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Abstract: Remote estimation of flower number in oilseed rape under different nitrogen (N) treatments
is imperative in precision agriculture and field remote sensing, which can help to predict the yield of
oilseed rape. In this study, an unmanned aerial vehicle (UAV) equipped with Red Green Blue (RGB)
and multispectral cameras was used to acquire a series of field images at the flowering stage, and the
flower number was manually counted as a reference. Images of the rape field were first classified
using K-means method based on Commission Internationale de l’Éclairage (CIE) L*a*b* space, and the
result showed that classified flower coverage area (FCA) possessed a high correlation with the flower
number (r2 = 0.89). The relationships between ten commonly used vegetation indices (VIs) extracted
from UAV-based RGB and multispectral images and the flower number were investigated, and the
VIs of Normalized Green Red Difference Index (NGRDI), Red Green Ratio Index (RGRI) and Modified
Green Red Vegetation Index (MGRVI) exhibited the highest correlation to the flower number with
the absolute correlation coefficient (r) of 0.91. Random forest (RF) model was developed to predict
the flower number, and a good performance was achieved with all UAV variables (r2 = 0.93 and
RMSEP = 16.18), while the optimal subset regression (OSR) model was further proposed to simplify
the RF model, and a better result with r2 = 0.95 and RMSEP = 14.13 was obtained with the variable
combination of RGRI, normalized difference spectral index (NDSI (944, 758)) and FCA. Our findings
suggest that combining VIs and image classification from UAV-based RGB and multispectral images
possesses the potential of estimating flower number in oilseed rape.

Keywords: unmanned aerial vehicle (UAV); RGB and multispectral camera; flower number; oilseed
rape; vegetation indices; image classification

1. Introduction

Oilseed rape, which belongs to the Brassicaceae family, is one of the most important oil crops.
It is grown all around the world with the leading producers including European Union, Canada,
China, India and Australia [1,2]. The yield of oilseed rape largely depends on the number of flowers
at the peak-flowering stage that could turn into pods, and is also affected by the seed abortion [3,4].
From a breeding perspective, researchers are interested in breeding varieties not only with improved

Remote Sens. 2018, 10, 1484; doi:10.3390/rs10091484 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-6561-6808
https://orcid.org/0000-0001-6752-1757
http://www.mdpi.com/2072-4292/10/9/1484?type=check_update&version=1
http://dx.doi.org/10.3390/rs10091484
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2018, 10, 1484 2 of 18

yield and health, but also with a uniform flowering and ripening time [5,6]. Therefore, it is essential
to measure flower number in oilseed rape under different nitrogen (N) treatments. Traditionally,
the most commonly used method to assess flower number is by manually counting in the field, which
is time-consuming and labor-intensive for researchers to conduct field measurements in a large scale.
It is thus urgent to develop a fast, non-destructive, and reliable technique that can accurately count
flower number of oilseed rape in the field.

Advanced remote sensing has become a popular technique in acquiring crop information due to
its ability to collect multi-temporal images of crop growth in the field [7]. In general, there are three
commonly used remote sensing platforms, including satellite-based, ground-based and UAV-based
platforms. The ground-based platform is an alternative to collect crop growth-related data with
a higher spatial resolution and accuracy, but it is limited to small plots [8]. In addition, ground
platform could destroy the plants, especially the oilseed rape at the flowering stage. In terms of
satellite platforms, various studies have been reported to estimate the crop yield [9,10], chlorophyll
and N contents [11,12], leaf area index (LAI) [13] and vegetation fraction [14,15]. However, satellite
platforms are limited to their spatial resolutions, especially for the applications that require detailed
canopy structural information. Although recent development of satellite platforms such as Landsat,
SPOT5, and Quickbird has gradually improved the spatial resolution of images to 30 m, 10 m, and 3 m,
it is still difficult and expensive to frequently acquire growth information of small plots due to long
visiting cycle and cloud coverage [16]. Considering these restrictions, a more promising remote sensing
platform with a high operability and resolution is needed for crop growth monitoring.

The recent increase in availability of unmanned aerial vehicles (UAVs) has relieved the bottleneck
of satellite platform and ground-based platform. UAVs could conduct flight experiments frequently
where and when needed, which allow for observation of fine-scale spatial patterns to collect
multi-temporary images for crop monitoring [17]. The advantages of their low cost and high flexibility
make them popular for field studies [18], and a set of studies have been conducted to estimate
crop growth parameters using a UAV platform carried with various image sensors. Yu et al. [19]
utilized a UAV platform equipped with Red Green Blue (RGB) and near-infrared (NIR) sensors to
improve soybean yield estimation and predict plant maturity with the correlation coefficient (r) of
0.82. The thermal sensor was also used on the UAV platform to map plant water stress and its spatial
variability, showing that the adaptive crop water stress index (CWSI) was correlated to both stem
water potential and stomatal conductance with r2 of 0.72 and 0.82, respectively [20]. Duan et al. [21]
utilized a UAV-based hyperspectral sensor to estimate LAI for three crops with a root mean square
error (RMSE) of 0.62 m2m−2.

This brief review pointed out that various applications of UAV have been developed to acquire
growth information of field crops. In general, there are two main methods used to estimate crop
growth traits. A well-established method is to apply image classification to obtain growth status
such as plant density of wheat crops [22], vegetation coverage of weed [18] and lodging identification
of rice [23], which commonly referred to the high-resolution RGB images. Another possibility is to
calculate the vegetation indices (VIs) from UAV-based RGB and multispectral images to estimate the
growth status such as yield of wheat [24], biomass of maize and barley [7,25] and height of maize [7].
However, few studies combined the VIs and image classification to estimate crop growth status in
a field scale. Maimaitijiang et al. [26] proposed to fuse VIs and classified vegetation coverage to
estimate dry biomass, which outperformed single multispectral and thermal cameras. More recently,
Liu et al. [27] demonstrated that combination of spectral and texture features significantly increased
the rice lodging recognition accuracy. It is thus imperative to fuse VIs and image classification to assess
crop growth and improve the estimation accuracy.

Furthermore, only little attention was devoted to the estimation of flower number in oilseed rape
using a UAV dual-camera platform. Sulik and Long [28] found that a band ratio of green and blue light
derived from UAV-based multispectral aerial images was strongly related to the number of yellow
flowers (r2 = 0.87). Recently, Fang et al. [1] explored the potential of using canopy reflectance and VIs
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extracted from multispectral images to remotely estimate flower coverage in oilseed rape with the
RMSE lower than 6%. Furthermore, the transposition of the single camera to the combination of RGB
and multispectral cameras for the field observation could acquire more growth information, which
could contribute to estimate yellow flower number in the rape field.

Therefore, this research was aimed to explore the use of combining UAV-based VIs and image
classification for evaluating flower number of oilseed rape. The specific objectives were to: (1) compare
the image classification results of flower coverage area (FCA) with different methods; (2) analyze
the relationships between VIs and flower number, and (3) establish the models to estimate yellow
flower number, and compare the estimation performance of individual UAV variables with variable
importance estimations.

2. Materials and Methods

2.1. Field Experimental Design

The data used in this study was obtained from two field experiments within two years involving
different N treatments and cultivars, as described below.

Experiment 1 was conducted at the Agricultural Research Station (30◦18′26′ ′N, 120◦4′29′ ′E)
of Zhejiang University in Hangzhou, China during the oilseed rape growing season in 2016–2017.
The mean elevation is 6.4 m above sea level, and the mean annual temperature is 16 ◦C with the
coldest temperature in January and the hottest in July. The test field included 43 lines with the area of
24.4 m × 1.4 m and 0.3 m space between subplots (Figure 1a). After irregular planting areas laid out,
it finally totalled 109 sampling plots. Four different treatments of N fertilizer were applied among all
plots from N0 to N3 (0, 75, 150 and 225 kg/ha), and all subplots were treated with the same amount of
phosphorus (P) (60 kg/ha) and potassium (K) (150 kg/ha). N fertilizers were applied twice with 60%
in mid-December and 40% in mid-February, respectively, while phosphate and potash fertilizers were
applied as a one-time base fertilizer. The cultivars of oilseed rape are ZD630 for most of the subplots.
The other three cultivars (GY605, ZS758 and ZD622) were allocated to the zones with N1.

Experiment 2 was located at the Grain-production Functional Area of Anhua Town, Zhuji City,
Zhejiang Province in China (29◦31′5.35′ ′N, 120◦6′6.12′ ′E), as shown in Figure 1b. The cultivar of
oilseed rape was ZD630, which was treated with different N treatments, P treatments and K treatments.
It totally included 100 subplots with 8.5 m× 4.5 m of each and 1 m space between neighboring subplots.
Field subplots were treated with five levels of N fertilizers (0, 75, 150, 225 and 300 kg N/ha), which
were applied in the form of urea with the rate of 50%, 20% and 30% at the stages of early November,
mid-December in 2017, and early March in 2018, respectively. In addition, three levels of P fertilizers
(30, 60 and 90 kg N/ha) and three levels of K fertilizers (75, 150 and 225 kg N/ha) were applied at the
preplanting stage.

2.2. Data Collection

UAV remote sensing images were acquired by an octorotor UAV equipped with a RGB
camera (NEX-7 camera, Sony, Tokyo, Japan) with a spatial resolution of 6000 × 4000 pixels and
a 25-band multispectral camera (CMV2K; IMEC, Inc., Leuven, Belgium) with the spatial resolution
of 409 × 216 pixels and the spectral region of 600–1000 nm. Flight campaigns were conducted from
2:00 p.m. to 4:00 p.m. on 21 March, 29 March, 12 April 2017 and 28 March 2018 with the flight attitude
and the flight speed of 25 m and 2.5 m/s, respectively. The weather was sunny without much wind,
so image distortion affected by the weather condition could be eliminated. In order to avoid abnormal
remote sensing images, the camera exposure time was adjusted based on the brightness measured with
an illuminometer (MQ-200, Apogee Instruments, Logan, UT, USA). To achieve a good performance
of image stitching, the forward and side overlaps were 75% and 60%, respectively. After the image
acquisition, the number of yellow flowers was manually counted based on the division of the different
plots. The principle of counting excluded the overlapping and occlusion of flowers. Finally, the number
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of oilseed rape flowers at every subplot was recorded with 109 and 100 sampling spots in 2017 and
2018, respectively, with a total data set of 209.Remote Sens. 2018, 8, x FOR PEER REVIEW  4 of 18 
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Figure 1. The general locations of two experimental sites and the overview of the images obtained
by unmanned aerial vehicle (UAV) remote sensing platform for the oilseed rape fields at Zhejiang
University on 21 March 2017 (a) and at Anhua city, Zhuji on 28 March 2018 (b), respectively.

2.3. Image Classification

Image classification is one of the critical methods in remote sensing since images obtained
from remote sensing include different background information. The main method in our study was
an unsupervised classification method of K-means, and it included a series of different processing
techniques as shown in Figure 2. The main process of image classification was implemented in Matlab
2011a (The Mathworks, Inc., Natick, MA, USA).

2.3.1. Image Preprocessing and Color Space Conversion

Image mosaicking was first conducted using Agisoft PhotoScan Professional Software (Agisoft
LLC, St. Petersburg, Russia). Geometric correction was also performed to eliminate the image
distortion using affine transformation and nearest neighbor algorithm functions in Matlab.

After acquiring an image of each subplot, the key step was to convert RGB space to the
International Commission on Illumination (Commission Internationale de l’Éclairage, CIE) L*a*b*
space. This color space was developed by the CIE based on the human perception of color, and it could
be used in the classification of images captured from different devices without the negative effects of
differing color representations [29]. In particular, converting RGB space to L*a*b* space can reduce the
influence of unsuitable luminescence information such as excessive brightness. In the CIE L*a*b* space,
the L* component represents the brightness of the pixel from pure black to pure white, a* component
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is related to the values from red to green, and b* component represents the range from yellow to
blue [30,31]. The RGB space can be converted to the L*a*b* space using the following equations: X

Y
Z

 =

 0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

 ∗
 R

255
G

255
B

255

, (1)

{
L = 116 ∗Y

1
3 f or Y > 0.008856

L = 903.3 ∗Y f or Y ≤ 0.008856
, (2)

a = 500 ∗ ( f (X)− f (Y)), (3)

b = 200 ∗ ( f (Y)− f (Z)), (4)

f (t) =

{
t1/3, t > 0.008856

7.787 ∗ t + 16/116, t ≤ 0.008856
, (5)

where L, a, and b represent the L*, a* and b* channels of the CIE L*a*b* space. X, Y, and Z represent the
X*, Y* and Z* channels of the CIE X*Y*Z* space. R, G and B represent the red, green and blue channels
of the original RGB image. The t value belongs to X, Y, and Z.
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2.3.2. K-Means Clustering and FCA Calculation

Image data in the L*a*b* space was then used to build a classifier with the K-means clustering
method. The number of cluster K was determined based on the object classes of rape field, and
the procedure included the following steps [32]: (1) choose K as the initial cluster center (centroid);
(2) compute point-to-cluster-centroid distances of all observations to each centroid using the Euclidean
Distance (ED); (3) assign each observation to the cluster with the closest centroid; (4) compute the
average of the observations in each cluster to obtain K new centroid locations based on the sum of the
squared errors (SSE); and (5) repeat steps 2–4 until cluster assignments do not change, or reach the
maximum number of iterations. Based on the visual observation, the image mainly included flower,
leaves, soil and black shadow. Therefore, the number of the initial cluster centers of K was set as 4,
and the result of K-means classification was a pseudo color image with four labels of 1, 2, 3, and 4.
At the flowering stage of the oilseed rape, the flower pixels occupied the most of the image, indicating
that the most number of labels represented the flower class. Finally, all labels related to the flower
class at each subplot were computed as FCA. In addition, the ED and SSE were calculated as the
following equations:

ED =

√
n

∑
i=1

(C− xi)
2, (6)

SSE =
K

∑
i=1

EDK, (7)

where C is the cluster center and xi is the data point of this cluster of C. K and n represent the number
of cluster centers and the number of data points in the cluster of C, respectively.

2.3.3. Accuracy Estimation

From our knowledge, different classification methods could lead to different results, and there
existed large differences. Therefore, it was crucial to compare the classification result of K-means
with other classification methods. In this study, six other methods including RGB-based threshold,
RGB-based back propagation neural network (BPNN), RGB-based support vector machine (SVM),
RGB-based K-means, HSI-based K-means, and HSV-based K-means were proposed to classify yellow
flowers, and it could further verify the classification performance of the K-means clustering algorithm
by CIE L*a*b* space. There, classified FCA was then correlated to the flower number with the
correlation coefficient of r2.

2.4. Vegetation Indices Calculation

The DN values of images were first extracted with a maximum rectangle around sampling subplot,
which were then converted into the reflectance values to calculate the VIs using the empirical regression
equation. The reflectance correction was conducted using five reflectance targets with the known
reflectance of 5%, 15%, 31%, 40% and 46%, which were measured by a ground-based spectrometer
(QE65000, Ocean Optics, Dunedin, FL, USA). A large number of VIs have been employed to estimate
crop growth status, and ten commonly used VIs were chosen to estimate flower number in this study,
and they were calculated from UAV-based RGB and multispectral images using the equations shown
in Table 1. Different from the VIs extracted from the RGB images, the simple ratio index (SRI) and the
normalized difference spectral index (NDSI) extracted from multispectral images requires determining
the optimal wavelength combinations from the wavelength region of 600–1000 nm using the contour
maps as shown in Figure 3.
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Table 1. Vegetation indices (VIs) derived from RGB and multispectral images in this study (R, G and B
are related to the DN value or reflectance of red, green, and blue bands, respectively. Rλ1 represents
the reflectance of a variable band in the spectral range of 600–1000 nm).

Vegetation Indices Formula References

VIs Calculated from RGB Images

Visible-band Difference Vegetation Index (VDVI) (2*G − R − B)/(2*G + R + B) [33]
Visible Atmospherically Resistant Index (VARI) (G − R)/(G + R − B) [34]

Normalized Green-Red Difference Index (NGRDI) (G − R)/(G + R) [34]
Red-Green Ratio Index (RGRI) R/G [35]

Modified Green Red Vegetation Index (MGRVI) (G2 − R2)/(G2 + R2) [25]
Excess Green Index (ExG) 2*G − R − B [36]

Color Index of Vegetation (CIVE) 0.441*R − 0.881*G + 0.385*B +
18.787 [37]

Vegetativen (VEG) G/(Ra*B(1 − a)) a = 0.667 [38]

VIs Calculated from Multispectral Images

Simple Ratio Index (SRI) Rλ1/Rλ2 [39]
Normalized Difference Spectral Index (NDSI) (Rλ1 − Rλ2)/(Rλ1 + Rλ2) [40]

Visible-band Difference Vegetation Index (VDVI) is designed to extract green vegetation. Visible
Atmospherically Resistant Index (VARI) and Normalized Green-Red Difference Index (NGRDI) are
usually used to estimate vegetation fraction (VF). VARI was found to be less sensitive to atmospheric
effects allowing a good estimation of VF [34]. NGRDI and Modified Green Red Vegetation Index
(MGRVI) are considered as a phenology indicator, and have the potential for biomass estimation.
Red-Green Ratio Index (RGRI) is useful to analyze the angular sensitivity of vegetation indices, which
could deal with the complex canopy structure. Excess Green Index (ExG), Color Index of Vegetation
(CIVE) and Vegetativen (VEG) are designed to identify the green vegetation, and they were sensitive to
the canopy color without the influence of shaded sunlit conditions [36–38]. SRI and NDSI are mainly
related to crop physiological traits. Although previous studies have reported the capabilities of these
VIs for different applications, it is still challengeable to select the optimal VIs due to the different
canopy structures of plants and variable illumination conditions during UAV campaigns. Therefore, it
is worthy to investigate the potential of these commonly used VIs for estimating the flower number of
oilseed rape.
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2.5. Model Selection and Validation

Before developing prediction models, correlation analysis between VIs and flower number was
first performed to pre-check the relationship among different variables. The random forest (RF) model
that can handle nonlinear, overfitting problems and high dimensional dataset was then developed
for estimating flower number [41,42]. It contained a set of regression tress (500 in this study), and
each regression tree was constructed with randomly selected samples using a bootstrapping method.
The remaining data (out-of-bag) was then used to estimate the variable importance based on the error
from out-of-bag using the following equation:

importance (x) =
n

∑
i=1

OOBerror2−OOBerror1
n

, (8)

where OOBerror1 and OOBerror2 represent the errors of out of bag and the adding noise of variable
x with one regression tree, respectively, and n represents the number of regression trees. During the
training process, the RF model randomly selected partial variables to construct a regression tree to
train the model and calculated the OOBerror of each variable. Finally, all of the regression trees were
merged to reduce the prediction error with ranking variable importance based on the OOBerror.

In addition, the commonly used stepwise linear regression (SWL) model was proposed to examine
the linear relationship between variables, and optimal subset regression (OSR) was used to select the
variables in the SWL model. Relative to RF, the OSR model fully explores the explaining power from
the combination of different UAV variables, and can order all possible models based on the value of r2

and Bayesian information criterion (BIC) [43]. The BIC was calculated as the following equation:

BIC = −2 ∗ ln(L) + k ∗ ln(n), (9)

where L, k and n are the maximum likelihood of the model, variable number, and sample number,
respectively. The estimation model with the highest r2 and the lowest BIC value was considered as the
optimal model. In this study, we used two classes of features, including FCA from image classification
results, and the spectral VIs calculated from UAV images, while the combination represented the
fusion of FCA and spectral VIs features. In the model development, the dataset was divided into
two parts: the train dataset (2/3) and the test dataset (1/3) using the Kennard–Stone (KS) algorithm.
The r2 value and the root mean square error of prediction (RMSEP) were used to quantify the model
performance. The r2 and RMSEP were calculated as the following equations:

r2 = 1− ∑n
1 (yi − ŷi)

2

∑n
1 (yi − yi)

2 , (10)

RMSEP =

√
∑n

1 (yi − ŷi)
2

n
, (11)

where yi, ŷi and yi represent the measured, predicted and mean measured flower number for the sample
i. n is the sample number. All the data analysis was implemented in Matlab 2011a (The Mathworks,
Inc., Natick, MA, USA).

3. Results

3.1. Image Classification

The image classification of flowers in the rape field was conducted by the K-means clustering
algorithm based on CIE L*a*b* space, and the classified FCA was then calculated. A high correlation
between the FCA and ground-counted flower number was achieved with the r2 of 0.89 as presented
in Figure 4, indicating that the classified FCA had a good linear relationship with the actual number
of yellow flowers. The classified RGB images of rape fields on 28 March 2018 were also shown in
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Figure 5. It provided a straightforward visualization of the change of flower coverage at each subplot.
Variations in different N levels were also observed.

High correlations between the classified pixels of yellow flowers and the measured yellow
flower number were observed with the r2 of 0.70–0.82, which indicated that FCA based on the image
classification had a good linear relationship with the measured flower number (Figure 6). In addition,
the BPNN method achieved a better classification result than that of the RGB-based threshold method.
The SVM method is also a widely used technique for image classification [1,44], and provided a good
result with the r2 of 0.72. Furthermore, the highest correlation between the classified pixels of yellow
flowers and the measured yellow flower number was obtained by K-means clustering based on HSV
and HSI space with the r2 of 0.82, while their performances were not better than that of K-means
algorithm based on CIE L*a*b* space.Remote Sens. 2018, 8, x FOR PEER REVIEW  9 of 18 
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Figure 5. An example of image classification result of rape fields at Zhuji on 28 March 2018. (a) The
original image of oilseed rape field and (b) the result of image classification using K-means method
based on Commission Internationale de l’Éclairage (CIE) L*a*b* space were presented.
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Figure 6. The relationships between measured flower number and classified flower coverage area
(FCA) by different classification methods. BPNN and SVM represent back propagation neural network
and support vector machine, respectively.

3.2. Correlations for VIs and Flower Number

The result of correlation analysis with p < 0.05 showed that the absolute value of r varied between
0.61 and 0.91 (Figure 7), which indicated that different VIs might lead to large differences on estimating
flower number of oilseed rape. It was found that the optimal wavelength combinations extracted
from multispectral images to estimate flower number were NDSI (944, 758) and SRI (944, 758). NGRDI,
RGRI and MGRVI showed the highest correlation with flower number followed by the VARI, with the
absolute value of r of 0.91, 0.91, 0.91 and 0.90, respectively. Different from RGRI, NGRDI and MGRVI
exhibited a negative correlation to flower number. Compared with different image sensors, the VIs
derived from multispectral images possessed a relatively low r value of 0.85. In addition, some high
correlations were also observed among UAV variables such as NGRDI, RGRI and MGRVI, which
suggested that there existed a multicollinearity among these variables.
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3.3. Model Development and Comparision

3.3.1. Model Development with Individual UAV Variables

To compare the estimation performance of individual UAV variables (VIs and FCA), the RF model
with individual variables for estimating flower number was developed, and the results are shown in
Figure 8. It was found that individual UAV variables could also achieve reasonable results of assessing
the flower number with r2 ranging from 0.65 to 0.88. Among all UAV variables, the FCA exhibited the
best result to estimate flower number with r2 and RMSEP of 0.88 and 18.61, respectively. Compared
with different image sensors, the VIs derived from RGB images obtained a relatively good estimation
results, and VARI presented the best performance with r2 = 0.88 and RMSEP = 19.78, followed by RGRI
and NGRDI.
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Figure 8. Estimation of flower number developed by random forest (RF) model using individual
UAV variables including vegetation indices (VIs) and flower coverage area (FCA). The coefficient of
determination (r2) and the prediction of root mean square error (RMSEP) were presented to estimate
the model performance.

3.3.2. Model Development and Comparison with All UAV Variables

To investigate the feasibility of fusion of VIs and image classification result (FCA) to estimate
flower number, the performance of RF model developed with the combination of all UAV variables
was evaluated. Compared to the result shown in Figure 8, the established model (Figure 9a) achieved a
better performance for estimating the flower number with r2 and RMSEP of 0.93 and 16.18, respectively.
This indicated that fusion of VIs and image classification could improve the estimation of flower
number. In addition, the variable importance in the RF model is presented in Figure 9b. Among
all UAV variables, the FCA possessed the highest importance in the model followed by the RGRI
and VARI, which was consistent with the performance of individual UAV variables as shown in
Figure 8. In addition, the VIs derived from multispectral images were also valuable to improve the
model performance.
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Figure 9. Estimation of flower number developed by random forest (RF) model with all UAV variables
extracted from Red Green Blue (RGB) and multispectral images (a). Dashed red line is the 1:1 line.
The right figure shows the variable importance estimation of the RF model (b). The r2 and RMSEP
represent the coefficient of determination and the prediction of root mean square error, respectively.

To further simply the prediction model, the OSR model with the forward and backward selections
with a branch-and-bound algorithm was employed to select the optimal variable combination.
As shown in Figure 10, a subset of UAV variables with different adjusted r2 and BIC values was
obtained, and the highest adjusted r2 and the lowest BIC value were 0.9 and −300, respectively.
The results showed that FCA and NDSI (944, 758) contributed significantly to the estimation model,
followed by the RGRI. The final selected variable combinations with the highest r2 and the lowest
RMSEP were the group of VDVI, NGRDI, VEG, SRI (944, 758), NDSI (944, 758) and FCA, and the group of
RGRI, NDSI (944, 758) and FCA. Finally, the model with fewer variables was determined as the optimal
model, and the estimation result was presented in Figure 10c. It was found that OSR model with the
variable combination of RGRI, NDSI (944, 758) and FCA exhibited the better result than the RF model
(r2 = 0.95 and RMSEP = 14.31). The results confirmed that OSR model with fewer variables achieved
a comparable or better result compared with the RF model, and the value of RMSEP from the OSR
model was reduced by 12.67%.
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(Adj r2) (b) for the estimation of flower number. The result of the optimal model was also shown with
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4. Discussion

This study has demonstrated the feasibility of UAV-based RGB and multispectral images data to
estimate flower number in oilseed rape grown in two different experimental fields. The potential of
fusing VIs and image classification to improve the estimation of flower number was also confirmed.

4.1. Applicability of the Method

In agricultural remote sensing, UAVs have been widely employed to capture images to monitor
crop growth status using different data analysis methods, e.g., image classification and spectral
VIs [18,22,45]. Although reasonable estimation result by image classification can be achieved,
its accuracy was easily influenced by the soil, weeds and other field backgrounds. Moreover, the
limited spatial resolution of images could also influence the performance on extracting detailed texture
features, such as flower counting. Compared to image classification, the spectral VIs are mainly
constructed by the spectral reflectance data at different wavelengths, which provide more information
related to the soil background and the crop growth status [46]. However, some NIR VIs could reach
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a saturation level after leaf area index or biomass exceeds a certain value [47], which would reduce
the accuracy of the assessment. In addition, the multispectral images with a lower resolution were
constrained on the prediction of crop phenotypic features. Although some studies have demonstrated
that spectral VIs possessed the capacity to estimate phenotypic features such as plant height, they were
only statistically significant [7,25]. In addition, as for different crop cultivars with different canopy
color, the applications of spectral VIs were limited. Furthermore, some studies began to combine
phenotypic features and spectral VIs to evaluate various crop traits [26,27]. This indicated that fusion
of phenotypic features and spectral VIs could improve the estimations of growth status, which was
confirmed by the results shown in Figures 9 and 10.

4.2. Importance of Variable Rankings

Variable importance ranking was crucial for variable selection and model simplification. From
Figure 9b, the results showed that FCA (0.89), RGRI (0.72), VARI (0.60) and NDSI (944, 758) (0.59) played
a dominant role in the estimation of flower number in oilseed rape. This also indicated that the
prediction of flower number was highly sensitive to the FCA. It is thus imperative to employ an
image classification method to measure flower number. The use of VIs such as RGRI, VARI and
NDSI (944, 758) for estimating flower number also acquired satisfactory results, which was consistent
with the results shown in Figure 8. From our knowledge, the VIs calculated from RGB images mainly
reflected the changes of canopy greenness [48,49], and the multispectral VIs were closely related to
crop physiological characteristics [26,50]. Moreover, excessive VIs are prone to cause multi-collinearity
and over-fitting problems. Therefore, it is necessary to select the optimal combination of VIs. In this
study, two methods (RF and OSR) were introduced to select variables (Figures 9 and 10), and similar
results were obtained. Finally, the variables of RGRI, NDSI (944, 758) and FCA were determined as the
optimal combination to evaluate flower number, and the estimation result was improved with the
estimation error of RMSEP reduced by 12.67%. This suggested that ranking variable importance can
improve the prediction accuracy and simplify the model.

4.3. The Implications and Limitations in This Study

A great advantage of this study was that we demonstrated the reliability of using a commercial
RGB camera carried on a UAV to obtain estimates of flower number in oilseed rape. This allows a
significant reduction of the camera equipment cost when compared with multispectral cameras [51].
Moreover, RGB images with a high spatial resolution could give an intuitive view on the dynamics of
field crop growing, which has been reported in previous studies [24,48,52]. As shown in Figure 11,
it clearly showed that the yellow flower number changed from the pre-flowering period to the
full-flowering period, also called early pod period. Variations in different varieties and different
N levels were also observed. Based on the dynamical changes of flower number classified from
UAV-based RGB images, it was determined that the period of flowering and the changes of flower
coverage for different cultivars and N treatment were different, so it is beneficial to predict the
yield by estimating the flower number. Overall, UAV-based RGB images are promising for field
phenotypic research.

However, due to the limited wavebands in RGB images, few studies tried to utilize UAV-based
RGB camera to estimate growth traits in oilseed rape. The main reason is that the information of
RGB images is very limited, which cannot reflect more physiological information. In fact, a band
ratio of green and blue light was strongly related to the number of yellow flowers per unit area [28],
which pointed out that the floral contribution to the reflectance is manifest most strongly in the green
waveband. Moreover, Yellow rape petal coloration is due to carotenoid absorption at ~450 nm [53],
and reflectance at 550 nm was also found best suited for flower coverage estimation with the r2

over 0.6 [1]. We could conclude that UAV-based RGB images with visible wavebands possessed the
capacity of assessing flower number in oilseed rape, which was consistent with the results shown in
Figure 8. Compared with RGB camera, more diverse spectral characteristics can be obtained when
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a multispectral camera loaded on the UAV system, which could perform better in biochemical traits
estimation due to the contribution of NIR spectral information [26]. However, the fact is that flower
canopy is prone to more reflections and less absorption between 500 nm and 700 nm without little
impact on the red edge or NIR [54]. This is the key limitation on the application of multispectral
VIs to estimate flower number, but multispectral VIs were still critical for the assessment of flower
number. From Figure 8, it could be found that the VIs from multispectral images also exhibited a good
performance of estimating flower number. Further combination of RGB and multispectral images data
demonstrated that image data fusion could improve the estimation of flower number (Figure 10c),
and it could be also extended to monitor other crop growth-related traits in the field. Furthermore,
data fusion of multiple sensors is critical for UAV applications, as it allows a significant extension of
the range of sensors and platforms available from these systems.
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results of image classification by the K -means algorithm based on Commission Internationale de
l’Éclairage (CIE) L*a*b* space. 21 March 2017 (a,d); 29 March 2017 (b,e); 12 April 2017(c,f).

5. Conclusions

We developed a UAV-based dual-camera platform that collected a series of field images with
high resolution on the flowering stage in oilseed rape and compared the estimation models based
on VIs and image classification on flower number. The results showed that classified FCA using
K-means clustering method based on CIE L*a*b* space was closely related to flower number (r2 = 0.89).
The highest correlations to flower number conducted by the VIs from RGB and multispectral images
were 0.91 and 0.85, respectively. This study also demonstrated that combining VIs and image
classification from UAV-based RGB and multispectral images could improve the estimation of flower
number. Future studies should be taken to evaluate this method for multiple year dataset, multiple
experimental fields and multiple cultivars to improve the robustness and applicability of the predictive
model. Furthermore, combining UAV-based RGB and multispectral cameras will be a promising
tool for estimate flower number, which would provide new insights to the field high-throughput
phenotypic research.
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