral scan was used to obtain the data.

The data were collected with a Leica C10 TLS system on May 2018. The Leica C10 instrument is
a 532-nm phase-based scanner with a 360◦ × 270◦ upward field-of-view and laser rate of 50,000 points
per second. The range measurement accuracy is ±1.5 mm at a distance of 3 m. The circular laser beam
diameter and beam divergence at the scanner exit are 3 mm and 0.22 mrad, respectively, yielding
a minimum distance between consecutive beams of approximately 0.4 mm at a distance of 3 m from
the instrument. For the Ehretia macrophylla, crape myrtle and Fatsia japonica trees, the distances of the
experimental trees and TLS were 5 m, 5 m and 3 m respectively, depending on tree height, in order to
get the phenotypic characteristics of the whole tree in one scan within the viewing window. The height
of the scanner was 1.57 m, 1.5 m and 0.8 m respectively. In this study, the normal scanning precision of
the Leica C10 instrument was employed.

Three experimental trees, i.e., one Ehretia macrophylla, one crape myrtle and one Fatsia japonica
tree, were selected for testing. Their structures represented by TLS point clouds are illustrated in
Figure 1. The structural features of these trees, specifically tree height, crown base height and canopy
projection area are listed in Figure 1. The LiDAR point density values were 16,946.3 points (pts) ·m−2,
16,188.76 pts ·m−2 and 51,483.96 pts ·m−2 for the Ehretia macrophylla, crape myrtle and Fatsia japonica
trees, respectively; the heights of the trees were 3.5 m, 3.42 m and 1.6 m respectively; the crown base
heights of the trees were 0.97 m, 1.26 m and 0.1 m, respectively; the projected areas of the crowns
were 1.274 m2, 1.975 m2 and 3.126 m2, respectively. The diameter at breast height (DBH) statistics for
the trees are also listed in Figure 1, where DBH is defined as the sum of the diameter of each branch
chest height. These comparisons indicate that the basic structural parameters of the sample trees
were similar among all three tree species. Overall, there were no extreme cases of falling leaves and
noise point increases due to the occurrence of strong winds for the selected trees. Thus, the selected
experimental trees were appropriate for leaf attribute estimation.

To obtain the true leaf area and leaf angle distributions and demonstrate the validity of our
method, the single-leaf area and leaf inclination and azimuthal angle of all target trees were
measured using an LI-3000C portable area metre and angle measurement device. To validate the
final results, we sampled the three experimental trees with different leaf numbers and manually
measured the leaf inclination and azimuthal angles of all their leaves using an angle measurement
device. For each experimental tree, the number of sampled leaves accounted for 40% of the total
number of leaves in the crown, and the randomly sampled leaves were evenly distributed in the
crown. Taking Ehretia macrophylla as an example, the crown was divided into upper, middle and
lower portions. Each portion was divided into the eastern, western, northern and southern parts.
Then, the tree crown was divided into 12 parts, with the sampled leaves distributed evenly in each
part. The leaf angle distribution box plots (see Figure 2) show that the analytic dataset accounted for
40% of the total number of leaves in the tree crown, and the leaf inclination angle and leaf azimuth
angle values tended to be relatively stable.
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2.2. Wood-leaf Separation 

Wood-leaf separation, which aims to classify LiDAR points into wood and leaf components, is 
an essential prerequisite for achieving leaf separation and deriving individual tree leaf 
characteristics. An unknown degree of wood components likely causes errors in leaf area estimates 
[55]. Considering the importance of wood-leaf separation results, in the current study, a series of 
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Figure 2. Box plot showing the distributions of the true leaf inclination angles and leaf azimuth
angles of the three experimental trees. (a–c): the distributions of the true leaf inclination angles of
three experimental trees with proportion of sampled leaves number increasing. (d–f): the distributions
of the true leaf azimuth angles of three experimental trees with proportion of sampled leaves number
increasing. The plots show that when the number of leaves analysed reaches 40% of the total number
of leaves in the tree crown, the leaf inclination angle and leaf azimuth angle values tend to be relatively
stable. Therefore, in the verification below, the analytic dataset accounted for 40% of the total number
of leaves in the experimental tree.
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2.2. Wood-leaf Separation

Wood-leaf separation, which aims to classify LiDAR points into wood and leaf components,
is an essential prerequisite for achieving leaf separation and deriving individual tree leaf characteristics.
An unknown degree of wood components likely causes errors in leaf area estimates [55]. Considering
the importance of wood-leaf separation results, in the current study, a series of features for each
point [53] was used to separate the leaves of the experimental trees. These features were the normal
vector, the structure tensor and the distribution of the point normal vector. Figure 3 shows the
wood-leaf separation results, including the wood points and the leaf points for each of the three
experimental trees.
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Figure 3. Results of wood-leaf separation with a series of features for each point, i.e., the normal vector,
the structure tensor and the distribution of the point normal vector, for Ehretia macrophylla (first row),
crape myrtle (second row) and Fatsia japonica (third row). (a) Initial point clouds, (b) wood points and
(c) leaf points.

2.3. Individual Leaf Segmentation

The leaf blade is the main part of the tree crown and is mostly a green flat body with a large
surface area, which is conducive to gas exchange and the absorption of light energy; this is of great
relevance for studying leaf structure parameters. The sizes and shapes of leaves vary with different
tree species. However, leaf morphology is relatively stable among leaves in the same plant and can be
used as a basis for identifying plant species and individual leaf segmentation. The leaf blade width
of the same plant has a relatively stable numerical range. The leaves of the three experimental trees
studied in this paper have plane features; therefore, the corresponding scanned points of each leaf also
have plane features.

Based on the above features, the proposed algorithm of individual leaf segmentation consists of
three main stages, which are shown in Figure 4. The first stage is the extraction of the point clouds of
the leaf central with a sphere neighbourhood model with an adaptive radius; four auxiliary criteria are
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defined to ensure the accuracy of the extracted central area points of each leaf surface. In the second
stage, the density-based spatial clustering of applications with noise algorithm (DBSCAN) is used
to cluster the central area points of the leaves, thereby obtaining the centre point corresponding to
each leaf surface. In the third stage, individual leaf segmentation is realized by an advanced leaf blade
segmentation algorithm combined with a 3D watershed algorithm.
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Figure 4. Flowchart of the proposed algorithm of individual leaf segmentation. The entire experimental
method consists of three stages. (a) The first stage is the extraction of the central area points of each leaf
using a sphere neighbourhood model with an adaptive radius and four auxiliary criteria. The black
dots extracted from the first stage comprise the central area points of each leaf. (b–d) In the second
stage, the central area points of each leaf are clustered using the density-based spatial clustering
of applications with noise algorithm (DBSCAN) algorithm, and the centre point of each leaf is
obtained, as labelled by the red star. (d–e) In the third stage, individual leaf separation is achieved
using a spatial watershed algorithm based on the centre point of each extracted leaf surface and the
two morphology-related parameters.

2.3.1. Extracting the Central Area Points of Individual Leaves

For leaves of different morphological structures and complex spatial distributions, it is especially
important to determine the spatial plane where each leaf blade is located. Through analysis, the leaves
of the three experimental trees can be approximately treated as a surface, and each leaf has its own
centre point, which is usually at the centre of the leaf. However, each leaf has a different zenith angle
and azimuth angle, making it difficult to directly express the plane of each leaf. However, central
points must be able to extend in a certain spatial direction across the entire leaf blade to form a plane,
which can always be found in 3D space, that is, the plane where the point cloud of the leaf blade is
located. In the sphere neighbourhood model of the adaptive radius proposed in this paper, when the
leaf blade point cloud uniformly fills the great circle plane in the whole sphere model, the centre of the
sphere is the central area point of the leaf. Randomly distributed scanned points lie on a plane in 3D
space on each leaf surface. The ternary equation Sζ(x, y, z) = 0 is applicable to this situation, and any
point pi(xi, yi, zi), (i = 1, 2, 3, . . . , n1) on the leaf blade satisfies pi(xi, yi, zi) ∈ Sζ , (ζ = 1, 2, 3, . . . , n2).
n1 represents the total number of scanned points in each tree crown. n2 represents the total number of
leaves in each tree crown, and the value of n2 is unkown. Sζ represents each leaf surface in 3D space.
However, each leaf surface is irregular and cannot be easily expressed by a mathematical equation.
To present the surface equation for each leaf, Sζ can be represented by the central area points of each
leaf surface. The extraction of points in the centre area of each leaf is also the basis for the subsequent
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individual leaf segmentation. Therefore, this paper primarily uses the sphere neighbourhood model to
extract the central area points of each leaf, as shown in Figure 5a.Remote Sens. 2018, 10, x FOR PEER REVIEW  8 of 18 
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Figure 5. Schematic illustrating the extraction of the centre point of each leaf. (a) The radius of the sphere
is r1 = width/4. Black dots indicate the central area points extracted from each leaf. (a2–a4) show
that criteria 2 and 3 are satisfied, i.e., the distance of point pi and its neighbourhood points pi,j to the
fitting plane Si is less than the thresholds. Criterion 4 guarantees that the neighbourhood points p′i,j
are uniformly distributed around point p′i on the great circle plane Sc

i . (b1) shows a case that satisfies
criterion 4; (b2) shows a case that does not satisfy criterion 4.

From the above analysis, each leaf blade is approximately in the plane distribution, and for the
central area points of each leaf, the neighbourhood points must be uniformly distributed on a certain
great circle of the sphere neighbourhood model. This paper defines four auxiliary criteria, and a point
pi(xi, yi, zi) that satisfies these auxiliary criteria is a leaf central area point. The point-to-point
verification method is used to extract the centre area points of each leaf.

In this study, the extraction of leaf central area points by the point-to-point through the sphere
neighbourhood model is the key step in individual leaf segmentation. First, the following variables
must be defined: the radius of each sphere neighbourhood model is r1, and the centre of each sphere
is pi, as shown in Figure 5(a4). The determination of the sphere neighbourhood model radius r1 is
a critical step in the pointwise classification because this variable can affect the classification accuracy.
In this paper, the radius of the searching ball was set to r1 = Wtree/4 based on our sensitivity analysis to
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balance the classification accuracy and computational efficiency. Wtree represents the average leaf width
in the whole tree crown of the current process tree. For a point pi(xi, yi, zi) in the point cloud P, P ⊂ R3,
the neighbourhood points of pi within the radius r1 were defined as pi,j

(
xi,j, yi,j, zi,j

)
(j = 1, 2, 3, . . . , n3)

and satisfied the condition pi,j − pi ≤ r1. n3 is the number of neighbourhood points pi,j for the point pi
(i.e., the number of points in the sphere neighbourhood model). The value of n3 is should greater than
thresholds0. The thresholds0 for the three experimental trees (Ehretia macrophylla, crape myrtle and
Fatsia japonica) is set at 15, 10 and 30, respectively, according to the apparent characteristics of plants,
leaf size and leaf area density.

pi =
1
n3

n3

∑
j=0

pi,j (1)

where pi denotes the mean of the neighbourhood points pi,j for the point pi.
Criterion 1:
Find the point pi that satisfies Equation (2). Equation (2) represents the distance between the

current point pi and point pi, which is less than the thresholds1. Equation (2) ensures that the current
point pi is close to its centre of the neighbourhood points.

‖ pi pi ‖� thresholds1 (2)

Criterion 2:
Find the point pi that satisfies Equation (3). Equation (3) expresses that the current point pi must

be close to the fitting plane Si. Si is generated using the least squares method from the current point
pi and its neighbourhood points pi,j. The fitting plane is defined as Si : Axi + Byi + Czi + D = 0.
The distance between the current point pi and the fitting plane Si is less than thresholds2.

|Axi + Byi + Czi + D|√
A2 + B2 + C2

< thresholds2 (3)

where the value of thresholds2 is half of the thresholds1 value.
Criterion 3:
Ensure that the distribution composed of the current point pi and its neighbourhood points has

spatial planar features. Equation (4) guarantees that the distance between all the neighbourhood points
pi,j of the current point pi and the fitting plane Si are less than the thresholds2, which ensures that all
the neighbourhood points pi,j are close to the fitting plane Si, i.e., the mean value of the distance from
each neighbourhood point pi,j of the current point pi to the fitting Si is less than the thresholds2.

1
n3

n3

∑
j=1

∣∣Axi,j + Byi,j + Czi,j + D
∣∣

√
A2 + B2 + C2

< thresholds2 (4)

where n3 is the number of neighbourhood points pi,j for point pi.
Criterion 4:
Sc

i represents the great circle obtained by the intersection of the fitting plane Si and the sphere
neighbourhood model of the current point pi, as shown in Figure 5(b1,b2). The great circle plane Sc

i is
divided into the t block area as shown in Figure 5(b1,b2). The projection points of pi and pi,j on the
great circle plane Sc

i are p′i and p′i,j, respectively. It is reasonable that the points p′i,j should be uniformly
distributed around point p′i on the great circle plane Sc

i . The variation ratio is used to measure the
degree by which the point p′i and its neighbourhood points p′i,j are distributed on the great circle plane
Sc

i . (Nump,
i,j
− Numv)/Nump,

i,j
denotes the variation ratio of discrete points in each v(v = 1, 2, . . . , t)

block area. Nump,
i,j

denotes the total number of projection points on the great circle plane, and Numv

is the number of the projection points in the vth block area Equation (5) guarantees that the point p′i
and its neighbourhood points p′i,j are evenly distributed in each block area. This criterion eliminates
candidate points at the leaf edge that overlap with other leaves, which can be mistakenly classified as
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the central area point (Figure 5(b1,b2)). The values of 0.6 and 1.4 are empirical values of individual leaf
segmentation in our program.

0.6/t < Numv/Nump,
i,j
< 1.4/t (5)

Figure 5(b1) shows an example of satisfied criterion 4, and Figure 5(b2) shows an example of
unsatisfied criterion 4.

The central area points pcarea
ξ (ξ = 1, 2, 3, . . . , n4) satisfying Equations (1)–(5) are extracted as black

dots shown in Figure 5(a1). n4 is the total number of central area points of each tree.

2.3.2. Clustering of Leaf Central Area Points

In real situations, the central area points of the leaves in each tree crown are divided into a large
number of clusters. Therefore, we adopted the cluster algorithm proposed by Ester et al. [56], DBSCAN,
to determine the central points of leaf segmentation. DBSCAN requires two input parameters
containing the minimum number of points (MinPts) needed to form a cluster and the maximum radius
of the neighbourhood from the core point (MaxR) (the maximum distance between clusters, here). The
determination of the two input parameters is a critical step in the leaf central area points clustering
process since these parameters can affect the accuracy of the clustering result. In this paper, the
parameter MinPts for the three experimental trees (Ehretia macrophylla, crape myrtle and Fatsia
japonica) was set at 15, 10 and 30, respectively, according to the scanned point density and area
of each leaf surface, which can be adopted to obtain the appropriate parameter MaxR and achieve
the classification result. The extracted data of the central area points of each leaf have a uniform
distribution; then, MaxR can be calculated from MinPts and the size of the point cloud using the
following equations [57]:

MaxR =

√
T ·MinPts · Γ[(1/2) · n + 1]

n4
√

πn
(6)

T =
[

Max
(

x
(

pcarea
ξ

))
−Min

(
x
(

pcarea
ξ

))][
Max

(
y
(

pcarea
ξ

))
−Min

(
y
(

pcarea
ξ

))][
Max

(
z
(

pcarea
ξ

))
−Min

(
z
(

pcarea
ξ

))] (7)

where n4 denotes the number of central area points of each tree crown. The value of n is 3 in this study,
representing the dimensionality of the points. Γ is the gamma function, and T is the volume of the
experimental space formed by m points. pcarea

ξ denotes the data set of the central area points, and

x
(

pcarea
ξ

)
, y
(

pcarea
ξ

)
, z
(

pcarea
ξ

)
are the x, y and z values of pcarea

ξ , respectively.
MaxR was obtained by Equation (6), calculated as half of the average leaf width for each tree

crown. Then, the central area points were clustered based on the two input parameters MaxR and
MinPts. After the clustering analysis using the DBSCAN algorithm, the central area points of each
leaf were segmented into different clusters, as shown by the coloured dots in Figure 4d. After the
central area points pcarea

ξ were divided into n2 clusters, pcarea
ξ,k (ξ = 1, 2, 3, . . . , n4, k = 1, 2, 3, . . . , n2) was

obtained to represent the central area points of each leaf blade surface, where k indicates that the
ξth centre area point belongs to the kth cluster. The centre point for central area points pcarea

ξ,k of each
leaf blade is denoted as ck(k = 1, 2, 3 . . . n2) and is labelled by red stars in Figure 4d. ck represents the
centre point of each leaf in the tree crown. These points serve as the seed point for the 3D watershed
algorithm (Section 2.3.3). Each cluster of central area points pcarea

ξ,k corresponds to one centre point of
each leaf ck.

2.3.3. Individual Leaf Segmentation

The 3D watershed algorithm [58,59] is used to segment the remaining leaf point cloud of the
tree crown, that is, the non-central area points p̃l(l = 1, 2, 3 . . . n5), where p̃l ∪ pcarea

ξ = pi. n5 is the
total number of non-central area points of each tree. In our method, the watershed algorithm
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starting points are the centre points of each leaf ck, which were determined using our methods.
The two morphology-related parameters, namely, the Euclidean distance between the centre point
and the non-central area point and the cosine of the angle between the vector composed of the centre
point and the non-central area point and the normal vector of the leaf blade, were used to segment
individual leaves, which reduced the leaf oversegmentation problem and improved the precision
of segmentation in the leaf edge detection. The ultimate goal of Equation (8) is to find the minimal
value for each non-central area point p̃l , thereby completing the classification of each p̃l value with the
corresponding centre point ck.

plea f
l,k = argmin(a1 ‖ p̃l − ck ‖2

2 +a2 cos (∠(
→

(ck, p̃l),
→
ck))) (8)

where plea f
l,k (l = 1, 2, 3 . . . n5, k = 1, 2, 3 . . . n2) represents the point after classifying, as shown by

coloured dots shown in Figure 4f. The first term on the right-hand side of equation ‖ p̃l − ck ‖2
2

represents the Euclidean distance between the centre point ck and the non-centre point p̃l . The second

term on the right-hand side of the equation cos (∠(
→

(ck, p̃l),
→
ck)) calculates the cosine of the included

angle between the vector composed of the centre point ck and the non-central area point p̃l and the
normal vector of the leaf blade surface

→
ck. To balance the two terms, the parameters a1 and a2 should

be adjusted. The equivalent relationship of the parameters a1 and a2 is a1 + a2 = 1. In the experiment,
the values of a1 and a2 were set to 0.7 and 0.3, respectively. Figure 6 illustrates Equation (8).
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Figure 6. Figure 6 depicts the role of Equation (8) in the segmentation of an individual leaf, where the
distance (i.e., the Euclidean distance between the centre point and the non-central area point) and the
included angle (i.e., the included angle between the vector composed of the centre point and the non-central
area point and the normal vector of the leaf blade) are used for leaf segmentation. (a) The distance is the
main contributing factor to completing individual leaf segmentation, which means that the non-central

area point p̃l is closer to the real leaf centre point ck. (b) The included angle between the vector
→

(ck, p̃l)

and the normal vector
→
ck of each leaf is the main contributing factor to completing individual leaf

segmentation. The included angle of the two vectors noted above composed of points belonging to the
same leaf surface is nearly 90 degrees, which decreases the value of the second term on the right-hand
side of Equation (8).

2.4. Leaf Attributes Calculation Based on Classified Leaf Points

After single-leaf segmentation via our method, Delaunay triangulation was adopted to deduce
the area of each leaf. For segmented single-leaf scanning data, the normal vector of each leaf surface
was obtained by fitting the leaf blade plane with the least squares method. For the known single-leaf
point cloud data, the leaf inclination angle was used to calculate the included angle between the vector
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of the leaf surface normal and the zenith angle. According to the definition of the leaf azimuth angle,
it is important to extract the principal axis of foliage. In this paper, the principal axis of each leaf blade
is defined as the line between the most distant two points in a single-leaf point cloud. Thus, the leaf
azimuthal angle can be obtained by calculating the clockwise angle between the north direction and
the projection of the principal axis of foliage on the horizontal plane.

3. Results

3.1. Plant Leaf Classification

After applying our classification method to the preliminary scanned datasets of the experimental
trees, we acquired an excellent consistency between the point clouds and real plant dimensions.
These good results can be largely attributed to the proper selection of features, including the normal
vector, the structure tensor and the distribution of the point normal vector. The quantitatively assessed
classification accuracies of each target tree class are listed in Table 1. The tree height is a field
measurement. The crown projection area is calculated by convex hull algorithms [60] of the single trees
based on the scanned points. One result for leaf point number and the branch point number is obtained
by the wood-leaf separation method in this study and the other using the manual measurement results.
The overall accuracy is the ratio of the results produced by the classification method in this paper to
the benchmark results derived using manual measurements.

Table 1. Overall accuracy assessment of the classification of different tree species.

Tree Species Ehretia Macrophylla Crape Myrtle Fatsia Japonica

Total number of points 36,604 107,914 247,133
Tree height (m) 3.5 3.42 1.6

Crown projection area (m2) 1.274 1.975 3.126
Average spatial sampling (cm) 0.55 0.45 0.42

Leaf point number
(classified/actual)

27,841/29,387 72,639/78,564 184,721/201,648

Branch point number
(classified/actual)

8763/7217 35,275/29,350 62,412/45,485

Overall accuracy 94.73% 92.46% 91.61%

3.2. Leaf Segmentation

Three experimental trees were segmented using our method. The detailed results are shown in
Figure 7 and demonstrate the classification results for Ehretia macrophylla (Figure 7a), crape myrtle
(Figure 7b) and Fatsia japonica (Figure 7c). The accuracy of leaf segmentation is 94.0%, 90.6% and
88.8% for the Ehretia macrophylla, crape myrtle and Fatsia japonica trees, respectively. The accuracy of
leaf segmentation in the upper tree crown (97.7%) was found for the Ehretia macrophylla trees than for
the middle tree crown (90.6%) and lower tree crown (93.1%). The accuracy of leaf segmentation in the
upper tree crown (92.2%) than for the lower tree crown (88.8%) was found for the crape myrtle trees.
The central area points of each leaf for the experimental trees were accurately extracted by our method,
and the extraction results are shown as black dots in Figure 7(a1,b1,c1). Then, the extracted central
area points of the experimental trees were clustered using the DBSCAN algorithm, and the central
area points of individual leaves were segmented into different clusters, as shown by the coloured dots
in Figure 7(a2,b2,c2). The best segmentation effect was obtained for Ehretia macrophylla, which has
relatively flat leaves in the overall canopy and an occlusion effect that is not obvious. The second best
results were obtained for crape myrtle, which has a small leaf size and high leaf density; this tree type
also achieved a good segmentation effect. Finally, Fatsia japonica, with the most complicated blade
shape structure, also had a good segmentation effect.
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Figure 7. Scatter plots of point cloud canopy data obtained using our proposed method to automatically
segment and randomly colour leaves. The obtained individual foliage points were prepared for leaf
parameter estimates. (a) Ehretia macrophylla; (b) crape myrtle; and (c) Fatsia japonica. (a1,b1,c1): The
black dots indicate the central area points of each leaf extracted by the sphere neighbourhood model,
and the green dots represent the entire leaf points of each leaf. (a2,b2,c2): The central area points
were clustered using density-based spatial clustering with the noise algorithm and visualized with
random colours. (a3,b3,c3): The leaf segmentation results, with partial close-up images presented in
(a4,b4,c4), respectively.

3.3. Leaf Attribute Calculation

After segmentation via our method, Ehretia macrophylla was divided into upper, middle and
lower sections with three different horizontal layers, crape myrtle was divided into upper and lower
sections with 2 different horizontal layers, and Fatsia japonica was not stratified. The segmented leaf
points in the crowns were used as preliminary data and were randomly chosen as the analytic dataset.
For each target tree, the leaves in the analytic dataset were evenly distributed in four directions, east,
west, north and south, and the number of leaves in the analytic dataset accounted for 40% of the total
number of leaves in the crown of the target tree. In this study, Delaunay triangulation was adopted to
estimate each designated leaf area, and vector angles were computed to obtain leaf azimuthal angle and
leaf inclination angle values. The specific leaf parameters obtained (e.g., leaf length, leaf width, leaf area,
leaf azimuthal angle and leaf inclination angle) using our methods for different tree species are listed
in Table 2. A comparison of the number of leaves in each crown obtained via manual measurements
and using our method is presented in Table 2, which indicates that our method obtained satisfactory
estimates of the number of individual tree leaves. Table 2 shows that the leaf areas determined by
the Delaunay triangulation algorithm are very similar to the actual leaf areas obtained by manual
measurements. In addition, the values of the angle distribution calculated directly on the point clouds
were effectively highly correlated with the measurements of the actual angles taken in the field.
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Table 2. Statistics of leaf attributes estimate for the three individual trees using our method and
manual measurement.

Tree Species
Ehretia Macrophylla Crape Myrtle Fatsia

Japonica

Upper Middle Lower Upper Lower Tree Crown

NP 12,477 14,316 3438 35,028 37,639 103,177
PD (pts·m−2) 4320 6260 6531 5844 9410 51,484

NLUM/
NLMM

44/
43

87/
96

27/
29

501/
543

440/
495

187/
166

RELN 2.33% 9.38% 6.90% 7.73% 11.11% 12.65%
RELL 5.57% 3.48% 1.16% 1.75% 15.1% 1.44%
RELW 2.75% 10.85% 3.55% 0.55% 0.93% 0.93%
RELA 2.67% 6.98% 4.67% 2.26% 16.12% 7.7%

LIAUM/
LIAMM (◦)

28.4–88.0/
25.1–86.8

9.1–89.8/
7.5–89.0

9.3–81.2/
2.7–77.8

7.9–89.7/
11.7–88.2

5.2–84.0/
1.2–89.8

9.6–87.8/
6.8–89.2

LAAUM/
LAAMM (◦)

44.8–322.0/
31.3–313.5

11.8–349.6/
3.3–353.6

14.7–324.5/
15.6–323.8

18.6–227.0/
12.7–269.4

19.7–295.7/
23.0–309.3

53.3–268.8/
50.9–266.3

NP: number of points; PD: point density; NLUM: number of leaves using our method; NLMM: number of leaves
from manual measurements; RELN: the ratio of error for the number of leaves; RELL: the ratio of error for the
average leaf length; RELW: the ratio of error for the average leaf width; RELA: the ratio of error for the average leaf
area; LIAUM: leaf inclination angle using our method; LIAMM: leaf inclination angle from manual measurements;
LAAUM: leaf azimuth angle using our method; LAAMM: leaf azimuth angle from manual measurements.

Figure 8 depicts the measured vs. estimated individual leaf attribute values, including leaf area,
leaf azimuthal angle, and leaf inclination angle, obtained using our method and manual measurements.
The leaf attribute estimations of the correctly detected trees using our method fall close to the 1:1 line on,
the scatterplots of field-measured and method-estimated leaf attributes for cross-validation (Figure 8).
The widths of the confidence intervals for Ehretia macrophylla are relatively narrow, indicating the
high quality of Ehretia macrophylla’s leaf segmentation and attribute estimation result. In general,
there were no significant mean differences between the field-measured and method-estimated values
for leaf area, inclination and azimuthal angles (see Table 3). This result indicated that the individual
leaf area estimation was in good agreement with values obtained from actual measurements and that
the individual leaf area in the upper tree crown was larger than that in the middle and lower tree crown
(Figure 8(a1,b1)). The leaf inclination angle estimations were in good agreement with values obtained
from actual measurements for the three experimental trees (R2 = 0.908, RMSE = 6.806◦, R2 = 0.901,
RMSE = 8.365◦ and R2= 0.849, RMSE = 6.158◦, respectively; Figure 8(a2,b2,c2)). A higher probability of
large inclination angles in the upper crown was found for the Ehretia macrophylla and the crape myrtle
trees than for the middle tree crown and lower tree crown (Figure 8(a2,b2)). One explanation for this
result could be that upper crown leaves grow more vertically than lower crown leaves to increase the
amount of solar radiation penetrating through the plant canopy, ultimately increasing the possibility
of light penetration and benefiting the growth of lower foliage elements [23]. Similarly, lower leaf
elements tend to grow more horizontally than upper leaf elements to optimize the absorbed solar
radiation. The leaf azimuthal angles of the estimations were in good agreement with values obtained
from actual measurements of the three experimental trees for Ehretia macrophylla, crape myrtle and
Fatsia japonica. (R2 = 0.981, RMSE = 7.680◦, R2 = 0.938, RMSE = 7.573◦ and R2 = 0.947, RMSE = 3.946◦,
respectively; Figure 8(c1–c3)). The variations in the leaf azimuthal angle distributions with tree height
were very small. In the Ehretia macrophylla tree, leaf azimuthal angles were randomly distributed
from 3.3◦ to 353.6◦ across the whole crown (Figure 8(a3)). The azimuthal angle distribution of the
crape myrtle tree from the upper to lower layers was very similar (Figure 8(b3)). In addition, the Fatsia
japonica azimuthal angle probability ranged from 50.9◦ to 266.3◦, which might be attributed to the
light source orientation of vegetation leaves or the incomplete data collection of the one side-lateral
TLS (Figure 8(c3)). These findings demonstrate that the segmentation method allows the robust
determination of the distribution of orientation values.
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Figure 8. Comparisons of the estimated leaf attributes between our algorithm and the manual method
for the three target trees: (a1,b1,c1): scatter plots of the reference values obtained using LI-3000C
versus the LiDAR-estimated individual tree leaf areas obtained using our method; (a2,b2,c2): scatter
plots of the reference values obtained by manual measurements and individual tree leaf inclination
angles obtained using our method; (a3,b3,c3): scatter plots of the reference values obtained by manual
measurements and the individual tree leaf azimuth angles obtained using our method.

Table 3. Statistics for the overall results of the leaf morphological features (leaf area, leaf azimuthal
angle and leaf inclination angle).

Tree Species Position
R2 RMSE

LA LIA LAA LA (cm2) LIA (◦) LAA (◦)

Ehretia
macrophylla

Upper 0.987 0.894 0.990 8.805 5.686 7.709
Middle 0.959 0.914 0.978 7.596 6.489 7.316
Lower 0.888 0.831 0.982 9.357 7.841 8.151
All 0.971 0.908 0.981 8.508 6.806 7.680

Crape myrtle
Upper 0.934 0.864 0.941 7.042 8.459 7.011
Lower 0.801 0.905 0.934 4.579 8.260 8.180
All 0.873 0.901 0.938 6.001 8.365 7.573

Fatsia japonica All 0.899 0.849 0.947 5.744 6.158 3.946

LA: leaf area; LIA: leaf inclination angle; LAA: leaf azimuthal angle.
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4. Discussion

For the optimization of plant cultivation, the monitoring of crop growth and productivity,
successive leaf attribute measurements are necessary [61,62]. It is well established that leaf area
is pivotal for light interception, photosynthesis and transpiration and leaf angle distribution is
an important canopy structure parameter that has a great influence on the transmission of radiation
within vegetation canopies and the distribution of incident photosynthetically active radiation [63,64].
Thus these features are key parameters in several agronomic and physiological studies [65–67]. TLS has
emerged as among the most promising remote sensing technologies, providing detailed, spatially
explicit, 3D information on plant structure, for operational applications in a wide range of disciplines
related to the extraction of plant morphological features. These applications include, as reported in
previous literature, the estimation of forest biophysical parameters such as gap fraction [68] and leaf
area index [25,69]. These methods mostly aim to extract the vertical and horizontal distributions of
biophysical variables or to determine an empirical correlation formula between laser scanning and in
situ data sets. The literature [70,71] has reported that the non-photosynthetic and photosynthetic parts
of trees should be separated to achieve more accurate biomass estimations. The specific analysis of the
photosynthetic part of trees by TLS improves leaf area index estimations. Gaussian mixture models [72]
are successfully used for separating leaf and non-leaf classes of individual trees, and a support vector
machine classification technique [53] has been presented to extract the leaves of trees. On this basis,
the leaf separation of the canopy was successfully achieved in the present study, and parameter
analysis at the single-leaf scale was completed. The following points must be considered to apply this
method to leaf segmentation and leaf attribute measurements.

4.1. Tree Species Effects

Tree species showed a negligible effect on the final classification accuracy using the proposed
method. For the experimental trees, the final accuracy for Ehretia macrophylla was 94.0% (see Table 2),
the final accuracy for crape myrtle was 90.6% (see Table 2) and the final accuracy for Fatsia japonica
was 88.8% (see Table 2). The Fatsia japonica tree, with the most complicated blade shape structure,
also had good segmentation results. The study results show that our method is not suitable for
coniferous trees because it is difficult to determine the centre points of coniferous leaves by using
sphere neighbourhood model, but the phenotypic traits of broad leaves with wide surfaces are suitable
for our algorithms. Although different species have varying leaf inclination angles and leaf density
distributions, resulting in different degrees of occlusion and the need for different search radii and
thresholds to be set, our method can still provide a valuable and reasonable approach for assessing
the real leaf area. However, for TLS, there are more occlusions and a greater lack of scanned data
in the upper part of the tree crown in tall trees, which leads to low accuracy in the segmentation
of individual leaves by the algorithm. We can consider the combination of airborne laser scanning
(ALS) [73] and TLS scan modes to obtain complete scanned data and use the method proposed in
this study to calculate each leaf attribute in the whole tree crown. Thus, our proposed method can
accurately and efficiently detect individual tree leaves and their morphological attributes from scanned
point cloud data.

4.2. Sensitivity Analysis of Search Radius (r1)

The search radius r1 affected both the preliminary and final individual leaf segmentation results.
To better understand the effect of the search radius r1 on the central area point extraction accuracy,
a sensitivity analysis was conducted using the data from the three experimental trees. The sensitivity
analysis showed that the correctly segmented leaf number (CSLN) curves for all experimental tree
crowns changed as the search radius increased. As shown in Figure 9, the CSLN increased as the
search radius r1 increased for all experimental trees. The highest individual leaf segmentation accuracy
was obtained when the search radius r1 reached 3.6 cm, 0.9 cm and 4.2 cm for Ehretia macrophylla,
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crape myrtle and Fatsia japonica, respectively. In this case, the values of search radius r1 (3.6 cm, 0.9 cm
and 4.2 cm) were approximately equal to one quarter of the average leaf width in each tree crown.
The average widths of the leaves in the tree crown for Ehretia macrophylla, crape myrtle and Fatsia
japonica were 12.8 cm, 3.6 cm and 17.2 cm, respectively; in addition, the CSLN for the experimental
tree crowns provided increasingly lower segmentation accuracy when the search radius r1 was greater
than 3.6 cm, 0.9 cm and 4.2 cm, respectively. In the case in which the scanning precision remain
unchanged, the shorter the search radius, the fewer the points in the sphere neighbourhood model.
When the number of points in the sphere neighbourhood model was greater than the thresholds0 and
the four auxiliary criteria (discussed in Section 2.3.1) defined were satisfied, the point pi satisfied the
conditions to be considered the central area point of the leaf. Therefore, when the radius of the sphere
neighbourhood model decreases, the number of points in the great circle plane will be decreased and
the number of calculated central area points will be gradually reduced, resulting in a downtrend in the
recognition of leaves using our program. The value of the input parameter MaxR also affected the
final individual leaf segmentation when leaf central area points were clustered using the DBSCAN
algorithm. As shown in Figure 9, when the value of MaxR was larger, the number of leaf blades
segmented was smaller; when the value of MaxR was smaller, the number of leaf blades segmented
was larger. Overall, when the value of MaxR was approximately half of the average leaf width in the
tree crown, the results showed the highest segmentation accuracy (see Figure 9). The intersection of
two lines for each figure in Figure 9 represents the optimal detected leaf number result, which is closest
to the true value.Remote Sens. 2018, 10, x FOR PEER REVIEW  19 of 25 
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detected leaf number, indicating the value that was closest to the true value. The experiments show
that an r1 value of one quarter of the average leaf width of each tree crown, and a MaxR value of half
of the average leaf width of each tree crown obtain the optimal individual leaf segmentation precision.
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Our results suggest that for the three experimental trees, the CSLN changed as the search radius
r1 increased, and the highest segmentation accuracy was obtained when r1 was one-quarter of the
average width of the leaves of each tree crown. In addition, the best selected value of the input
parameter MaxR was approximately half of the average leaf width for the crowns of the different
tree species.

4.3. Recommendations

The occlusion of forest trees is determined by various factors such as leaf area index, the location
of the scanner, scanning parameter setting [74], brand of the scanner [75] and tree topological structure.
These factors deserve further exploration. The TLS setup could affect the classification accuracy, and the
TLS-measured data were scanned from one perspective which might cause the representation accuracy
of the leaves to be relatively low and not homogeneous, with the shadow effect on the other side
of the tree. Considering that the occlusion inside the tree crown of the three experimental trees in
this study is not serious, only one-sided scanning was sufficient to obtain nearly overall information
of the tree crown and acquire the corresponding high-density point cloud. Furthermore, the spatial
resolution of the point clouds decreased as the acquisition distance between the TLS instrument and
the experimental tree increased, causing leaves or branches to be misclassified and tree stems or
branches surrounded by shrubs or grasses to often be misclassified as random leaf points. As a result,
the wood-leaf separation and leaf point occlusion were greater, which reduced the leaf segmentation
accuracy. Finally, the noise points caused by wind had a great influence on the leaf segmentation and
the calculation of the area of individual leaves. Thus, it was very important to remove noise points for
the direct estimation of individual leaf areas. To increase the accuracy of the segmentation of individual
leaves, we recommend using multiple scan locations to better capture the 3D structural characteristics
of experiment trees. In addition to the above factors, the quality of the point cloud data (including
accuracy and completeness) was another important factor that increased the algorithm accuracy of
single leaf blade segmentation. The low segmentation precision rate for the leaf blade in the TLS-based
data was primarily caused by the incompleteness of the wood-leaf separation. The quality of the
TLS-based data was affected by three factors: outliers, woody phytoelement points, and occlusion.
Although we removed outliers and woody phytoelement points, the influence of these three factors
could not be completely eliminated. The quality of the TLS-based data still has room to improve.
Therefore, the need to achieve better denoising and the separation of woody points from foliage points
represents a great challenge to accurate leaf segmentation in future studies.

Our method’s final individual leaf segmentation accuracy increased as the occlusion of the tree
crown decreased. The results showed that the leaf recognition ratio decreased for TLS-based data as
the leaf numbers and point cloud density increased (see Table 2). This phenomenon could be explained
by the fact that the degree of overlapping in the leaf distribution increased as the leaf number increased,
and a high degree of leaf overlapping increased the difficulty of leaf segmentation and decreased
the leaf recognition ratio. The individual leaf segmentation accuracy was as low as 88.80% for Fatsia
japonica, which was characterized by a high point cloud density (51,483.96 pts ·m−2). Among the
three experimental trees, Fatsia japonica showed the lowest final leaf segmentation accuracy. This result
was likely due to the more severe occlusion within the tree crown, leading to the incomplete wood-leaf
separation, and the complicated leaf blade shape structure inherent in Fatsia japonica. In the case
of the crape myrtle, which was characterized by a medium point cloud density (16,188.76 pts ·m−2),
the individual leaf segmentation was as high as 93.62%. The leaf segmentation accuracy of the
crape myrtle in two different horizontal layers was also negatively correlated with point density
(see Table 2). Finally, for Ehretia macrophylla, which was characterized by a low point cloud density
(16,946.3 pts ·m−2), the final individual leaf segmentation reached up to 94.0%. For the upper, middle
and lower layers of the Ehretia macrophylla tree, which represented three different horizontal layers,
the internal occlusion and point density of the upper tree crown were lower than those of the other
layers, so the individual leaf segmentation accuracy was the highest; the middle tree crown had the
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highest number of leaves, and the individual leaf segmentation accuracy of the middle layer was
slightly lower than the segmentation accuracy of the other layers of the tree crown (see Table 2).

5. Conclusions

This study developed a computer graphic-based 3D point cloud segmentation approach for
accurately and efficiently detecting tree leaves and their morphological features, including leaf area,
leaf azimuthal angle and leaf inclination angle, from individual leaves. First, based on the proposed
computer graphics methods, the sphere neighbourhood model with an adaptive radius was used to
extract the central area points of each leaf blade. In addition, four auxiliary criteria were defined to
ensure the accuracy of the extracted central area points of each leaf surface. Second, DBSCAN was
used to cluster the central area points of individual leaves. Third, based on the extracted centre point
of each leaf combined with the advanced 3D watershed algorithm, individual leaf segmentation was
achieved. Finally, leaf morphological features (leaf area and leaf angle distributions) were calculated
from the single-leaf point cloud data of the segmented leaves to derive single-leaf-scale information
and investigate the usability of leaf segmentation.

The results demonstrated that the segmentation accuracy for Ehretia macrophylla (94.0%) was
higher than that for crape myrtle (90.6%) and Fatsia japonica (88.8%). The segmentation accuracy for
Fatsia japonica was the lowest of the three experimental trees. Second, the single-leaf area estimation
accuracy was the highest for Ehretia macrophylla (95.39%), and the single-leaf area estimation
accuracy for crape myrtle (91.92%) was lower than that for Ehretia macrophylla (95.39%) and Fatsia
japonica (92.48%). Third, the method proposed in this paper provided accurate leaf inclination and
azimuthal angles for three experimental trees (Ehretia macrophylla: leaf inclination angle: R2 = 0.908,
RMSE = 6.806◦ and leaf azimuth angle: R2 = 0.981, RMSE = 7.680◦; crape myrtle: leaf inclination
angle: R2 = 0.901, RMSE = 8.365◦ and leaf azimuth angle: R2 = 0.938, RMSE = 7.573◦; Fatsia japonica:
leaf inclination angle: R2 = 0.849, RMSE = 6.158◦ and leaf azimuth angle: R2 = 0.947, RMSE = 3.946◦).
Our method provides a novel method for appraising individual leaf-scale information including leaf
area and leaf angle distributions and has promising potential for more accurate biomass, or LAI
calculation and for analysing vegetation structure.
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