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Abstract: Narrow-band interference (NBI) and Wide-band interference (WBI) are critical issues for
synthetic aperture radar (SAR), which degrades the imaging quality severely. Since some complex
signals can be modeled as linear frequency modulated (LFM) signals within a short time, LFM-WBI
and NBI are mainly discussed in this paper. Due to its excellent energy concentration and useful
properties (i.e., auto-terms pass through the origin of Delay-Doppler plane while cross-terms are
away from it), a novel nonparametric interference suppression method using Delay-Doppler iterative
decomposition algorithm is proposed. This algorithm consists of three stages. First, we present signal
synthesis method (SSM) from ambiguity function (AF) and cross ambiguity function (CAF) based
on the matrix rearrangement and eigenvalue decomposition. Compared with traditional SSM from
Wigner distribution (WD), the proposed SSM can synthesize a signal faster and more accurately. Then,
based on unique properties in Delay-Doppler domain, a mask algorithm is applied for interference
identification and extraction using Radon and its inverse transformation. Finally, a signal iterative
decomposition algorithm (IDA) is utilized to subtract the largest interference from the received
signal one by one. After that, a well-focused SAR imagery is obtained by conventional imaging
methods. The simulation and measured data results demonstrate that the proposed algorithm not
only suppresses interference efficiently but also preserves the useful information as much as possible.

Keywords: synthetic aperture radar (SAR); interference suppression; narrowband interference (NBI);
wideband interference (WBI); ambiguity function (AF); signal synthesis

1. Introduction

Synthetic aperture radar (SAR) has become an important instrument for earth mapping and been
widely utilized in both military surveillance and civilian exploration. However, well-focused SAR
images are always prominently corrupted by untargeted interference caused by natural or man-made
factors, especially the interferences whose frequencies fall into the frequency spectrum of useful
signals [1,2]. Although the two-dimensional matched filter has an inherent ability in interference
suppression, interferences with stronger power will defocus the image and degrade the imaging
quality seriously [3,4].

Since the existence of interference would seriously degrade the quality of SAR imagery,
interference detection and suppression have been paid increasing attention in the SAR community.
In terms of ratio of the interference bandwidth to the useful signal, interference is generally categorized
into two groups: narrowband interference (NBI, the ratio is smaller than 1%) and wideband interference
(WBI, the ratio is greater than 1%). Compared with WBI, NBI is much easier to deal with. To obtain
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high-quality images, the NBI suppression algorithm can mainly be classified into two classes:
parametric and non-parametric methods. In parametric approaches, the interferences are usually
modeled as a summation of complex sinusoidal waves and their parameters, such as amplitude,
frequency and phase, are estimated according to the least-mean square method [5–7] or maximum
likelihood criteria [8]. Then, NBI can be reconstructed and subtracted from the received echoes.
However, without prior knowledge, model mismatch will lead to an inaccurate estimated of the
NBI and result in great degradation of the suppression performance. Additionally, it is difficult to
obtain accurate high-dimensional parameters for non-stationary NBI. The other is the non-parametric
method, including the notch filtering method [9–13] and the eigen-subspace projection method [14].
These methods avoid the complicated NBI modeling or multiparameter estimation. Notch filtering
method is one of the most widely used interference suppression techniques in practice. Several
excellent works are carried out on notch filter design, such as minimax optimization based IIR notch
filter [10], Sliding DFT Phase Locking Scheme [11], adaptive filter [12,13], etc. They employ spectral
estimation to distinguish the interference and design a proper filter to remove it in the frequency
domain. These methods work based on the assumption that only a fraction of frequency bins of NBI are
overlapped with that of useful signals. However, the frequency notch filtering method may cause the
discontinuity of signal spectrum and further lead to the loss of useful signal. Thus, the signal-to-noise
ratio (SNR) of the SAR image may degrade seriously. The eigen-subspace projection method projects
echoes onto the interference subspace and the signal subspace, respectively. This approach has
good performance for stationary interference suppression, while the suppression would lead to
significant signal loss when time-varying interference exists. In addition, independent component
analysis [15–17], empirical mode decomposition [18], sparsity and low-rank method [19], and the
other excellent works [20–22] are proposed to cope with the time-varying interference with little useful
signal loss.

By contrast, the WBI removal approaches are more complicated, since its bandwidth is large
and occupies a large portion of the bandwidth of the useful SAR signal. The best choices of WBI
suppression method are mainly based on multi-antenna, beamforming and space-time adaptive
processing techniques, in which adaptive nulling is formed in the direction of the interference [23,24].
However, the hardware cost and complexity become more unaffordable, as the number of antennas
increases [25]. Moreover, these methods perform poorly to counter jamming entering from the
main lobe. Another WBI suppression framework is based on the analysis of the time–frequency (TF)
properties of interference. TF based interference suppression methods can also be generally categorized
into two groups: parametric and nonparametric approaches. In parametric methods, WBI is modeled
as polynomial phase signal, whose parameters can be estimated by the fractional Fourier transform
(FrFT) [26], polynomial phase transform (PPT) [27], high-order ambiguity function (HAF) [28], product
high-order ambiguity function (PHAF) [29] and other time–frequency analysis-based parameter
estimation methods [30–33]. Similar to the parametric methods in NBI suppression, model mismatch
and parameter estimation error may lead to great degradation of the SAR image quality. Nonparametric
methods mainly focus on TF characteristic analysis and TF filter design to remove the WBI and preserve
the SAR signal. These methods usually assume that the WBI is concentrated in the TF domain. In this
paper, we mainly focus on the linear frequency modulated (LFM) WBI (LFM-WBI), since some complex
signal can be modeled as an LFM signal within a short time. Due to its good concentration at each time
slice, short time Fourier transform (STFT) [34–41] has been shown as an effective tool for time-varying
WBI suppression. The energy of interference concentrates in a few frequency bins in the instantaneous
frequency spectrum at each time slice. However, its TF resolution varies with the bandwidth of signal,
i.e., the larger the bandwidth is, the worse the TF resolution will be. Compared with STFT, Wigner
distribution (WD) [42–44] is more effective for time-varying signal analysis due to its excellent energy
concentration. For multiple components, WD’s bilinear transformation always produces unwanted
cross-terms, which may severely impede auto-terms identification. Furthermore, the traditional
signal synthesis method (SSM) from WD is quite time consuming and inaccurate. Ambiguity function
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(AF) [32,45] has the same energy concentration as WD does. Similarly, due to its bilinear transformation,
AF will also suffer from the identifiability problem when dealing with multi-component signal.
However, AF analysis tool has a useful property that auto-term passes through the origin of the AF
plane and the cross-terms are away from it [32,45]. By making full use of this property, we propose an
efficient interference suppression algorithm. First, we present an SSM from AF and cross AF (CAF).
Then, a binary mask based on the Radon transform (RT) and its inverse transform is constructed for
auto-terms extraction and cross-terms suppression, which overcomes the cross-terms identifiability
issue in WD. Finally, an AF-CAF based iterative decomposition method (IDM) (AF-CAF-IDA) is
presented to decompose a signal by subtracting the largest reconstructed interference component
from the received signal one by one. After that, well-focused SAR imaging results can be obtained
by conventional imaging methods. The proposed algorithm has three advantages: (1) both AF and
CAF have excellent energy concentration; (2) auto-terms of interferences are more easily identified
and extracted in the AF and CAF domains due to their useful properties; and (3) SSM from AF and
CAF is faster and more accurate than the traditional SSM from WD. Thanks to these advantages,
the proposed algorithm not only suppresses interference but also preserves the useful information as
much as possible. The performance analyses of the simulated data and measured data demonstrate
that the proposed algorithm outperforms the notch filtering method and the TF filtering method.

The paper is organized as follows. After the Introduction, the mathematical model of the received
signal is given in Section 2. To identify and suppress the interference efficiently, AF-CAF-IDA based
interference suppression algorithm is proposed in Section 3. The experimental analysis is illustrated in
Section 4. Finally, conclusions are drawn in Section 5.

For readability, the main abbreviations used in this paper are listed in Table 1.

Table 1. Main abbreviations.

Acronyms Terms Acronyms Terms

SAR Synthetic Aperture Radar STFT Short Time Fourier Transform
NBI Narrowband interference WD Wigner Distribution
WBI wideband interference AF Ambiguity Function
SNR Signal-to-Noise Ratio CAF Cross Ambiguity Function
IDM Iterative Decomposition Method MAF Masked Ambiguity Function
SSM Signal Synthesis Method RT Radon Transform
EVD Eigenvalue Decomposition RAF Radon Ambiguity Function

2. Mathematical Model of Received Signal

Assume that the SAR system transmits P pulses, and each received echo, during a pulse repetition
time, consists of N range samples, then the useful signals with interference and noise can be modeled by

xn = Sn + In + Nn (1)

where Sn is the useful signal, In is the interference, Nn is the additional noise, and n = 1, 2, . . . , N is the
fast time.

For NBI, its frequency spectrum usually concentrates within a narrow frequency bins, which can
be written as [4]

INBI,n =
L

∑
l=1

al exp{j(2π fln + ϕl)}, (2)

where al , fl and ϕl denote the amplitude, frequency and phase of the l-th NBI, respectively, and L
represents the number of NBI.

For WBI, LFM-WBI is mainly discussed in this paper, which can be expressed as [36]
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IWBI,n =
L

∑
l=1

al exp
{

j(2π fln + πγln2 + ϕl)
}

(3)

where γl is the l-th chirp rate of LFM-WBI.
Figure 1a shows the frequency spectrum of received signal with NBI and LFM-WBI. It is obvious

that NBI is easily captured according to its amplitude changes in frequency domain, while the spectrum
of LFM-WBI distributes along the whole frequency band, which increases difficulties in interference
identification and suppression. For STFT, the interferences are concentrated along the straight lines in
the TF plane, which occupies much smaller frequency bins at each time slice than in the frequency
domain, as illustrated in Figure 1b. For WD, it has a good energy concentration property for LFM
signals. However, for multiple components, an unwanted cross-terms problem may severely impede
auto-terms identification, as shown in Figure 1c. Although the cross-terms also occur in the AF plane,
AF has a useful property that the auto-terms pass through the origin of AF plane and the cross-terms
are away from it, as illustrated in Figure 1d. Based on this property, the auto-terms of interference are
easily identified. Thus, an interference suppression algorithm in AF plane is proposed in the following.
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Figure 1. The (a) frequency spectrum; (b) STFT; (c) WD; and (d) AF of NBI and LFM-WBI.

3. Interference Suppression Algorithm Using AF-CAF-IDA

In this section, AF-CAF-IDA based interference suppression is introduced. This algorithm consists
of three stages: (1) SSM from AF-CAF; (2) binary mask construction for interference identification and
extraction; and (3) IDA using SSM and mask construction. In the following, interference suppression
including SSM and binary mask construction is discussed in details.

3.1. SSM from AF-CAF for Mono-Component Signal

Assume a discrete mono-component signal xn with N samples in length, and its vector form is
denoted as x = [x1, x2, . . . , xN ]. To obtain its AF, symmetric instantaneous autocorrelation function
(SIAF) of xn is calculated first, which can be expressed as

Rx(n, m) = xn+mx∗n−m (4)

where (·)∗ is the conjugate operator. Matrix form of Rx(n, m) is written as

Rx =

{
Rx(n, m) n ≤ N/2, |m| < n; n > N/2, |m| < N − n;
0 others

(5)

For the convenience of description, Figure 2 gives the structure of Rx with N being 5. The AF of
xn can be obtained by calculating the one-dimensional (1-D) inverse Fast Fourier Transform (IFFT) of
each row of Rx, defined by

AFx(m, u) = 2
N/2−1

∑
n=−N/2

Rx(n, m)ej 2π
N 2nu (6)
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According to above operations, the received echo can be transformed into AF plane. If AFx(m, u) is
known, xn can be reconstructed by following steps.

First, calculate matrix Rx by 1-D Fast Fourier Transform (FFT), which is expressed as

Rx(n, m) =
1

2N

N/2−1

∑
u=−N/2

AFx(m, u)e−j 2π
N 2nu (7)

Here, we consider another matrix R with its elements defined by R(n1, n2) = xn1 x∗n2
,

where 1 ≤ n1, n2 ≤ N. If matrix R is given, the original signal x̂ can be obtained by eigenvalue
decomposition (EVD), expressed as [42]

R = QΛQ =
N

∑
i=1

λiuiuH
i (8)

where λi and ui represent the eigenvalue and corresponding eigenvectors, respectively. The matrix of
R has only one nonzero eigenvalue, with which the original signal x̂ can be recovered as follows:

x̂ =
√

λ1u1ejϕ̂ (9)

where ϕ̂ is the constant phase.
The above signal synthesis method is under the assumption that R is known. However,

according to Equation (7), only matrix Rx can be obtained from the AF. Fortunately, compared with
R, the relationship between R and Rx can be summarized as follows: the elements in the m-th row of
Rx are located at 2m-th auxiliary diagonal of R, as shown in Figure 2. Based on this property, a new
matrix R̂even can be constructed by matrix rearrangement, defined by

Rx
Matrix−−−−−−−→

rearrangement
R̂even =

{
R n1 + n2 = 2n;
0 n1 + n2 = 2n− 1;

(10)

From Equation (10), it is clear that half of elements are zeros. To obtain the remaining elements in
R, CAF transform is introduced. Consider another discrete signal yn, the symmetric instantaneous
cross-correlation function (SICF) between xn and yn is calculated by

Rxy(n, m) = xn+my∗n−m (11)

Its matrix form can be written as

Rxy =

{
Rxy(n, m) n ≤ N/2, |m| < n; n > N/2, |m| < N − n;
0 others

(12)

From Equation (12), the CAF of xn and yn can be obtained by calculating the 1-D IFFT of each row
of Rx,y, defined by

CAFxy(m, u) = 2
N/2−1

∑
n=−N/2

Rxy(n, m)ej 2π
N 2nu (13)

Similarly, if CAFx,y(m, u) is given, Rx,y can be calculated by 1-D FFT, depicted as

Rxy(n, m) =
1

2N

N/2−1

∑
u=−N/2

CAFxy(m, u)e−j 2π
N 2nu (14)

To obtain the remaining elements in the (2m − 1)-th auxiliary diagonal of R, we let yn = xn+1,
then Rx,y can be reconstructed, as shown in Figure 2. Compared with R, we can draw another
conclusion that the elements in the m-th row of Rx,y are located at (2m − 1)-th auxiliary diagonal
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of upper triangular matrix in R. The elements in the (2m − 1)-th auxiliary diagonal of lower
triangular matrix in R can be easily obtained, due to its characteristic of Hermitian matrix (i.e.,
R(n, m) = R∗(m, n)). According to this property, another new matrix R̂odd can be constructed by
matrix rearrangement, defined by

Rxy
Matrix−−−−−−−→

rearrangement
R̂odd =

{
0 n1 + n2 = 2n;
R n1 + n2 = 2n− 1;

(15)

Therefore, R can be obtained by combining R̂even with R̂odd. Then, the original signal x̂ can be
reconstructed by EVD.

Compared with traditional SSM from WD, the major difference is the construction of matrix.
In the traditional SSM from WD, an interpolation to WD is necessary, and all elements in the matrix
R need to be calculated by discrete Fourier transform (DFT) one by one. In the SSM from AF-CAF,
the matrix of R can be obtained by rearranging the matrix from the AF and CAF, and the elements in R
can be calculated by FFT. Thus, it is time saving. Here, we take a signal with 512 samples in length as
an example to check calculation time and signal energy loss. Results show that the calculation time of
traditional synthesis method is 3.5 times of that of SSM from AF-CAF. The eigenvalues obtained by SSM
from AF-CAF are shown in Figure 3a. There is only one nonzero eigenvalue with its energy being 512.
Compared with traditional signal synthesis method, there are several nonzero eigenvalues, and the
largest one is 503.4, as illustrated in Figure 3b. The signal energy loss is caused by the interpolation to
the WD. Therefore, SSM from AF-CAF is more accurate.
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3.2. SSM from AF-CAF for Multi-Component Signal

In this section, the SSM from AF-CAF for multi-component signal is presented. Consider a
multi-component signal

xn = ∑
i=1

xi,ni = 1, 2, . . . , L (16)

where subscript i denotes the i-th component of signal. The SIAF of xn can be written as

Rx(n, m) = xn+mx∗n−m =
L
∑

i=1
xi,n+mx∗i,n−m +

L−1
∑

i=1

L
∑

j=i+1

(
xi,n+mx∗j,n−m + xj,n+mx∗i,n−m

)
=

L
∑

i=1
Rxi (n, m) +

L−1
∑

i=1

L
∑

j=i+1
Rxixj(n, m)

(17)

Substituting Equation (17) into Equation (6) yields

AFx(m, u) = 2
N/2−1

∑
n=−N/2

Rx(n, m)ej 2π
N n(2u)

= 2
N/2−1

∑
n=−N/2

L
∑

i=1
Rxi (n, m)ej 2π

N n(2u) + 2
N/2−1

∑
n=−N/2

L−1
∑

i=1

L
∑

j=i=1
Rxixj(n, m)ej 2π

N n(2u)

= 2
L
∑

i=1

N/2−1
∑

n=−N/2
Rxi (n, m)ej 2π

N n(2u) + 2
L−1
∑

i=1

L
∑

j=i=1

N/2−1
∑

n=−N/2
Rxixj ,c(n, m)ej 2π

N n(2u)

=
L

∑
i=1

AFxi,a(m, u)︸ ︷︷ ︸
auto−terms

+
L

∑
i=1

L

∑
j=1

AFxixj,c(m, u)︸ ︷︷ ︸
cross−terms

(18)

where AFxi,a(m, u) and AFxixj,c(m, u) represent the auto-terms and cross-terms, respectively. Suppose
that the cross-terms have been eliminated completely, the masked AF (MAF) is equal to the sum of
AFs of individual components, which can be expressed as follows:

MAFx(m, u) =
L

∑
i=1

AFxi,a(m, u) (19)

Substituting Equation (19) into Equation (7), we have

Rx,MAF(n, m) = 1
2N

N/2−1
∑

u=−N/2
MAFx(m, u)e−j 2π

N u(2n)

= 1
2N

N/2−1
∑

u=−N/2

L
∑

i=1
AFxi,a(m, u)e−j 2π

N u(2n)

=
L
∑

i=1

1
2N

N/2−1
∑

u=−N/2
AFxi,a(m, u)e−j 2π

N u(2n)

=
L
∑

i=1
Rxi (n, m)

(20)

From Equation (20), it is obvious that inverse MAF equals to the sum of the inverse AFs of
individual components. After that, the matrix rearrangement is applied to reconstruct the matrix R̂even.

Similarly, the SICF of xn and yn (yn = ∑
i=1

yi,n) can be expressed as

Rx,y(n, m) = xn+my∗n−m =
L
∑

i=1
xi,n+my∗i,n−m +

L−1
∑

i=1

L
∑

j=i+1

(
xi,n+my∗j,n−m + xj,n+my∗i,n−m

)
=

L
∑

i=1
Rxiyi (n, m) +

L−1
∑

i=1

L
∑

j=i+1
Rxiyj(n, m)

(21)
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The CAF of xn and yn can be given by

CAFx,y(m, u) = 2
N/2
∑

n=−N/2
Rx,y(n, m)ej 2π

N n(2u)

= 2
N/2
∑

n=−N/2

L
∑

i=1
Rxiyi (n, m)ej 2π

N n(2u) + 2
N/2
∑

n=−N/2

L−1
∑

i=1

L
∑

j=i+1
Rxiyj(n, m)ej 2π

N n(2u)

= 2
L
∑

i=1

N/2
∑

n=−N/2
Rxiyi (n, m)ej 2π

N n(2u) + 2
L−1
∑

i=1

L
∑

j=i+1

N/2
∑

n=−N/2
Rxiyj(n, m)ej 2π

N n(2u)

= 2
L
∑

i=1
CAFxiyi,a(m, u) + 2

L−1
∑

i=1

L
∑

j=i+1
CAFxixj,c(m, u)

(22)

where CAFxiyi,a(m, u) and CAFxiyj,c(m, u) represent the auto-terms and cross-terms, respectively.
Assume that the cross-terms in CAF domain are removed clearly; the mask CAF (MCAF) also equals
the sum of the CAFs of individual components, expressed as

MCAFxy(m, u) =
L

∑
i=1

CAFxiyi,a(m, u) (23)

The inverse CAF of Equation (23) is given by

Rxy,MCAF (n, m) = 1
2N

N/2−1
∑

u=−N/2
MCAFxy(m, u)e−j 2π

N u(2n)

= 1
2N

N/2−1
∑

u=−N/2

L
∑

i=1
AFxiyi,a(m, u)e−j 2π

N u(2n)

=
L
∑

i=1

1
2N

N/2−1
∑

u=−N/2
AFxiyi,a(m, u)e−j 2π

N u(2n)

=
L
∑

i=1
Rxiyi (n, m)

(24)

It can be seen that inverse MCAF equals the sum of the inverse CAFs of individual components
and the matrix R̂odd can be obtained by matrix rearrangement. After combining R̂even and R̂odd, R can
be rewritten as follows:

R =
L

∑
i=1

Ri(n1, n2) (25)

After EVD, the multi-component signal can be synthesized by

x̂ =
L

∑
i=1

√
λiuiejϕ̂i (26)

3.3. Binary Mask Construction for Signal Extraction and Cross-Terms Suppression

The analysis above is based on the assumption that the cross-terms are removed clearly, otherwise
Equation (26) would no longer hold. In this section, the mask algorithm is presented to suppress
cross-terms. In the AF and CAF domain, the auto-terms of multi-LFM component signal have
two properties:

Property 1. Auto-terms have line-like features in the AF and CAF domains.

Property 2. Auto-terms pass through the origins of the AF and CAF domains, while the cross-terms are away
from the origins.

For detailed discussion and proof, please refer to Appendix A.
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According to these two properties, an interference identification and cross-term suppression
algorithm is proposed. Based on Property 1, Radon transform (RT) is utilized to integrate the auto-terms
along the straight line and the integral value exhibits a distinct peak in the Radon AF (RAF) plane.
The RT is defined by

R(ρ, α) =
N/2−1

∑
m=−N/2

N/2−1
∑

u=−N/2
AF(m, u)δ(m sin(α) + u cos(α)− ρ)

= 1
|cos(α)|

N/2−1
∑

m=−N/2
AF
(

m, ρ
cos(α) −m tan(α)

)
= 1
|cos(α)|

N/2−1
∑

m=−N/2
AF(m, f + γm)

∣∣∣∣∣ γ = − tan (α)

f = ρ/ cos(α)

(27)

where δ(·) is the delta function, and ρ and α represent the polar distance and polar angle, respectively.
Based on Property 2, auto-terms in the RAF plane are certainly located at zeros-polar distance slice
(i.e., ρ = 0). According to these properties, auto-terms of interference can be integrated and identified
at ρ = 0 slice in polar distance and polar angle (ρ− α) domain, as shown in Figure 4. If the amplitude
at ρ = 0 slice jumps with peaks much larger than the mean value, then one can conclude that the data
may be contaminated by interferences. In addition, the inverse RT is utilized to extract the interference
and suppress the cross-terms.
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The processes of mask algorithm in the AF and CAF can be depicted as follows:

(1) Calculate the AF (AF(m, u)) and CAF (CAF(m, u)) of the received signals, respectively.
(2) Determine the RAF (R(ρ, α)), and then perform a 1-D search at ρ = 0 slice to identify the

interference and record the maximum peak position αmax. After that, compute the inverse RT
with ρ = 0 and α = αmax, denoted as IR(0, αmax).

(3) Compare the elements of IR(0, αmax) with zero, and then binary mask can be expressed
as follows:

Mask(m, u) =

{
1, |IR(0, αmax)| > 0
0, others

(28)

(4) Extract the interference in the AF and CAF plane as follows:
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{
MAF(m, u) = AF(m, u) ·Mask(m, u)
MCAF(m, u) = CAF(m, u) ·Mask(m, u)

(29)

For simplicity, a flowchart of interference identification and extraction using mask algorithm is
shown in Figure 4. After interference, identification and extraction, the interference can be recovered
by SSM from MAF and MCAF.

3.4. SAR Imaging with AF-CAF-IDA Based Interference Suppression

According to the aforementioned analysis, AF-CAF-IDA is proposed to identify and suppress
the interference. For simplicity, the flowchart of SAR image formation from raw data contaminated
by interferences using the proposed scheme is shown in Figure 5. The detailed procedures can be
summarized as the following steps:Remote Sens. 2018, 10, x FOR PEER REVIEW  11 of 19 
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Step 1: Extract the p-th azimuth sample data xn, where 1 ≤ n ≤ N, 1 ≤ p ≤ P, N and P represent
the total samples in fast time and slow time, respectively.

Step 2: Transform xn into the RAF domain to detect whether the interference exists. If interference
exists, AF-CAF-IDM is utilized to suppress interference, as shown in dashed area of Figure 4; otherwise.
go to Step 3. The AF-CAF-IDM consists of following steps:

(1) Calculate the MAF and MCAF of received signal according to mask algorithm.
(2) Rearrange the IFFT of MAF and MCAF and recovery the signal via EVD, and then estimate the

parameter ϕ̂ by solving the following equation:

ϕ̂ = argmin
ϕ

N

∑
n=1

∣∣∣xn − λ1ui,nejϕ
∣∣∣2, ϕ ∈ (0, 2π] (30)

(3) Subtract the synthesized component from the received signal and iterate above steps until all
interferences in the p-th azimuth sample data are suppressed.
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Step 3: Let p = p + 1; if p is less than or equal to P, iterate above steps to ensure interferences at
each azimuth gate are completely eliminated. Finally, a well-focused SAR image is obtained by the
conventional radar imaging algorithm.

To demonstrate the validity of AF-CAF-IDA, a chirp signal (i.e., useful signal) with NBI and
LFM-WBI is generated. The signal can be modeled by

S(n) = S1(n) + S2(n) + S3(n) + N(n) (31)

where 
S1(n) = 2 exp

(
j0.0006πn2)

S2(n) = 10 cos(0.0025πn) exp(j0.1πn) exp
(

j0.00002πn2)
S3(n) = 5 cos(0.0015πn) exp(−j0.1πn) exp

(
j0.0006πn2) (32)

where S1(n), S2(n) and S3(n) represent the chirp signal, NBI and LFM-WBI, respectively. N(n) is
additive Gaussian noise with the signal-to-noise-ratio (SNR) being 5 dB. Figure 6a shows the frequency
spectrum of S(n). In the presence of the interferences, the chirp signal is seriously contaminated by
NBI and LFM-WBI. Figure 6b shows the WD of S(n), where NBI and LFM-WBI are well concentrated
in TF plane with cross-terms. However, it is difficult to distinguish the auto-terms and cross-terms
in the WD domain. Figure 6c gives the AF of the received signal. It is obvious that the auto-terms of
chirp signal, NBI and LFM-WBI pass through the origin of the AF plane, and cross-terms are away
from it. Furthermore, the auto-terms of chirp signal is highly overlapped with that of LFM-WBI, since
they have the same chirp rates. Therefore, two cases should be considered in this example.
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Figure 6. Interference suppression based on AF-CAF-IDA: (a) frequency spectrum of the original signal;
(b) WD of the original signal. (c) AF of the original signal; (d) NBI extraction from the original signal;
(e) eigenvalues obtained from masked signal (NBI); (f) real part of the reconstructed NBI; (g) AF of
the rest signal; (h) MAF of the rest signal; (i) eigenvalues obtained from masked signal (LFM-WBI and
chirp signal); (j) real part of the reconstructed LFM-WBI; (k) WD of the chirp signal; and (l) real part of
the chirp signal.
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Case (1): Mono-component signal synthesis. After conducting the mask algorithm, the greatest
signal (i.e., NBI) is extracted, as shown in Figure 6d. By performing the EVD, only one large eigenvalue
corresponding to the NBI is obtained, as illustrated in Figure 6e. In Figure 6f, a comparison between
the reconstructed signal and the original NBI is presented, which implies that the synthesized signal
is in good agreement with the original signal. It is obvious that the NBI is eliminated cleanly after
subtracting reconstructed signal from the original signal, as shown in Figure 6g.

Case (2): Multi-component signal synthesis. After performing the mask algorithm, the MAF of the
rest signal is equal to the sum AFs of chirp signal and LFM-WBI, as illustrated in Figure 6h. In Figure 6i,
there are two large eigenvalues corresponding to the chirp signal and LFM-WBI, respectively, which is
consistent with Equation (25). Figure 6j gives the comparison of the real part between the synthesized
LFM-WBI and original component. It is clear that the synthesized component fits well with the
original one. After subtracting the LFM-WBI from the rest signal, the desired chirp signal is obtained.
Figure 6k,l presents the WD of the chirp signal and its real part, respectively. From this example,
we can conclude that AF-CAF-IDA is effective for interference suppression with only a small loss
of signal.

4. Experimental Analysis

The above sections have addressed interference suppression based on AF-CAF-IDA theory. In this
section, we demonstrate the effectiveness of the interference suppression algorithm by dealing with
SAR data.

4.1. Comparison between Interference Suppression Algorithms

In this part, comparisons of the frequency-notch filtering, TF filtering and AF-CAF-IDA are
provided. The simulated NBI and LFM-WBI are added to the real SAR data to verify the validity
of AF-CAF-IDA. After range compression, Figure 7a,b presents the frequency spectrum and TF
spectrogram of SAR echo with interferences, respectively. It is clear that the frequency spectrum of
LFM-WBI occupies many frequency bins. If the frequency-domain notch filter is adopted, the useful
information, which is overlapped with the LFM-WBI in the frequency spectrum, are also removed
simultaneously, as shown in Figure 7a,d. The NBI and LFM-WBI are concentrated along the straight
lines in the TF plane with only a fraction of frequency bins occupied at each time slices, as shown
in Figure 7b. The filtering in the TF plane can suppress the interferences with smaller loss of the
useful signal than frequency notch does, and its frequency spectrum and TF spectrogram are given in
Figure 7e,f. Figure 7g,h illustrates the results of AF-CAF-IDA based interference suppression algorithm.
In this figure, it is observed that interferences are eliminated completely while the useful signal is
preserved well. To make a quantitative evaluation of the proposed algorithm, signal distortion ration
(SDR) is introduced, which is defined by [36]

SDR = 10 log10

∑
∣∣∣d0(n)− d̂(n)

∣∣∣2
∑|d0(n)|2

 (33)

where d̂(n) represents the signal after interference suppression and d0(n) denotes the original signal
without interference. The SDR of these three algorithms are calculated and the results are listed in
Table 2. In this table, it is noted that the signal losses of frequency-notch filtering and TF filtering are
greater than that of the proposed algorithm, which implies that AF-CAF-IDA can not only suppresses
the interference but also preserve the signal energy as much as possible.
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with interferences; (b) spectrogram of signal with interferences; (c) frequency spectrum of signal
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filtering; (e) frequency spectrum of signal after TF filtering; (f) spectrogram of signal after TF filtering;
(g) frequency spectrum of signal with LFM-WBI after AF-CAF-IDA; and (h) spectrogram of signal with
LFM-WBI after AF-CAF-IDA.

Table 2. Evaluation Metrics of Three Algorithms of Interference Suppression.

Algorithm Notch filter TF filter AF-CAF-IDA

SDR (dB) −2.1216 −8.8797 −11.4218

4.2. Results of Measured Data

In this section, measured SAR data contaminated by serious interference are utilized. To present
the image quality improvement of proposed algorithm, two metrics of SNR and contrast in the image
domain [36] are introduced in the following discussion. The SNR is defined as

SNR = 10 log10


N1
∑

i=1
|yi|2/N1

N2
∑

j=1

∣∣ŷj
∣∣2/N2

 (34)

where yi represents the i-th prominent scatterer and ŷj denotes the j-th pixel of the surrounding region.
N1 and N2 denote the number of prominent scatterer pixels and noise pixels, respectively. A greater
SNR results in a better focused image. Another metric is image contrast. For a P × N SAR image (P is
the number of pixels in range, and N is the number in the azimuth), its contrast can be defined as

D = 10 log10

√√√√√√√
P
∑

p=1

N
∑

n=1

(∣∣zp,n
∣∣2 −mean

(∣∣zp,n
∣∣2))2

mean
(∣∣zp,n

∣∣2) (35)

where zp,n represents the (p-th, n-th) pixel in the SAR image; mean() denotes the mean value of the
signal. From Equation (35), the greater the contrast D is, the better the image quality well be.
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(1) Result of NBI Suppression: Figure 8a presents the SAR image with NBI, where the bright lines
overshadow the important features, such as the ships and fields. Figure 8b presents the SAR image
after frequency-domain notch filtering. Although the majority of interference energy in frequency bins
has been suppressed, the useful information, which is located in the same bins, is also removed clearly.
Due to significant portion loss of useful signal, the SNR of the imagery may degrade. Figure 8c shows
the imaging result after NBI suppression using TF filtering. Compared with Figure 8b, only a small
fractional of useful signal is lost and image contours have more clarity. However, it is clearly seen that
the targets are defocused. Figure 8d presents the SAR image after AF-CAF-IDA. It is observed that
the image is well focused and bright lines have been suppressed efficiently. In addition, the SNR and
contrast D for three interference suppression algorithms are calculated. In Table 3, AF-CAF-IDA is
with greater SNR and contrast than TF filter and notch filter methods, which not only suppresses the
NBI but also preserves the useful information as much as possible.
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(2) Result of WBI Suppression: Figure 9a shows the image with LFM-WBI, where most portion 
of the scene in the image is covered due to existence of LFM-WBI. Figure 9b,c presents the imaging 
result after frequency-domain notch filtering and TF filtering, respectively. Because the majority of 
useful signal is interfered and filtered, the image is contaminated by noise and we can only see 
blurred image contours. Figure 9d shows the imaging result after AF-CAF-IDA. A clear image with 

Figure 8. Imaging results of NBI suppression: (a) image of raw data; (b) image after frequency-domain
notched filtering; (c) image using the TF filtering; and (d) image using AF-CAF-IDA.

Table 3. Evaluation Metrics of Three Algorithms of NBI Suppression.

Algorithm Notch Filter TF Filter AF-CAF-IDA

SNR (dB) 27.45 32.38 33.15

Contrast (dB) 59.99 65.80 68.43

(2) Result of WBI Suppression: Figure 9a shows the image with LFM-WBI, where most portion of
the scene in the image is covered due to existence of LFM-WBI. Figure 9b,c presents the imaging result
after frequency-domain notch filtering and TF filtering, respectively. Because the majority of useful
signal is interfered and filtered, the image is contaminated by noise and we can only see blurred image
contours. Figure 9d shows the imaging result after AF-CAF-IDA. A clear image with village, mountain,
river and fields is presented. Furthermore, the results of SNR and contrast for these three interference
suppression algorithms are listed in Table 4, indicating the advantages of the proposed algorithm over
the others. To sum up, AF-CAF-IDA based interference algorithm can effectively suppress LFM-WBI
with the useful signal being kept well.

Table 4. Evaluation Metrics of Three Algorithms of LFM-WBI Suppression.

Algorithm Notch Filter TF Filter AF-CAF-IDA

SNR (dB) 16.57 19.24 25.36

Contrast (dB) 78.15 80.04 83.36
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5. Conclusions

In this paper, the Delay-Doppler distributions of time-varying SAR interferences (i.e., NBI and
LFM-WBI) are analyzed via AF and CAF for the first time. By making full use of the properties in
Delay-Doppler domain, a nonparametric interference suppression method based on the Delay-Doppler
iterative decomposition algorithm is proposed. This algorithm has three advantages: (1) Compared
with STFT, time-varying interference analysis in the Delay-Doppler domain has an excellent energy
concentration property. (2) Compared with WD, AF has a unique property that the auto-terms pass
through the origin of Delay-Doppler domain while cross-terms are away from it. Therefore, masking
in the AF can solve the cross-terms identifiability problem and are very suitable for interference
identification and extraction. (3) Since the matrix rearrangement and FFT are utilized, SSM from AF
and CAF is more accurate and faster than the traditional SSM from WD. Thanks to these advantages,
the proposed algorithm not only suppresses interference but also preserves the useful information as
much as possible. The performance (such as SDR, SNR and Contrast) analyses of the simulated data
and measured data demonstrate that the proposed algorithm outperforms the notch filtering method
and the TF filtering method.
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Appendix A

To demonstrate two properties of the AF and CAF domains, we take a chirp signal (useful signal)
contaminated by an LFM-WBI for example to discuss auto-terms and cross-terms of multi-component
signal in AF plane, defined by

xmix,n = Sn + IWBI,n = as exp
[

j
(

2π fsn + jπγsn2
)]

+ al exp
[

j
(

2π fln + jπγln2
)]

(A1)
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The SIAF of Equation (A1) can be written as follows:

Rxmix (n, m) = xmix,n+mx∗mix,n−m = Rs(n, m) + RWBI(n, m) + Rs,WBI(n, m)

= a2
s exp(j4π fsm + j4πγsnm) + a2

l exp(j4π flm + j4πγlnm)

+2asal exp(j2π( fs + fl)m + j2π(γs + γl)nm)

×Re
(
exp

(
j(φs − φl) + j2π( fs − fl)n + jπ(γs − γl)

(
n2 + m2))) (A2)

where Rs(n, m) and RWBI(n, m) represent the instantaneous autocorrelation of useful signal and
LFM-WBI, respectively; Rs,WBI(n, m) denotes the cross correlation between useful signal and LFM-WBI;
and Re() indicates the real part operator. Therefore, the AF of mixed signal can be obtained by

AFs,WBI(m, u) = 2
N/2−1

∑
n=−N/2

Rxmix (n, m)ej 2π
N n(2u)

= a2
s asinc(u + Nγsm) + a2

l asinc(u + Nγlm) + AFs,WBI(m, u)
= AFs(m, u) + AFWBI(m, u)︸ ︷︷ ︸

auto−terms

+ AFs,WBI(m, u)︸ ︷︷ ︸
cross−terms

(A3)

where asinc(k) = e±j2πk/Nsin(2πk)/sin(2πk/N), AFs(m, u) and AFWBI(m, u) represent the
auto-terms of useful signal and LFM-WBI, respectively, and AFs,WBI(m, u) represents the cross-terms.
According to Equation (A3), we can conclude that the auto-terms of multi-component LFM signals in
the AF plane have two properties: (Property 1) the auto-terms have line-like feature in the AF plane;
and (Property 2) the auto-terms pass through the origin of the AF plane while the cross-terms are away
from it.

The SICF of xmix,n and xmix,n+1 can be expressed as

Rxmix,n ,xmix,n+1(n, m) = xmix,n+mx∗mix,n+1−m = Rsn ,sn+1(n, m) + RWBIn ,WBIn+1(n, m) + Rsn ,WBIn+1(n, m) + Rsn+1,WBIn+1(n, m)

= a2
s exp(j4πγsnm− j2πγsn) exp(jϕ1) + a2

l exp(j4πγlnm− j2πγln) exp(jϕ2)

+asal exp(j2π( fs + fl)m + j2π(γs + γl)nm)[exp(jϕ3) + exp(jϕ4)]

(A4)

where Rsn ,sn+1(n, m) represents the instantaneous cross-correlation between sn and ; RWBIn ,WBIn+1(n, m),
Rsn ,WBIn+1(n, m), and Rsn+1,WBIn+1(n, m) are defined in the same way as ; and ϕ1, ϕ2, ϕ3, ϕ4 are given as

ϕ1 = 4π fsm + 2πγsm− 2π fs − πγs

ϕ2 = 4π flm + 2πγlm− 2π fl − πγl
ϕ3 = 2π( fs − fl)n + π(γs − γl)

(
n2 + m2)− 2πγl(n−m)− 2π fl − πγl

ϕ4 = 2π( fl − fs)n + π(γl − γs)
(
n2 + m2)− 2πγs(n−m)− 2π fs − πγs

(A5)

Thus, the CAF of xmix,n and xmix,n+1 can be expressed as

CAFxmix,n ,xmix,n+1(m, u) = 2
N/2−1

∑
n=−N/2

Rxmix,n ,xmix,n+1(n, m)ej 2π
N n(2u)

= a2
s asinc

[
u + Nγs

(
m− 1

2

)]
ejϕ1 + a2

l asinc
[
u + Nγl

(
m− 1

2

)]
ejϕ2

+CAFsn ,WBIn+1(m, u) + CAFsn+1,WBIn+1(m, u)
= CAFsn ,sn+1(m, u) + CAFWBIn ,WBIn+1(m, u)︸ ︷︷ ︸

auto−terms

+ CAFsn ,WBIn+1(m, u) + CAFsn+1,WBIn+1(m, u)︸ ︷︷ ︸
cross−terms

(A6)

where CAFsn ,sn+1(m, u) and CAFWBIn ,WBIn+1(m, u) represent the auto-terms of useful signal and
LFM-WBI, respectively; and CAFsn ,WBIn+1(m, u) and CAFsn+1,WBIn+1(m, u) are the cross-terms.
Comparing Equations (A3) and (A6), the auto-terms have line-like feature (Property 1), while they do
not pass through the origin of CAF plane. Fortunately, the chirp rate of LFM signal is usually within
[−1/N, 1/N] to avoid the Doppler aliasing, which implies that the distances from auto-terms to origin
are smaller than half of the Doppler bin. Thus, auto-terms in the CAF plane can be approximately
considered as passing through the origin (Property 2).
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