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Abstract: Moving target detection plays a primary and pivotal role in avionics visual analysis, which
aims to completely and accurately detect moving objects from complex backgrounds. However,
due to the relatively small sizes of targets in aerial video, many deep networks that achieve success
in normal size object detection are usually accompanied by a high rate of false alarms and missed
detections. To address this problem, we propose a novel visual detail augmented mapping approach
for small aerial target detection. Concretely, we first present a multi-cue foreground segmentation
algorithm including motion and grayscale information to extract potential regions. Then, based on
the visual detail augmented mapping approach, the regions that might contain moving targets
are magnified to multi-resolution to obtain detailed target information and rearranged into new
foreground space for visual enhancement. Thus, original small targets are mapped to a more efficient
foreground augmented map which is favorable for accurate detection. Finally, driven by the success
of deep detection network, small moving targets can be well detected from aerial video. Experiments
extensively demonstrate that the proposed method achieves success in small aerial target detection
without changing the structure of the deep network. In addition, compared with the-state-of-art
object detection algorithms, it performs favorably with high efficiency and robustness.

Keywords: small target detection; aerial video; visual detail augmented mapping

1. Introduction

Aerial target detection, as the key and foundation of avionics data understanding has a crucial
impact on the whole system’s performance, especially regarding the detection accuracy of small objects.
The size of small objects occupies less than 1.0% of the total pixels. Compared with normal visual data,
aerial data have unique characteristics in many respects. Their field of view is large in many cases and
contains more visual content. Although it provides more comprehensive scene information for global
analysis, the objects of interest usually account for less and do not have enough detail for detection.
This leads to the failure of most state-of-the-art deep detection models. Some fail detection examples
of the You Only Look Once Version 2 (YOLO v2) deep network are shown in Figure 1 (left). Therefore,
effectively detecting small targets is one of the critical problems for aerial object detection systems.
This challenging research topic has aroused wide interest in scientific and industrial circles due to its
extensive application, including in large field monitoring systems [1–3], space-based early warning
systems [4], territorial visual navigation [5,6], and so on.
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However, small target detection from aerial video is much more difficult than normal object
detection. The main reasons for this are described by the following points: (1) aerial video has a
broad looking area that contains multiple background interferences for object detection. In aerial
images, a great mass of the whole view is unrelated background, such as grassland, trees, buildings, etc.
Meanwhile, the small target size is not sufficient for accurate object representation. (2) Aerial targets
vary greatly in size due to their different flight heights and camera angles. Besides that, small aerial
targets have poor-quality appearances and structures in most cases. That leads to difficulty extracting
object features well from limited data. (3) Moving targets in aerial video can be easily confused
with noise, due to their small sizes. That leads to a proportionate increase in the detection error rate.
The factors above bring certain difficulties to small target detection from aerial data.

Depression 

Angle

Squint 

Angle

YOLO v2 YOLO v2 + Ours

Figure 1. Some small object detection results with You Only Look Once Version 2 (YOLO v2) deep
network and the proposed method. (left) The detection results with the YOLO v2 deep network; (right)
The detection results with YOLO v2 and our visual detail augmented mapping approach. This figure
shows that the proposed method achieves better performance in terms of both precision and recall.

To date, some effort has been devoted to addressing the problem of small object detection from
aerial video over the past decade [7–10]. One widely applied strategy is to directly enlarge images
to different scales. This kind of approach achieves more detailed information of small targets by
magnification. For example, Chen et al. [11] presented an approach where the input is magnified to
enhance the resolution of small objects. On the basis of this research idea, Cao et al. [12] fused feature
modules to additional contextual information to achieve better detection performance. By generating
multiple feature maps with different resolutions, they were able to naturally handle objects of various
sizes including those of small sizes. However, with an increase in image size, these approaches
are accompanied by large computation costs. That means that they cannot meet the real-time
requirements for practical applications. Other proposed approaches are based on the deep neural
network in which each small target characteristic is represented by multi-scale feature layers [3,13,14].
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In 2015, Li et al. [13] presented a novel deep network based on the Viola–Jones framework [15],
and their approach achieved great face detection performance. Region proposal-based detection
networks have been extensively applied in the target detection field, including Region-Convolutional
Neural Networks (R-CNN) [16], Fast-Region Convolutional Neural Networks (Fast-RCNN) [17],
and Faster-Region Convolutional Neural Networks (Faster-RCNN) [18]. Through analyzing these
works, scientists put forward some small target detection algorithms [19–21]. Moreover, Cai et al. [14]
proposed a Multi-scale Deep Convolutional Neural Network (MS-CNN) which predicts objects at
different layers of the feature hierarchy. However, the high performance of these approaches deeply
depends on training data. It cannot grant the discriminability of small target features because rich
representations are difficult to learn due to their poor-quality appearance and structure. All in all,
the approaches of magnifying images and using the deep learning network algorithms have their own
drawbacks on small object detection from aerial video.

To address this issue, we firstly analyze the reason for the failure of small target detection. This is
mainly due to two aspects of the characteristics of small targets. On the one hand, small targets are
difficult to describe as they have less counterpart pixels in aerial video. That is the ultimate cause of
error detection. On the other hand, small aerial targets are easily confused with noise. This is because
the background of aerial video is dynamic in most cases and it leads to a high false alarm rate. Through
the discussion above, it was found that the key to solving the problem is to represent a small target
precisely and concretely. As is universally acknowledged, better object representation depends on the
support of sufficient pixel data. In a sense, the first idea that comes into our minds is to enlarge images
on multiple scales to obtain detailed information about potential small objects.

As Figure 2 shows, we experimentally evaluate detection performance with multiple scale
processing. To ensure fairness and objectivity, all experiments are conducted under the same deep
detection model. After multi-resolution, the detection performance on small targets is greatly improved
as compared with direct detection. However, at the same time, the computation cost is increased
greatly and cannot meet real-time demands. For proper detection systems, computing time and
detection accuracy are both significant. In other words, the key to implementing a robust small target
detection system is obtaining detailed target information within a short processing time. Therefore,
considering the detection accuracy and efficiency, we aim to establish a mapping relationship. Based
on this, original small target regions will be mapped to new foreground space that contains more
valuable object information for better representation. Naturally, the detection performance is improved
with the premise of a few additional calculations and no change to the deep network.

In this paper, we systematically investigate the above-mentioned fundamental idea and propose
a novel visual detail augmented mapping algorithm for small aerial target detection. To be specific,
the proposed approach can be divided into three parts: multi-cue foreground segmentation, visual
detail augmented mapping, and small object detection with a deep network. The first part synthetically
analyzes the motion information and graychange information of the moving target, and extracts
the potential regions from the input aerial video. The locations of these regions should be visually
enhanced. Then, we put forward a visual detail augmented mapping approach. On the basis of
this mapping, we magnify the potential target regions to multiple resolution to provide detailed
information and rearrange them into new foreground space for visual enhancement. Thus, the original
small targets are mapped to a more efficient foreground augmented map which is favorable for
accurate detection. With the proposed visual detail augmented mapping, not only can the interference
of unrelated area be further filtered out, but also, more detailed target information can be obtained by
a subsequent detection network. Finally, driven by the success of the deep learning network YOLO
v2, which is pre-trained by normal-sized objects, a small target detection system is implemented with
respect to accuracy and speed. Figure 1 (right) shows some examples of detection results.
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Figure 2. The research route of the proposed method. This paper investigates the problem of small
aerial object detection. The general solution is based on the deep detection model, but direct detection
causes high false alarm and miss rates. Another approach is to add multi-resolution processing before
deep detection. However, this improves the detection performance and reduces the efficiency at the
same time. In order to balance effectiveness and efficiency, this paper proposes a novel visual detail
augmented mapping approach that maps small target regions to a new foreground space to allow
better detection.

The main contributions of our work can be summarized as follows:

• We propose a novel visual detail augmented mapping approach that provides a wealth of specific
information about the small target of interest. Aerial targets usually have few counterpart
pixels and are hard to describe. Through mapping, these potential regions are mapped into a
new foreground space with more abundant small target information. It has been proved that
our approach based on visual detail augmented mapping offers a more valuable foreground
augmented map for subsequent detection network, and it is greatly beneficial as it achieves small
target detection without changing the configuration or framework of the deep network.

• We present a multi-cue foreground segmentation method to extract interesting regions.
These potential regions might contain target information that needs to be enhanced. Thus,
through the visual detail augmented mapping approach, input aerial video is selectively mapped
to a new foreground space. The small target detection system is well implemented with the deep
detection network in the new foreground space. Experimental results indicate that the proposed
method greatly improves the detection performance for small targets with a small increase in the
computation load.

• Based on visual detail augmented mapping, we propose a small aerial target detection algorithm.
Concretely, our training database is established by combining a self-built database with the public
database UA-DETRAC. To better evaluate the performance of the proposed method, we also
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build a test database that captures different aerial scenes, including an intersection, a T-junction,
a road beside a parking lot, and a twin multi-lane urban road. Experiments demonstrate that the
proposed method shows encouraging results, and it provides an improvement in performance of
greater than 15% compared with direct deep network detection.

The paper is organized as follows. Section 2 presents a general overview of the proposed algorithm
and describes each detection part in detail. The experiment results are shown in Section 3. Section 4
discusses the performance of the proposed approach with other methods. Finally, we conclude this
paper in Section 5.

2. Visual Detail Augmented Mapping for Small Target Aerial Detection

In this section, the proposed small target detection algorithm is introduced in detail. First of
all, the potential target is extracted by multi-cue foreground segmentation algorithm, and interesting
areas are approximately divided into groups. This establishes the foundation for follow-up detection.
After that, we propose a novel visual detail augmented mapping method to map these potential
regions into a new foreground space, which is the fundamental technique of our work. Finally,
using the pre-trained deep detection network, a system for small target detection from aerial video is
implemented. Figure 3 shows an overview of the proposed method.

Input Aerial Video

Feature 

Probability 

Map

Background ModelingOptial Flow

Hot map

Group 

Proposal

Object Detector

Group Proposals

Coordinate Inverse Calculation

Multi-cue Foreground Segmentation

Visual Detail Augmented Mapping Small Object Detection with Deep Network

Detection Result

Figure 3. An illustration of the proposed method. The small target detection method contains three
parts: multi-cue foreground segmentation, visual detail augmented mapping, and small object detection
with the deep network. After the three modules, small targets can be detected accurately and quickly
from the input aerial video.
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2.1. Multi-Cue Foreground Segmentation

The main problem when trying to detect small moving objects from aerial video is to separate
the changes in the image caused by objects from those caused by the dynamic background. Therefore,
at the beginning, we present a multi-cue foreground segmentation method to extract the potential
target region that needs visual detail augmented mapping. As Figure 3 shows, the proposed method
comprehensively analyzes the optical flow and background changes that might be caused by moving
objects. Through the process above, its feature probability map is obtained by combining these two
pieces of information. Then, in order to reduce the noise effect, the probability map is smoothed and
its corresponding hot map is generated. The hot map symbolically depicts the possible position of
the target. Then, single potential targets are clustered into group proposals and follow-up detection
algorithm is processed in group.

As for multi-cue object information, optical flow and background modeling are adopted to jointly
obtain the target probability map. The choice of these two algorithms is mainly based on two points:
(1) Optical flow is an important technology for motion estimation, as it represents the relative motion
information for each pixel. Optical flow can help us to pinpoint small targets more accurately. (2) The
background modeling method describes grayscale changes between the current image and background
by modeling the image background. This method is sensitive to small and weak changes and therefore
is suitable for small target detection. However, both approaches have their merits and shortcomings.
Optical flow is not robust on small targets and might result in missed detections. Background modeling
can be easily disturbed by noise which may be mistaken for small targets, leading to a high false
alarm rate. Though the two methods have their own limitations, there is a complementary role
between them. The background modeling method will produce a miscarriage of justice when there is
only a little gray contrast between the target and background, while optical flow can maintain good
performance because its similar background also has a certain degree of motion. However, the optical
flow method is insensitive to weak motion, which is advantageous for the background modeling
method. In other words, optical flow and background modeling are different ways to describe the
moving object. This means that the optical flow method combined with background modeling will
have dual advantages and gain better effects for small target detection from aerial video. Based on the
above analysis, the proposed method utilizes the advantages of the two methods to get the potential
object region.

In the process of implementation, Farneback [22] is first employed to calculate the optical flow
information on the basis of considering detection speed and accuracy. The Farneback algorithm was
proposed by Gunnar Farneback in 2003. It is a global dense optical flow algorithm based on two-frame
motion estimation. Suppose that the two adjacent frames to be detected are denoted as It−1 and It,
respectively. Firstly, the coefficient vector of each pixel is calculated by the polynomial expansion
transform. Taking pixel point x on It−1 as an example, the approximate position x̃ of this pixel on the
next frame image It is

x̃ = x + d̃(x). (1)

If the parameter of It−1 is At−1(x), bt−1(x) and It is At(x), bt(x), the intermediate variable
A(x), ∆b(x) can be formulated as

A(x) =
At−1(x) + At(x̃)

2
,

∆b(x) = −1
2
(bt(x̃)− bt−1(x)) + A(x)d̃(x).

(2)
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Thus, we can get the coefficient vectors G(x) and h(x) by further calculations. Suppose that S(x)
is the scale matrix. The optical flow d(x) is directly solved by

G(x) = S(x)TA(x)TS(x)A(x),

h(x) = S(x)TA(x)T∆b(x),

d(x) = G(x)−1h(x).

(3)

The Farneback method obtains the object’s moving information by analyzing its optical flow
transformation, as shown in Figure 4a. Its high detection accuracy and rapid data processing speed fit
the requirements of a real-time aerial object detection system.

As for the background modeling method, the Fast-MCD algorithm [23], which was proposed
by Kwang et al. in 2013, was used. It segments the moving foreground by modeling the image
background through the dual-mode Single Gaussian Model (SGM) with age. This method was chosen
for two reasons: its robustness for testing moving backgrounds which frequently appear in aerial
videos and its attention to small changes which tends to result in a lower missed detection rate on
small targets.

Specifically, the procedure consists of the following steps. First of all, in order to remove
background movement, Fast-MCD calculates a homograph matrix for the perspective transform
from It−1 to It. Then, the SGM model of the candidate background and the apparent background can
be obtained. Assume that the input aerial image It is divided into several grids of the same size, the ith
grid is denoted as G(t)

i in this paper. Through analysing the mean, variance, age of the candidate
model, and the apparent model, the background model is selectively updated. Finally, after obtaining
the background model, the image foreground is detected. On the basis of the updated apparent
model with the mean µ, variance σ, and threshold θb, the pixel p with gray scale Tp which satisfies
Formula (4) is the foreground. Thus, the moving foreground which contains small targets is segmented
from the complex background:

(Tp − µ)2 > θbσ. (4)

Input Aerial Video
(a) Optical Flow

Farneback

(b) Background modeling

Fast-MCD

(c) Combining Result(d) Hot Map

Figure 4. The probability result by combining optical flow and the background modeling method:
(a) optical flow result; (b) background modeling result; (c) combined result; (d) hot map.
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Figure 4a,b show the moving foreground segmentation results of the Farneback and Fast-MCD,
respectively. These figures show that the two methods have their own advantages as well as drawbacks.
On the one hand, the overall outline of Farneback is more complete, but it lacks the small target on the
upper right corner, while Fast-MCD can accurately obtain each small gray scale change, which is the
disadvantage of Farneback approach. On the other hand, there are some holes in the detection results
of Fast-MCD. The production of imcomplete objects can be avoided by Farneback. Overall, the results
show that the two algorithms can exert a complementary action in small object detection. From another
perspective, the purpose of foreground segmentation is to enhance the target saliency relative to the
background. Background modeling and optical flow start from two different views to describe an
object’s characteristics. The combination of the two methods actually improves object saliency and
that helps us to segment a potential object region from the complex background. Thereafter, Farneback
and Fast-MCD are combined to calculate the probability map. For the combined method, this paper
takes the union of the two segmentation results to retain every possible position of the target, as shown
in Figure 4c shown. The combination of the two methods can be regarded as its feature probability
map. It not only combines the advantages of optical flow and Fast-MCD, but also overcomes the
shortcomings of both to a certain extent.

With probability map, the following is the potential area identified. In this step, considering that
noise will damage the detection performance, the proposed method first smooths it. Mean filtering
is used as the image smoothing algorithm. The mean filter is one of the most commonly used linear
filters whose output is a simple average of all neighborhood pixels. This algorithm reduces sharp
changes in the probability map and some noise can be filtered out from the probability map. As for
the fuzzy problem caused by the mean filter, this paper employs it to locate potential objects in the
probability map rather than in the aerial image. Therefore, it will not cause the blurring of the image
in follow-up links. The detailed calculation process of the hot map is as follows. Take the pixel with
coordinates in the probability map g of (xi, yi) as an example, the filter window size is S = m× n.
The pixel value f (xi, yi) of this point in the hot map is

f (xi, yi) =
1

mn ∑
(p,q)εS

g(p, q). (5)

In this way, the hot map can be calculated from probability map with less noise impact. Figure 4d
show the visualization results of the hot map. The larger the hot value is, the greater the probability
that a moving object exists. On this basis, the foreground area is selected from the detected hot map
with the minimal bounding box and a set of candidate bounding boxes is obtained. These positions
are where small targets might appear.

However, overlaps exist between these bounding boxes. As for the small targets placed in the
far source, they occupy too few pixels and these overlaps may split a target. Incomplete objects have
a great impact on the detection performance. This problem lets us think of a human visual system.
Imagine a scenario with trees and mountains, with a user admiring the view. To detect tree regions
from this scene, the human visual system only needs to group the forest area roughly. Similarly, we just
need to segment the potential small targets into a group for the aerial video to obtain the region of
interest. Inspired by this idea, in this paper, we apply it to the moving foreground segmentation.

To be more specific, the initial bounding boxes are clustered based on the distances between
them to get group proposals. This reduces the target fragmentation caused by overlap which brings
in a few parts of the background. In the processs of implementation, there are two cases that need
to be clustered. First, the proposed method merges these overlapped boxes into one bounding box.
This reduces the situation where overlapped boxes split the real object and provides more precise
information for the following detection. Second, bounding boxes that are close together are clustered.
Rather than using single objects, the division into groups is more suitable for small target detection due
to the small sizes of the objects. In addition, it is enough to confirm the approximate locations of small
targets at the preprocessing stage, and then have accurate detection followed up by the algorithm.
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In this way, the bounding boxes are synthesized into a group. These areas are the regions of interest in
the aerial video. This has the benefit of improving the detection accuracy by avoiding the situation of
small bounding boxes splitting the real target and reduces the complexity of subsequent computing
with fewer areas of interest. Through the above processes, the group proposals that contain the small
targets of interest are all segmented.

2.2. Visual Detail Augmented Mapping

So far, these regions of interest that might contain real small targets have been segmented from
the input aerial video. The next step is to accurately detect whether these regions have moving objects
or not. However, due to the small size of the aerial targets, direct detection will lead to a high false
alarm rate and missed rate. To solve this problem, this section describes the corresponding analysis
research and proposes a novel approach to solve this problem.

First of all, we explore the root cause of the small target detection failure. From the results obtained
in the previous step, we make the following conclusion. Although the group proposal can basically
frame all potential moving targets, it still contains some problems. The targets in an aerial image are so
small that we cannot obtain enough information from them. The limited visual data makes it difficult
for us to represent object well. This is the fundamental reason why the accuracy of small targets is
low. To tackle this problem, the simplest solution is to enlarge the aerial image and get more detailed
characteristics about the object representation. However, as the experimental results in Figure 2 show,
the larger the image is, the more pixel level information it contains. This means that a number of
calculations are required in many image processing links. In aerial video, unrelated background areas
usually occupy a large proportion of the total area, and there is only a tiny area with the target of
interest. That is to say, enhancement of only a few pixels is enough to achieve accurate target detection.
According to this principle, in this paper, we present a visual detail augmented mapping algorithm
approach which gives attention to both the detection speed and precision.

This mapping mainly includes two modules: one is multi-resolution mapping which selectively
enlarges the potential region to different sizes to give detailed object information; the other is
foreground augmented mapping which maps the original target to a more compact foreground
space for visual augmentation. The framework is given in Figure 5.

In the first part, the proposed approach performs multi-resolution mapping on the group
proposals obtained in the previous section. Let the input It contain N group proposals; its group
proposal set is denoted as R = {R1, . . . Ri, . . . , RN}. Ri is the ith group proposal with coordinates
{xi, yi, widthi, heighti}, where (xi, yi) are the coordinates of the upper left corner and widthi × heighti
is the corresponding bounding box size. For one group proposal, the proposed method enlarges it into
different scales. That can transform the small target in an aerial video into its normal size. For example,
Ri covers an area of widthi × heighti. We magnify it into three sizes, and the scale factors are 1.0, 2.0, 3.0.
Thus, the size of Ri is increased to 1.0×widthi × heighti, 2.0×widthi × heighti, 3.0×widthi × heighti,
respectively. For the amplification interpolation method, we utilize linear interpolation, which is a
commonly used method. By enlarging all group proposals with linear interpolation to the three scales
above, we obtain the amplified results of each region, as shown in Figure 5a. We can see from the
figure that small targets in the input aerial image are converted into normal size through mapping at
the three scales. More detailed target information is mapped out.
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Figure 5. An overview of the visual detail augmented mapping method. This contains two modules:
one is (a) multi-resolution mapping and the other is (b) foreground augmented mapping. Taking the
group proposal involving two cars obtained by Section 2.1 as an example, through three scales of
multi-resolution, the cars are mapped to normal size with more detailed object information. Then,
the second part maps them into a new foreground space in which the original target area is enhanced.

Through the multi-resolution mapping processing, the specific characteristics of small targets
are mined out which is advantageous to object representation and, in turn, strengthens the detection
performance. For efficiency, we only map a small portion of the input image which takes little
additional computation cost. In other words, our method improves the detection accuracy of small
aerial targets and also gives attention to the detection speed.

After that, how do we integrate this detailed target information? The most simple and direct way
is to send these enlarged regions to be detected one by one. This method requires as many detection
times as the number of enlarged regions. This leads to a low detection efficiency. Another solution is to
put all of them directly into a large enough foreground image, and then the large foreground image is
sent once into the deep detection network. Though the efficiency of this method is high, its foreground
images will be resized to a small scale and that will destroy the object’s detailed information. Therefore,
in this part, we present a novel foreground augmented mapping method which rearranges these
regions into a efficient and compact space. Compared with the other two methods, foreground
mapping provides a method to minimize the loss of efficiency while retaining the augmented visual
effect. As Figure 5b shows, the proposed method maps the potential area with multi-resolution into
a set of foreground augmented maps and ditches the irrelevant background part. Thus, it not only
can reduce the influence of the background and avoid computing resources waste, but also further
visually enhance the valuable detailed target information. To be specific, the proposed method first
creates a set of empty images in the new foreground space. The size of foreground augmented map
is designed to be dependent on the follow-up deep detection network. This ensures that the target
regions are not reduced by the detector’s internal steps, and there is no target information loss in this
step. The number of these images is determined by potential region’s size. Then, in order to make full
use of each augmented map in the foreground space and to save the computation source, we pack
as much of the region as possible into the limited image space. This issue can be regarded as the
rectangular packing problem which is a combinatorial optimization problem. In this paper, we employ
the rectangular packing algorithm to find the optimal solution for potential target region location.
The packing result is shown in Figure 5b. As we can see, all regions of this instance are packed into two
foreground augmented maps with maximum space utilization. The two foreground augmented maps
are what we will send to the deep detection network. Through visual detail augmented mapping,
the input aerial video is visually augmented in two ways: (1) Potential target regions are mapped into
multiple resolution which enhances the detailed target features and provides a subsequent detection
network with more abundant visual information. (2) The new foreground space filters out most of the
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irrelevant background and only rearranges the potential target regions. In some sense, the foreground
augmented maps are the visual augmentation of the original aerial data.

Now, after visual detail augmented mapping, the preprocessing work before detection is finished.
The result of the procedure above is a set of foreground augmented maps which are mapped from the
original aerial image and they only contain some valuable potential target regions which need further
precise detection.

2.3. Small Object Detection with the Deep Network

Through the methods described the previous sections, a set of foreground augmented maps
constructed by visual detail augmented mapping is obtained. All potential regions on different scales
are well arranged in these foreground augmented maps. As Figure 6 shows, a large proportion of the
foreground augmented map is the valuable object area and the unrelated background only occupies a
small part. The reverse situation appears in the input aerial video. Based on this prospective image
which is beneficial to detection, this section sends them to the deep detection network and outputs the
final detection result. Concretely, this part is composed of two modules: preliminary small detection
and coordinate back calculations.

Foreground 

Augmented 

map

Deep Detection Network

Preliminary 

Detection Result

Detection 

Result

Coordinate Back Calculation

Figure 6. Small object detection with the deep network. First, on the basis of the YOLO v2 deep detector,
targets are preliminarily detected. Second, we inversely calculate the coordinates in the foreground
space into an input aerial image and get the final small object detection result.
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For the first detection part, we employ You Only Look Once Version 2 (YOLO v2) [24] as the deep
detection model. YOLO v2 is proposed by Joseph and Ali in 2017. It is a real-time object detection
network which has achieved widespread success in most normal object detection tasks. YOLO v2
can detect over 9000 object categories, and it is robust to different tasks with fast processing speed
and high detection accuracy. However, the main disadvantages of YOLO v2 is that its performance
degrades badly when object size is small. Therefore, we apply visual detail augmentation mapping
to overcome the limitations of a YOLO v2 deep detection network. The basic detection process of
YOLO v2 is as follows: (1) The well rearranged foreground images are in turn sent to the pre-trained
detection neural network. In general, the YOLO v2 detector is generated by training a large amount of
data and the detector performance is heavily influenced by training data. However, with previous
visual detail augmented mapping, our method does not need to change the detection network for a
small target and it utilizes the pre-trained detector which is generated for normal size target detection.
After multiple layers operation, the feature maps of each foreground augmented map with size 13× 13
can be obtained. (2) On the basis of feature map, YOLO v2 predicts the bounding box and calculates
their confidence in each category. (3) With the loss function, the trained network detection further
screens these bounding boxes and the targets with high confidence can be considered as the real
object. Thus, the object detection procedure is finished. The detection result which contains each
object’s location is shown in Figure 6. Though there is still a small proportion of background, almost
all objects can be detected accurately in foreground augmented map at least one scale. It has proved
the performance of the proposed method once again. In addition, the limitation of aerial data and
long training time make it difficult to retrain an appropriative deep network for small object detection.
In addition, our method with a pre-trained network for normal size object detection shows its great
advantages in small target detection.

However, the positions of these detection results are coordinates in the mapped foreground space.
Therefore, in the final step, we inverse calculate these coordinates. Specifically, the proposed method
filters the bounding boxes which are the same objects on different scales at first. Only the bounding box
with the highest overlapping rate is retained. Then, based on the mapping relation, we back calculate
their coordinates on the initial aerial image and do the corresponding scaling. In this way, we finish
all of the small target detection steps. The detection results are labeled on the input image as shown
in Figure 6.

To summarize, based on the multi-cue foreground segmentation method and the visual detail
augmented mapping algorithm, the follow-up deep detection network obtains more detailed and
specific target information in the new mapped foreground space. With no need to change the
framework of the detection network and with a small increase in computation, the proposed
approach implements a small moving object detection system for the aerial video quickly and
accurately. Compared with direct deep network detection, the detection performance of small targets
is greatly improved.

3. Experiment Results and Analysis

Extensive experiments were conducted to fully evaluate the small moving object detection
performance of the proposed method based on visual detail augmented mapping. In this section,
we firstly introduce the aerial visual database that was used for training and testing. Then, we discuss
the multi-cue foreground segmentation method. Finally, the qualitative and quantitative detection
results of the proposed method on two different visual angles are presented.

The common configuration for all experiments is summarized here. The frame rate of all input
aerial videos was 30 FPS and each frame size was 1280× 960. The program was implemented in C++
and all results determined on an Intel (R) Core (Santa Clara, California, USA) (TM) i7-7700HQ (2.80 GHz
CPU, 8 GB RAM).
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3.1. Database

To test the advantages and generalization of the small moving object detection algorithm,
experiments were performed on some challenging aerial scenes. This section respectively introduces
the training database and test database for performance analysis.

Training database: The detection performance greatly depends on the training database. In order
to improve the detection ability of small targets, the general resolution is to retrain a new deep network.
However, the small object detection model involves many difficulties, mainly concerning two aspects:
first, the number of public aerial databases is small and their scales are also not big enough; second,
training a new network is not only time-consuming but also requires a high calculating capacity.
Therefore, in this paper, we combined a public database and self-built aerial data to form our training
database. As for the public database, we employed the UA-DETRAC [25] database which was shot on
the road overpass in Beijing and Tianjin. We chose 11 representative scenarios with 10,963 images as
our training database. In addition, we complemented the training database with aerial data captured
by DJI M100 (Shenzhen, China), which contains 3175 images. The vehicle sizes in these images are
normal. Therefore, we pretrained a YOLO v2 model with 14,138 images as our deep detection network.

Test database: Taking into account that most public databases are not generated for small aerial
object detection, we established a new aerial test database which contained a number of complex traffic
aerial scenes, including the twin multi-lane urban road, road beside parking lot, intersection, and
T-junction. Figure 7 shows the data acquisition equipment and some examples from the test database.
As we can see, all aerial data was captured by DJI M100 around different major transport arteries.
Concretely, this database consisted of 18 images sequences formed by 79,742 frames. We divided
them into five scenes with different shooting angles: depression and squint. For the depression angle,
the average pixel proportion of each moving object was less than 1.0%. This is suitable for verifying
the detection performance of small objects. The object size of the squint aerial video varied over a wide
range from 150× 150 to 10× 10. This meets the demands of testing the robustness on different object
sizes. Besides that, in order to conduct the quantitative and qualitative experimental analyses better,
we manually annotated the ground truth to provide a moving object reference position. Concretely,
we utilized LabelImg [26] as our label tool. This annotation tool is easy to use and can generate XML
files directly. To make the statistical analysis meaningful, each scene included 2000 labeled images, and
there were 7–8 moving vehicles in each frame, on average. As Figure 7 shows, we took the minimum
bounding box on each moving vehicle as the ground truth, which is marked with a yellow box. On the
basis of these reference coordinates, we evaluated the detection performance of the proposed method.
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Figure 7. Experimental installation of aerial database. All test data were collected by DJI M100 with a
ZENMUSE X3 camera (Shenzhen, China). We manually segmented its ground truth with the LabelImg
tool. The right part of the figure shows some typical frames of the aerial video database. The yellow
box is the ground truth of each frame.

3.2. Foreground Segmentation Result and Analysis

Multi-cue foreground segmentation aims to extract the potential moving target that needs
visual detail augmentation. We employed the combination of optical flow and the background
modeling method as our foreground segmentation algorithm. The choice of these two methods
aimed to overcome the drawbacks of single methodology and to obtain a more complete foreground
segmentation effect from input aerial images. In this section, we describe the analysis of the advantages
of the combination of the two methods from two aspects: algorithm principles and experiment results.

In terms of the algorithm principles, optical flow and background modeling extract the potential
foreground moving region on the basis of different perspectives. Optical flow describes object motion
information by using the temporal variation of pixels in image sequences and the correlations between
adjacent frames. Background modeling detects the foreground target area by modeling the image
background and comparing the differences between the current image and the background model.
Background modeling detects the foreground target area by modeling the image background and
comparing the differences between the current image and the background model. This method is
sensitive to the image gray level change information, and it can capture small and weak changes
in the image which meet the demands of small aerial target detection. However, holes exist on the
object when the gray scale of the target is similar to the background. Compared with the background
modeling algorithm, optical flow can maintain good performance in that situation. The reason for
this situation is that optical flow pays attention to the motion information of input aerial images,
and similar backgrounds also have a certain degree of motion. However, the optical flow method
is insensitive to weak motion, which is advantageous for the background modeling method. Thus,



Remote Sens. 2019, 11, 14 15 of 23

these two methods have a complementary effect. In addition, if this problem is investigated from
another perspective, the purpose of foreground segmentation is to enhance the target saliency relative
to the background. Background modeling and optical flow start from two different views to describe
object characteristics. The combination of the two methods actually improves object saliency and
that helps to segment potential object regions from the complex background. Therefore, background
modeling combined with optical flow can provide complementary advantages and obtain more a
better segmentation result for small target detection.

As for the foreground segmentation result, we compared the proposed method with the
background modeling method Fast-MCD and the optical flow method Farneback in our test database.
This was done to further prove that the combination of the two algorithms improves the effectiveness
of the segmentation result. The experimental results are shown in the Figure 8. It can be seen from the
figure that the two methods have their own advantages and disadvantages for small target detection.
The background modeling method Fast-MCD was generally able to segment the moving targets in
the scene by detecting the grayscale changes of the images, even though the target is very small,
such as in Frame 2317. However, the foreground segmentation results obtained by this method were
incomplete with many holes, and some targets were split into many blocks, such as in Frame 0009.
On the contrary, the motion segmentation results obtained by the Farneback optical flow method were
generally relatively complete, such as in Frame 2317. However, this method had difficulty detecting the
distant small moving targets in the scene, such as in Frame 0009. Instead of using these two methods
alone, we combined them to improve the effect of foreground segmentation and were able to extract
more complete moving targets, even distant small targets.

Input Aerial Video
Farneback

(Optical Flow)
Fast-MCD

(Background Model)

Ours

 (Farneback +Fast-MCD)
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# 1239
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Figure 8. Contrast foreground segmentation result of the background modeling method Fast-MCD (the
second column), the optical flow method Farneback (the third column), and the proposed multi-cue
foreground segmentation method (the fourth column).
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3.3. System Performance Evaluation

In this work, the performance of our system was evaluated on different aerial traffic scenes,
including intersection and straight road, high loaded street and light loaded street, etc. Based on the
shooting angle, we divided the detection results into two parts: the depression angle and the squint
angle. Figure 9 displays some detection results, and Table 1 summarizes the detection performance of
the quantitative analysis.
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Figure 9. Some examples of small object detection results. The proposed method was evaluated in
terms of the depression angle and splint angle. The number in the upper left corner is the frame number
of each scenario.

In Figure 9, the red rectangles are the moving objects detected by the proposed method, and
our system effectively detected moving targets from complex traffic scenarios. Next, we analyzed
the detection results of the two shooting angles in detail. For the depression angle, there was little
difference between the aerial object size under the same flying height. The average occupation ratio of
each object in Scene 1 was lower than 1.0%, but the proposed method was able to accurately frame the
interested small targets. Remarkably, when there was adhesion between the green bus and little car in
Frame 1457, our system boxed them off well. Scene 2 was a high loaded street near a parking lot, and
almost all moving cars were completely detected. From the enlarged details on the lower right, we can
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see that the bounding boxes of each car were especially appropriate. Similarly, our system worked
well in Scene 3, which was a busy traffic crossing. Frame 2636 contained a lot of targets with small
sizes and intervals. For this case, we still obtained an encouraging detection result. As for the squint
angle, the distance to the video camera caused the diversity of the target size. In the test database,
the minimum object size was smaller than 10× 10 and the maximum size was larger than 100× 100.
However, the proposed method showed great detection performance for both the intersection (as
Scene 4 shown) and the straight road (as shown in Scene 5). In Frame 2238 in Scene 4, there were
several tiny cars that are difficult to distinguish by human beings, and our method was able to detect
them precisely. Our approach not only deals well with small, far-away targets but can also cover
different object scales. The target size of Frame 4477 in Scene 5 had great variation and its detection
result indicates that the detection system performed robustly in this situation. All of the above results
demonstrate the great detection performance of our method.

In order to further evaluate the proposed method, we then carried out a quantitative analysis
as shown in Table 1. We calculated the performance indexes of each scene separately, including the
Precision(↑), Recall (↑), F1-score (↑), and Intersection-over-Union (IOU) (↑). The F1-score is a weighted
harmonic mean of precision and recall and is a comprehensive evaluation parameter. IOU is a metric
to measure the location accuracy by calculating the coincidence degree between the detected bounding
box and the ground truth. If the IOU is greater than 0.5, this paper considered this object to be
detected. The recall of each scene was more than 70% and the precision was more than 90%. Thus, as a
comprehensive measure of detection, the F1-Score of our system was satisfied. As for the IOU, we
determined that the position of the detection bounding box in each scene was very close to the ground
truth, and the IOU value was 0.88 on average.

Table 1. Detection performance of the proposed method.

Angle Scene Precision Recall F1-Score IOU

Depression Angle
Scene1 87.57% 82.26% 0.8483 0.8598
Scene2 96.91% 85.22% 0.9069 0.8426
Scene3 96.54% 92.24% 0.9434 0.9531

Squint Angle Scene4 94.91% 76.48% 0.8470 0.8593
Scene5 93.08% 81.43% 0.8687 0.9128

That means the position error was very small. In addition, we found that the recall of aerial videos
in terms of the squint angle was a little lower than that of the depression angle. This is because the
aerial video in the squint angle contains more different object sizes and that brings more difficulties
for detection.

To conclude, extensive experiments indicate the effectiveness of the proposed method in both
recall and precision of detection. On the one hand, almost all small moving targets can be accurately
detected from the input aerial video. On the other hand, for different target sizes, the proposed
approach can realize good detection performance at the same time. The great performance can satisfy
users’ demands well on small moving aerial object detection.

4. Discussion

To further validate our approach, we comprehensively compare it with other target detection
works in this section. First of all, the comparison between YOLO v2 and the proposed method is
presented to confirm the algorithm’s effectiveness. In addition, we also provide contrast experiments
with the other three methods for sufficiency and objectivity.

4.1. Comparison with the YOLO v2 Deep Detection Network

Since our system was proposed on the basis of the YOLO v2 deep detection network, we first
compare our performance with it. In this section, considering that the detection result is greatly
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influenced by the detection model, we employed the same model which was pre-trained by a set of
normal size objects to make it fair. Figure 10 and Table 2 provide the comparison of our approach with
YOLO v2 in terms of the average recall and accuracy on small vehicle detection.

O
u
rs

Y
O

L
O

 v
2

(a) (b) (c)

F
a
st

-M
C

D
R

S
S

Y
O

L
O

 v
3

G
ro

u
n
d
 T

ru
th

Figure 10. Some detection results of the contrast methods in three scenarios, including (a) a traffic
crossing, (b) T-junction and (c) busy trafficway. The rectangles in the lower left corner are the enlarged
details. As we can see, the detection results of the proposed method were better than those of the
comparison methods in terms of completeness and accuracy.
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Figure 10 displays three typical examples of the two methods’ results. As the figure shows,
the first row is the ground truth of each scene. Scene (a) is a traffic crossing with a complex background
and a large number of targets. In this case, the proposed method was able to detect almost all moving
objects well, while the YOLO v2 network contained false alarms and some objects close to each other
were mistakenly detected together. The problems with YOLO v2 not only existed in the crowded
scene but also in the non-congested road. False alarms also appeared in Scene (b) with smooth traffic.
What is worse, the YOLO v2 network missed almost half of the small targets placed far from the camera.
In terms of the accuracy of the bounding box, Scene (c) and the boxes of our system were obviously
more accurate than those detected by the YOLO v2 network. Therefore, the proposed method obtained
a better qualitative performance. Next, we conducted a qualitative comparison between the two
methods, as shown in Table 2. Both the precision rate and the recall rate of the proposed method
were higher than those of YOLO v2, and the F1-Score increased by approximately 0.1. IOU was used
to quantitatively indicate the detection position error, and the proposed method achieved a higher
IOU value.

Table 2. Comparison detection performance with YOLO v2.

Angle Method Precision Recall F1-Score IOU

Depression YOLO v2 [24] 70.98% 77.87% 0.8141 0.7441
YOLO v2 + Ours 93.67% 86.57% 0.8998 0.8852

Squint Angle YOLO v2 [24] 56.18% 64.81% 0.6019 0.7205
YOLO v2 + Ours 94.29% 83.57% 0.8861 0.8861

In addition, we also studied the performances of the two methods with objects of different sizes.
Specifically, we divided the objects into four ranges: [100× 100, 75× 75), [75× 75, 50× 50), [50× 50,
25× 25), and smaller than 25× 25. Then, we calculated the target detection precision in each range,
as shown in Figure 11. When the object size was large, the two methods performed similarly. However,
with size reduction, the proposed method was able to maintain greater precision on objects smaller than
25× 25. The smaller the object size was, the larger detection precision gap between the two methods
was. This further confirms the effectiveness of our system for small target detection. The proposed
method improves the detection performance while also expanding the detectable object size range.
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Figure 11. Detection performance with YOLO v2 on different object sizes. With a reduction in target
size, the proposed method showed a huge advantage in terms of small target detection as it maintained
great precision on objects smaller than 25× 25.

The results above prove the strength of the visual detail augmented mapping approach for small
aerial target detection. At the same time, its efficiency was also shown to be satisfactory. According to
experimental testing, the average computing time was 77.63 ms which is sufficient for use in real-time,
and the YOLO v2 network worked faster, around 31.25 ms. With this small increase in the amount of
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computation, the proposed algorithm greatly improved the detection performance compared with
direct deep network detection.

4.2. Comparison with State-of-the-Art Methods

In order to further explore the detection performance of the proposed method, we chose three
classic and state-of-the-art methods for contrast experiments.

(1) Fast-MCD: Fast-MCD, which was proposed by Yi et al. in 2013, has been one of the most
widely-used background subtraction algorithms in the field of target detection. The background is
modeled through the dual-mode Single Gauss Model (SGM) with age, and camera motion information
is obtained by the mixture of neighboring models. Fast-MCD is sensitive to subtle changes, and it
helps to detect small aerial objects more accurately.

(2) RSS [27]: By considering both the stability and the saliency of small targets, this algorithm
presents a novel model, called “RSS”. RSS combines the regional stability and saliency to help with
figure-ground segregation. It integrates the stability and saliency maps in a pixel-wise multiplication
manner to remove false alarms. Experimental results have shown that this model adapts to target size
variations and performs favorably in terms of both precision and recall.

(3) YOLO v3 [28]: This algorithm contains some updates to YOLO and includes a bunch of little
design changes to achieve better detection performance. Compared with YOLO v2, YOLO v3 employs
logistic regression to predict the objectness score for each bounding box, extracts features from three
different scales using a similar concept to feature pyramid networks, and increases the number of
anchor and convolutional layers. It has the advantages of a low false background detection rate and
great performance on small target detection by changing the network structure.

In the specific implementation of these experiments, the Fast-MCD, RSS, and YOLO v3 codes
were obtained from open source code. The parameters used in these methods were the original
settings. For the evaluation standard, we used Precision (↑), Recall (↑), F1-score (↑) and IOU (↑) to
judge performance in small moving object detection.

Figure 10 shows a comparison of the performance of the proposed method and the other
approaches. As the figure shows, Fast-MCD had a high recall rate in our experiment, but its high
false alarm rate had negative influences on detection performance. That means that the Fast-MCD,
which is effective for obtaining motion information, cannot detect small moving objects from an aerial
image well. RSS also wrongly framed some background regions as small objects, and there were
still many missed detection cases when this method was used. Therefore, this method also cannot
solve the problem of small aerial object detection well. YOLO v3 showed a low background false
detection rate, but it missed some real targets. However, with the proposed method, almost all objects
with different sizes were accurately detected from the input aerial video. Moreover, in the third
column in Figure 10, the bounding box of our method is shown to be the most suitable among the
comparison methods. The proposed method based on visual detail augmented mapping showed
obvious advantages, not only quantitatively but also qualitatively. Table 3 provides the quantitative
comparison results, and our system outperformed the other methods in terms of precision, recall,
F1-Score, and IOU. The precision and recall rate of our method were more than 80% for every shooting
angle. Through calculations, its F1-Score was greater than 0.85 which was the best performance among
all contrastive experiments. Meanwhile, the IOU of the proposed method was more than 0.88, which
suggests that accurate object positioning occurred. Remarkably, the precision of YOLO v3 in terms
of the depression angle and the recall rate of Fast-MCD in terms of the squint angle were higher
than the recall and recision of the proposed method, respectively. However, the other measures of
the two methods were 77.12% and 65.80%, respectively, which means that there was a high missed
detection rate and false alarm rate. Moreover, we found that these algorithms had lower performance
with the squint angle than with the depression angle. This is because the aerial video in the squint
angle contains different moving object sizes (150× 150− 10× 10), and the target detection is more
difficult. We can see that F1-Score of our algorithm reduced from 0.8998 to 0.8861, and the F1-Score
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of YOLO v3 reduced from 0.8587 to 0.6699, which shows that our algorithm is more effective and
robust for small moving target detection. Though our method had a slightly lesser performance on one
measure, its comprehensive performance in terms of the F1-Score was the highest. This indicates that
the proposed method is sufficient to meet the demands of small moving object detection from aerial
data. In terms of computational efficiency, YOLO v3 was shown to be the fastest with a computing
time of about 46.51 ms. With visual detail augmented mapping, the average detection time of our
system was 77.63 ms. Though the proposed method is slower than other methods, it also can satisfy
the real-time needs of detection system. By synthesizing the two aspects of efficiency and precision,
our approach performs better in small target detection than the other methods.

Table 3. Comparison of the detection performance of various methods in terms of Precision, Recall,
F1-Score and IOU.

Angle Method Precision Recall F1-Score IOU

Depression Angle

Fast-MCD [23] 62.63% 82.93% 0.7136 0.7669
RSS [27] 31.68% 25.44% 0.2822 0.6520

YOLO v2 [24] 70.98% 77.87% 0.8141 0.7441
YOLO v3 [28] 96.85% 77.12% 0.8587 0.7649

YOLO v2 + Ours 93.67% 86.57% 0.8998 0.8852

Squint Angle

Fast-MCD [23] 65.80% 94.75% 0.7767 0.6925
RSS [27] 29.95% 20.16% 0.2410 0.5947

YOLO v2 [24] 56.18% 64.81% 0.6019 0.7205
YOLO v3 [28] 94.13% 52.00% 0.6699 0.7682

YOLO v2 + Ours 94.29% 83.57% 0.8861 0.8861

The reasons for the high performance of our system are as follows. First, Fast-MCD only considers
information about the motion of the moving object. This information is susceptible to noise interference
and unrelated things. Thus, this causes the high false alarm rate of Fast-MCD. Second, RSS is based on
the stability and saliency of small objects, and this approach is suitable for single small target detection
under less complex backgrounds. However, the views of aerial visual data are usually large and their
backgrounds are usually complicated with a large amount of interference. This leads to difficulty for
RSS in detecting moving objects from aerial video. Third, YOLO v3, which achieves a comparable
performance to our method, is based on the use of a number of convolution layers to extract deep
features for better object representation. Compared with YOLO v3, which improves the detection rate
of small targets by improving the YOLO v2 network structure, our algorithm greatly improves the
detection rate of small moving targets by using a visual detail augmented mapping method combined
with the YOLO v2 network, which can achieve better detection results than YOLO v3.

5. Conclusions

In this paper, we proposed a novel visual detail augmented mapping approach for small aerial
moving target detection. To address this, we first presented a multi-cue foreground segmentation
method which combines the optical flow algorithm Farneback and the background modeling method
Fast-MCD to obtain motion and grayscale change information of input aerial video. Through
comprehensive analysis of the two clues, the potential moving target regions are extracted out. Then,
a visual detail augmented mapping approach was proposed which maps the initial aerial image to
a new foreground space. This mapping consists of two modules: one is multi-resolution mapping,
which provides more detailed target information for the subsequent detection network; the other is
foreground augmented mapping, in which the original potential moving target regions are mapped
to a more valuable foreground augmented map. The new foreground augmented map is a visual
augmentation of the original aerial image. Finally, driven by the YOLO v2 deep detection network and
the coordinate inverse calculation, a small moving target detection system is implemented.



Remote Sens. 2019, 11, 14 22 of 23

In order to evaluate the performance of the system, we carried out a lot of experiments. Through
the analysis of foreground segmentation experiment results, it was proved that the algorithm can
greatly improve the integrity of foreground segmentation results by combining the background
modeling algorithm and the optical flow method. On this basis, extensive experimental results were
used to demonstrate that the proposed method is efficient and robust for small moving target detection
without changing and retraining the deep detection network. In addition, the comparative experiments
with the recently-published state-of-the-art methods show that our system performs the best in terms
of both detection speed and accuracy. Our future work will focus on developing object tracking and
re-identification based on the proposed method.
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