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Abstract: Terrestrial net primary productivity (NPP) plays an essential role in the global carbon
cycle as well as for climate change. However, in the past three decades, terrestrial ecosystems across
mainland China suffered from frequent drought and, to date, the adverse impacts on NPP remain
uncertain. This study explored the spatiotemporal features of NPP and discussed the influences
of drought on NPP across mainland China from 1982 to 2015 using the Carnegie Ames Stanford
Application (CASA) model and the standardized precipitation evapotranspiration index (SPEI).
The obtained results indicate that: (1) The total annual NPP across mainland China showed an
non-significantly increasing trend from 1982 to 2015, with annual increase of 0.025 Pg C; the spring
NPP exhibited a significant increasing trend (0.031 Pg C year−1, p < 0.05) while the summer NPP
showed a higher decreasing trend (0.019 Pg C year−1). (2) Most areas of mainland China were
spatially dominated by a positive correlation between annual NPP and SPEI and a significant positive
correlation was mainly observed for Northern China; specific to the nine sub-regions, annual NPP
and SPEI shared similar temporal patterns with a significant positive relation in Northeastern China,
Huang-Huai-Hai, Inner Mongolia, and the Gan-Xin Region. (3) During the five typical drought
events, more than 23% areas of mainland China experienced drought ravage; the drought events
generally caused about 30% of the NPP reduction in most of the sub-regions while the NPP in the
Qinghai-Tibet Plateau Region generally decreased by about 10%.
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1. Introduction

With their vast land area and diverse ecosystems, global terrestrial ecosystems are functioning
as large biological carbon sequestration bodies that partly offset fossil fuel emissions [1,2]. However,
due to drought disturbances, terrestrial ecosystems contribute less to the carbon sink than previously
assumed because terrestrial carbon sinks are weakening [3,4]. Even worse, the natural ecosystem
affected by severe drought might change from a carbon sink into a carbon source [5–7]. In this case,
understanding the effects of drought on ecosystems may provide a new perspective about carbon
dynamics and, thus, help to develop sustainable ecosystems for humans. Terrestrial net primary
productivity (NPP) is an indicator for the accumulation of atmospheric CO2 in terrestrial ecosystems
and plays an essential role for the global carbon cycle as well as for climate change [8–10]. This index
has been suggested as an integrative measure of ecosystem function, and it is a key variable for
evaluating the effects of droughts on ecosystem conditions [11,12]. The exploration of the NPP
response to drought disturbances presents significance for the understanding of the effects of climate
change on regional/global carbon cycling.

Drought, with its long lasting and large acreage characteristics, is regarded as one of the most
complex disturbances that induce profound impacts for ecosystem productivity [13]. The occurrence
of frequent and severe drought interferes with numerous biochemical and physiological processes of
ecosystems, including photosynthesis, respiration, and both nitrogen and protein metabolisms [14].
Long-term dry conditions also indirectly influence ecosystem productivity by increasing pest
and disease infestations [3,4] and by triggering forest fires and tree mortality [15]. Additionally,
frequent droughts that hit productive areas have caused abnormally high atmospheric CO2 growth
rates [16]. Given the nonlinear connection between the variation of NPP and drought, for instance,
a short-term water shortage in ecosystems may cause NPP losses; even worse, prolonged and severe
drought can lead to increasingly high NPP losses due to the cumulatively negative impacts caused
by long term water deficit [17,18]. Thus, the effects of drought on NPP have drawn a great deal of
attention during recent years. On a global scale, studies have been conducted to evaluate drought
effects on the terrestrial ecosystem productivity and they concluded that the occurrence of drought
have decreased the global NPP [1,19,20]. For instance, Peng et al. [20] reported that 37% of the global
decreased NPP was caused by drought during recent decades. Regionally, studies have also confirmed
that recent severe droughts also led to a notable reduction of regional plant productivity [5,14,21–26].
For instance, about 30% reduction in gross primary productivity was detected during the widespread
drought in Europe in 2003 [5]; during the 2009–2010 drought in the Amazon region, the NPP was
observed an average decrease of 7% [26]; and the 2010 spring drought in southwest China decreased
the NPP by 46 Tg C [14]. Generally, these discoveries provide references for regional or global carbon
emission reduction, carbon exchange, as well as carbon management.

Mainland China has a vast land area with an abundant number of ecosystems and climates,
providing a large potential for biological carbon sinks. The Chinese terrestrial ecosystem has acted as a
sink for about 30% of the continental fossil carbon emissions every year, and thus undoubtedly plays a
central role in dominating the regional or even global carbon budget [27,28]. It has been confirmed that
the amount of CO2 absorbed by terrestrial ecosystem greatly depends on water availability in mainland
China [29]. However, due to the monsoon system interacting with the complicated geographical
topography and climatic variation, mainland China has suffered from a mass of severe and frequent
drought events in the past several decades [30]. For example, aridity over North China has increased
substantially, and drought affected areas and caused losses over these areas have greatly increased
during the past 30 years [31]; some southern humid regions even experienced extreme droughts
since the 2000s; for example, the winter–spring drought of southwest China during 2009–2010 and
the spring–summer drought across the mid and lower reaches of the Yangtze River in 2011 caused
immeasurable loss for agricultural production [32]. Under such circumstances, the impact of increasing
droughts on China’s regional and national terrestrial carbon budgets has received increasing public
attention. For example, Zhang et al. [14] focused on the effect of the 2010 spring drought on NPP
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in Southwest China; Sun et al. [33] investigated the NPP variation during the drought in Northeast
China from 1999 to 2013; and Pei et al. [7] explored the relationship between NPP and drought for the
whole of China from 2001 to 2010. Generally, these studies contributed to improve an insight into the
variation of terrestrial ecosystem caused by drought disturbance, and consequentially provide more
information on the potential biosphere feedback to drought risks. However, most of these studies
concentrated on a specific/local region or used a short-term period. Studies that concerned the entire
mainland of China with a long-term period are relatively rare; therefore, we have not been able to
obtain a recent overview of the response of NPP to drought across mainland China to date. As is
known, several severe and prolonged droughts have affected China during the 1980s and 1990s [27];
however, the investigated periods in most current studies excluded this period, which is not helping
our understanding of drought induced NPP variation. Additionally, as droughts over East Asia are
projected to become more frequent and more severe under climate change scenarios [5,7,30], the future
response of NPP to drought of mainland China would be a rather intricate topic. Therefore, we believe
that the exploration of the relationship between NPP and drought of the past decades could provide
central clues for the future research of NPP variation.

For the measurement index of drought, previous studies generally used a simple drought index
(e.g., the standardized precipitation index, SPI), which only considers precipitation to assess the
effect of drought on NPP [7]. In fact, drought conditions are strongly related to other meteorological
factors, such as temperature and evaporation [34], and these two climatic factors in turn also impact
the variability of NPP [28]. This means that using a simple drought index (e.g., the SPI) cannot
fully reflect the influence of drought on NPP. Therefore, a much more comprehensive drought index,
such as the standardized precipitation evapotranspiration index (SPEI), should be utilized under
changing climate. As an improved drought index of SPI, SPEI includes multiple meteorological
factors (e.g., temperature, wind speed, relative humidity, and solar radiation) that are used to calculate
potential evapotranspiration; therefore, SPEI is regarded as a more meaningful index to assess the
impact of drought on vegetation productivity [19,35,36].

Accordingly, the primary objectives of this study were: (1) to systematically estimate the
spatial-temporal change of NPP from 1982 to 2015; (2) to investigate the relationship between NPP
and drought using the SPEI index; and (3) to quantify the variation of NPP during drought events.
This research provides an overview understanding of the impact of climatic disturbance on terrestrial
ecosystems of mainland China.

2. Data and Method

2.1. Method

2.1.1. Carnegie Ames Stanford Application (CASA) Model

The CASA model was applied to assess the NPP in China from 1982 to 2015. As one of the
satellite-based photosynthetic utilization models, this model has been widely employed to evaluate the
global and regional NPP due to its convenience of use and quick calculation [7,37,38]. In this model,
the NPP is computed as the product of the amount of photosynthetic active radiation absorbed by
green vegetation (APAR, MJ m−2) and the light use efficiency (ε, g C MJ−1) that converts the APAR
into plant biomass increments with which the radiation is converted to plant biomass increment [8].
The process of calculation of NPP was described as follows:

NPP(x, t) = APAR× ε(x, t) (1)
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where NPP(x, t) represents the net primary productivity at a grid cell (x) in the month t; ε(x, t)
represents the light use efficiency of the vegetation; APAR represents the amount of absorbed
photosynthetic active radiation which can be computed as follows:

APAR = FPAR × S× 0.5 (2)

where S represents the incoming shortwave radiation (MJ m−2); FPAR represents the fraction of
photosynthetic active radiation absorbed by vegetation; the constant of 0.5 denotes the ratio of incident
photosynthetically active radiation to solar radiation. FPAR can be expressed as:

SPAP = min
[

SR(x, t)− SRmin
SRmax − SRmin

, 0.95
]

(3)

SR =
[1 + NDVI(x, t)]
[1− NDVI(x, t)]

(4)

where SRmin refers to the factor SR for unvegetated land areas, and SRmax approximates the values of
SR when all downwelling solar radiation is intercepted. The ε can be calculated as:

ε(x, t) = εmax × T1(x, t)× T2(x, t)×W(x, t) (5)

where T1 and T2 account for the effect of temperature stress, W accounts for the effects of water stress,
and εmax is the maximum possible efficiency and has been determined for Chinese ecosystem in the
researches of Zhu et al. [39]. T1, T2, and W are calculated as:

T1(x, t) = 0.8 + 0.02× Topt(x)− 0.005× Topt(x)× Topt(x) (6)

T2(x, t) =
1.1814{

1+e[0.2(Topt(x)−10−T(x,t))]
}

1+e[0.3(−Topt(x)−10+T(x,t))]

(7)

W(x, t) = 0.5 +
0.5EET(x, t)

PET(x, t)
(8)

where Topt(x) is defined as the air temperature in the month when the NDVI researches its
maximum for the year. EET (mm) refers to actual evapotranspiration and is derived from actual
evapotranspiration model, and PET (mm) refers to the potential evapotranspiration and is calculated
with the method of the FAO–Penman–Monteith equation (FAO P-M) [6]. EET is calculated as:

EET(x, t) =
P× Rn(P2 + R2

n + P× Rn)

(P + Rn)× (P2 + R2
n)

(9)

where P refers to the precipitation (mm) at a grid cell (x) in the month t; and Rn is the net radiation at
the crop surface (MJm−2day−1) at a grid cell (x) in the month t.

The FAO P-M method for calculating monthly PET may be expressed as:

PET(x, t) =
0.408∆(Rn − G) + γ 900

Ta+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(10)

where PET is the reference evapotranspiration (mm day−1); Rn is the net radiation at the crop surface
(MJ m−2 day−1); G is the soil heat flux density (MJ m−2 day−1); Ta is the mean daily air temperature at
2 m height (◦C); u2 is the wind speed at 2 m height (ms−1); es is the saturation vapor pressure (kPa);
ea is the actual vapor pressure (kPa); es − ea is the saturation vapor pressure deficit (kPa); ∆ is the
slope of the vapor pressure (kPa ◦C−1); and γ is the psychrometric constant (kPa ◦C−1). The reference
surface is defined as a hypothetical reference crop with height of 0.12 m, a fixed surface resistance
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of 70 sm−1 and an albedo of 0.23. Solar radiation (Rs) represents Rn in Equation (9) and is estimated
from observed sunshine duration using the Ångström formula: Rs = (as + bsn/N)Ra. n is the actual
duration of sunshine (in hours), N is the total day length (in hours), and Ra is extraterrestrial radiation.
The NPP anomaly caused by droughts can be assessed by utilizing an anomaly index that can be
defined as:

∆NPP = (NPPi − NPPm)/NPPm (11)

where ∆NPP represents the NPP anomaly at a grid cell for a drought event; NPPi represents the
accumulated NPP value of the ith drought event; and NPPm represents the long-time average annual
value of NPP corresponding to the period of the ith drought event. For example, if the drought
occurred from January 1982 to March 1982, the NPPi represents the accumulated NPP value for this
period, while the NPPm represents the mean of NPP values of the corresponding drought period
(i.e., January–March across 1982–2015).

2.1.2. SPEI

The SPEI was used to monitor the drought variation in China in this study. As an improved
drought index of SPI, this index considers temperature, precipitation, wind speed, relative humidity,
and solar radiation and is considered to be particularly suited for analyzing drought variation in the
context of global warming [40]. The calculation process of SPEI was described as follows.

The SPEI is based on a climatic water balance which is determined by the difference between
precipitation (P) and potential evapotranspiration (PET) for the month i:

Di = Pi − PETi (12)

which provides a simple measure of the water surplus or deficit for the analyzed month. The PET is
calculated following the FAO P-M method [41]. The calculated Di values are aggregated at different
time scales, following the same procedure as that for the SPI. The difference Dk

i,j in a given month j and
year i depends on the chosen time scale, k. For example, the accumulated difference for one month in a
particular year, i with a 12-month time scale is calculated according to:

Xk
i,j =

12

∑
l=13−k−j

Di−1,l +
j

∑
l=1

Di,j, if j < k, and Xk
i,j =

j

∑
l=j−k+1

Di−1,l , if j ≥ k (13)

where Di,l is the P-PET difference in the lth month of year i.
Then, the log-logistic distribution is selected for standardizing the D series to obtain the SPEI.

The probability density function of log-logistic distributed variable is expressed as:

f (x) =
β

α
(

x− γ

α
)

β−1
[1 + (

x− γ

α
)β]
−2

(14)

where α, β, and γ are scale, shape, and origin parameters, respectively, for D values in the range
(γ > D < ∞). Thus, the probability distribution function of the D series is given by:

F(x) = [1 + (
x− γ

α
)β]
−1

(15)

With F(x), the SPEI can easily be obtained as the standardized values of F(x).

SPEI = w− c0 − c1w + c2w2

1 + d1w + d2w2 + d3w3 (16)
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where w =
√
−2ln(p) for p ≤ 0.05 and p is the probability of exceeding a determined D value,

p = 1 – F(x). If p > 0.05, p is replaced by 1 – p and the sign of the resultant SPEI is reversed. The constants
are: c0 = 2.515517, c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, and d3 = 0.001308.

The SPEI can represent multiple time scales and monitor different drought types, including
meteorological, agricultural, hydrological, and societal drought. It is verified that the three-month
SPEI are more suitable to measure typical drought in China [42]. Therefore, this study applied the SPEI
with three-month scales to explore the drought characteristics (including impacted area, frequency,
duration, severity, and intensity). The drought area was accumulated by grid units (8 km × 8 km)
featuring SPEI < −1.0. The drought frequency was simply defined as the number of months with SPEI
< −1.0. Severity was defined as the absolute value of the integral area between the SPEI line and the
horizontal axis (SPEI = 0) from the start to the end month of the drought. The intensity is referred to
the lowest SPEI value of the drought event. The duration of a drought event is defined as the number
of consecutive months with SPEI < −1.0. Details for the categorization of dryness/wetness grade of
SPEI are provided in Table 1.

Table 1. Categorization of dryness/wetness of Standardized Precipitation Evaporation Index
(SPEI) values.

Category SPEI Value Category SPEI Value

Extreme drought Less than −2 Mild wet 0.50 to 0.99
Severe drought −1.99 to −1.5 Moderate wet 1.0 to 1.49

Moderate drought −1.49 to −1.0 Severe wet 1.50 to 1.99
Mild drought −0.99 to −0.50 Extreme wet More than 2
Near normal −0.49 to 0.49

2.1.3. Mann–Kendall Analysis

The Mann–Kendall (MK) analysis, proposed separately by Mann [43] and Kendall [44], was used
to analyze the variation trend of NPP in this study. The advantage of MK analysis is that the series does
not require a specific sample distribution, thus avoiding potential interference of a few outliers [45,46].
The adoption of MK trend test is initiated from the calculation of the statistic:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn(xj − xi) (17)

in which,

sgn(xj − xi) =


+1 (xj > xi)

0 (xj = xi)

−1 (xj < xi)

(18)

where xi and xj are the sequential data values and n is the length of the dataset; the statistics S is
approximately normally distributed when n ≥ 8, with the mean and the variance as follows:

E(S) = 0 V(S) =
[n(n− 1)(2n + 5)−∑n

i=1 tii(i− 1)(2i + 5)]
18

(19)

where t is the extent of any given time. The standardized statistic (Z) then for one-tailed test is
formulated as:

Z =


(S− 1)/

√
var(S) (S > 0)

0 (S = 0)
(S + 1)/

√
var(S) (S < 0)

(20)

where var (s) = n(n − 1)(2n + 5) /18. The null hypothesis of no trend is rejected if |Z| > 1.96 at the
0.05 significance level, and is rejected if |Z| > 2.32 at the 0.01 significance level. A positive value of Z
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denotes an increasing trend and a negative value corresponds to a decreasing trend. The Kendall slope
representing magnitude of the monotonic change is given as follows:

β = Median
( xj − xi

j− i

)
∀j < i (21)

where 1 < i < j < n. The estimator β is the median of all combinations of record pairs for the
entire dataset.

2.2. Data

The monthly climatic data, including maximum air temperature, minimum air temperature,
precipitation, wind speed, relative humidity, and solar radiation across China, were applied
in this study to run the CASA model and calculate the SPEI. These datasets were obtained
from the China Meteorological Administration (http://cdc.nmic.cn/home.do). The temperature,
wind speed, relative humidity, and precipitation were produced from 819 climate stations across China.
Solar radiation dataset was generated from 122 solar radiation observation stations. To run the CASA
model, we used the inverse distance weighting method to interpolate observations stations data into
spatial data with resolution of 8 km × 8 km.

The third-generation global inventory monitoring and modeling studies NDVI dataset
downloaded from NASA (http://ecocast.arc.nasa.gov/data/pub/gimms/3g/) were also used to
run the CASA model. Such remote sensing data feature a spatial resolution of 8 km × 8 km cover the
period of 1982 to 2015. The maximum-value composite method was employed to choose the higher
value of bimonthly NDVI to obtain the monthly NDVI [10]. Spatial distributions of various vegetation
types in mainland China represents the vegetation distribution and were obtained from a vegetation
map at a scale of 1:1,000,000 [37], which was mainly derived from ground observations. As required
by the CASA model, seven vegetation types were obtained from the vegetation map, including
deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), deciduous needle-leaf forest (DNF),
evergreen needle-leaf forest (ENF), shrubland, grassland, cropland, and others (with barren or sparse
vegetation). In addition, to verify the CASA model, measured ground NPP were also utilized (Figure 1).
The observations of NPP were collected from the national forest inventories conducted by the National
Inventory of the Forest Ministry during 1989–1993 [28,47]. A series of measurements were made
at intervals during the growing season within one year or more. Moreover, both aboveground and
underground biomass was fully measured [37,47]. Thus, the observed NPP dataset was employed
to verify the NPP simulation. However, in this dataset, NPP was provided in the unit of dry matter
(DM) and thus a conversion was performed from DM to carbon content (g C m−2 year−1) by applying
a conversion factor of 0.5.

In mainland China, the local terrestrial ecosystems are significantly impacted by various climate
types [34,48], and for more specific analyses, we divided China into nine regions (Figure 1) based on the
research of Xu et al. [49] and Wang et al. [50]: (1) Northeast China Region (NCR); (2) Huang-Huai-Hai
Region (HHHR); (3) Inner Mongolia Region (MGR); (4) Loess Plateau Region (LPR); (5) middle and
lower regions of the Yangtze River (YRR); (6) Southwest China Region (SWCR); (7) South China Region
(SCR); (8) Gan-Xin Region (GXR); and (9) Qinghai-Tibet Plateau Region (QTPR).

http://cdc.nmic.cn/home.do
http://ecocast.arc.nasa.gov/data/pub/gimms/3g/


Remote Sens. 2018, 10, 1433 8 of 27

Remote Sens. 2018, 10, x FOR PEER REVIEW    7 of 26 

 

used  the  inverse distance weighting method to  interpolate observations  stations data  into  spatial 

data with resolution of 8 km × 8 km. 

The  third‐generation  global  inventory  monitoring  and  modeling  studies  NDVI  dataset 

downloaded  from NASA  (http://ecocast.arc.nasa.gov/data/pub/gimms/3g/) were  also used  to  run 

the CASA model. Such remote sensing data  feature a spatial resolution of 8 km × 8 km cover  the 

period of 1982 to 2015. The maximum‐value composite method was employed to choose the higher 

value  of  bimonthly  NDVI  to  obtain  the  monthly  NDVI  [10].  Spatial  distributions  of  various 

vegetation types in mainland China represents the vegetation distribution and were obtained from a 

vegetation map at a scale of 1:1,000,000 [37], which was mainly derived from ground observations. 

As required by the CASA model, seven vegetation types were obtained from the vegetation map, 

including deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), deciduous needle‐leaf 

forest (DNF), evergreen needle‐leaf forest (ENF), shrubland, grassland, cropland, and others (with 

barren or sparse vegetation). In addition, to verify the CASA model, measured ground NPP were 

also utilized (Figure 1). The observations of NPP were collected from the national forest inventories 

conducted by  the National  Inventory of  the Forest Ministry during 1989–1993  [28,47]. A series of 

measurements  were  made  at  intervals  during  the  growing  season  within  one  year  or  more. 

Moreover,  both  aboveground  and  underground  biomass was  fully measured  [37,47].  Thus,  the 

observed NPP dataset was employed to verify the NPP simulation. However,  in this dataset, NPP 

was provided  in  the unit of dry matter  (DM)  and  thus a conversion was performed  from DM  to 

carbon content (g C m−2 year−1) by applying a conversion factor of 0.5. 

 
Figure 1. Spatial pattern of vegetation types and the nine sub‐regions across mainland China. The 

Arabic notation denote as: 1, Northeast China Region (NCR); 2, Huang‐Huai‐Hai Region (HHHR); 3, 

Inner Mongolia Region (MGR); 4, Loess Plateau Region  (LPR); 5, middle and  lower regions of  the 

Yangtze River (YRR); 6, Southwest China Region (SWCR); 7, South China Region (SCR); 8, Gan‐Xin 

Region GXR; 9, Qinghai‐Tibet Plateau Region (QTPR). The solid dots show locations of the 393 forest 

validation sites. 

Figure 1. Spatial pattern of vegetation types and the nine sub-regions across mainland China.
The Arabic notation denote as: 1, Northeast China Region (NCR); 2, Huang-Huai-Hai Region
(HHHR); 3, Inner Mongolia Region (MGR); 4, Loess Plateau Region (LPR); 5, middle and lower
regions of the Yangtze River (YRR); 6, Southwest China Region (SWCR); 7, South China Region (SCR);
8, Gan-Xin Region GXR; 9, Qinghai-Tibet Plateau Region (QTPR). The solid dots show locations of the
393 forest validation sites.

3. Results

3.1. Validation of the NPP Calculation

Although the CASA is a mature model and has been widely used to determine the global and
regional NPP [28,51], the reliability of the model still requires validation. To validate our NPP simulated
from the CASA model, a comparison between the simulated NPP and the measured NPP data has
been conducted. As shown in Figure 2, the estimated NPP and the averaged observation-based data
(1989–1993) presents a good coincidence (r = 0.756, p < 0.001). To further verify the simulation result,
we also compared the simulated NPP with previous findings [28,43,47,51]. We summarized the mean
annual NPP of different land cover types in different periods (Figure 3). Forest ecosystems generally
have a higher annual NPP than non-forest ecosystems except for DNF, which agrees well with the
relative results given in Figure 3. However, the NPP of EBF and DBF in this study are generally lower
than other researches. These differences might be related to the different studied period, data source,
study area, as well as the vegetation types and their classification accuracy [28,43]. Figure 4 shows the
spatial distribution of mean annual NPP across mainland China from 1982 to 2015. The maximum
values mainly appear on the areas of the Hainan Province and the southern part of the Yunnan Province
while the minimum values mainly locate in western Tibet. Generally, the mean annual NPP showed
decreasing gradients from the southeast to the northwest, which is generally consistent with the reports
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of Pei et al. [37] and Liang et al. [28]. Overall, the above analyses suggest that the CASA is applicable
to simulate NPP across China and that the NPP results simulated by this model are satisfactory.
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Figure 3. Comparisons of annual mean NPP between this study and other studies. Note: The unit is g
C m−2 year−1; EBF, ENF, DBF, and DNF represent evergreen broad-leaf forest, evergreen needle-leaf
forest, deciduous broad-leaf forest, and deciduous needle-leaf forest, respectively; the study periods
of Liang et al. [28], Luo [47], Piao et al. [51], and Zhu et al. [39] were 1989–1993, 1997, 1989–1993, and
1982–2010, respectively.
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Figure 4. Spatial distribution of mean annual NPP across mainland China from 1982 to 2015. The white
colored areas on land are non-vegetated pixels.

3.2. Spatiotemporal Trends of NPP

The temporal trends of the total annual and seasonal NPP during 1982–2015 were revealed by
the MK values (Table 2). In summary, the NPP showed a decreasing trend in most of the regions
for summer, while all regions showed an increasing trend for NPP in spring. The annual NPP of
mainland China showed a slightly increased trend from 1982 to 2015, with an annual increase of
0.024 Pg C; spring NPP displayed a significantly increased trend, while the summer NPP showed
a higher decreased trend. Specifically, the NPP in the YRR displayed an apparent declining trend
in summer. In contrast, NPP had a significantly increasing trend in the SWCR and MGR in spring.
Over the past 34 years, NPP showed a significantly increased trend except during the summer season
in the HHHR where no non-significant change was detected, while a significant increasing trend of
NPP was observed in the LPR (except for winter). Interestingly, autumn NPP showed a significant
uptrend in the GXR. However, there were no apparent changes of NPP in the NCR throughout the year.

The spatial patterns of MK value of annual and seasonal NPP trends from 1982 to 2015 are
summarized in Figure 5. Generally, the annual NPP increased by more than 54.9% and significantly
increased over 13.8% across mainland China. The significant increase of NPP was mainly detected in
HHHR and LPR (Figure 5a). In contrast, 45.1% showed a declining trend and 7.2% of the decreasing
areas presented a significant downtrend, which was mainly scattered in the Pearl and Yangtze River
deltas (Figure 5a). In spring, NPP across 67.6% of mainland China showed an increasing trend, 13.9% of
the areas were statistically significant, which mainly occurred in LPR, HHHR, and SWCR (Figure 5b).
More than half of mainland China showed a decreasing trend in summer NPP and 10.4% presented a
significantly declining trend (Figure 5c). Autumn NPP increased over 55.9% of mainland China and
the remaining parts decreased (Figure 5d). Interestingly, 8.5% and 11.6% of mainland China showed a
significant uptrend in summer and autumn NPP, respectively, which were primarily distributed in
LPR. In winter, 9.8% of the study areas showed a significant increase in NPP, mainly in QTPR and
HHHR (Figure 5e). Area proportion of different trends in annual and seasonal NPP over China during
1982–2015 is listed in Table 3.
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Table 2. Temporal trend of annual and seasonal NPP across nine sub-regions and entire
mainland China.

Region Year Spring Summer Autumn Winter

MK Slope (Pg C Year−1) MK MK MK MK

NCR 0.237 0.005 0.474 −0.801 0.623 0.682
SCR 0.237 0.004 1.749 −0.919 −1.542 0.937
YRR −1.364 −0.027 0.534 −1.957 −1.838 0.937

SWCR 1.186 0.020 2.757 −0.919 1.127 0.511
LPR 3.795 0.058 2.935 2.609 3.172 0.312

QTPR 0.771 0.018 1.660 −0.385 0.326 0.256
HHHR 3.024 0.058 4.566 0.504 2.135 1.988
MGR −0.623 −0.010 2.520 −1.275 0.949 0.227
GXR 1.838 0.058 1.305 1.275 2.105 −0.966

Mainland China 0.771 0.025 3.083 −1.156 0.237 1.25

Note: MK denotes MK statistics; Slope denotes trends (Pg C year−1); values for the trends at the 0.05 significant
level are shown in bold; the abbreviations represent as: Northeast China Region (NCR), Huang-Huai-Hai Region
(HHHR), Inner Mongolia Region (MGR), Loess Plateau Region (LPR), middle and lower regions of the Yangtze
River (YRR), Southwest China Region (SWCR), South China Region (SCR), Gan-Xin Region GXR, Qinghai-Tibet
Plateau Region (QTPR).

Table 3. Statistic summary of the percentages of pixels showing different trends in annual and seasonal
NPP over China during 1982–2015.

Time Scale Non-Significant
Increase (%)

Significant Increase
(%, p < 0.05)

Non-Significant
Decrease (%)

Significant Decrease
(%, p < 0.05)

Year 54.9 13.8 45.1 7.2
Spring 67.6 23.9 32.4 6.7

Summer 43.7 8.5 56.3 10.4
Autumn 55.9 11.6 44.1 5.4
Winter 60.6 9.8 39.4 5.9

3.3. Drought Impact on NPP

3.3.1. Characteristics of Drought

The spatial pattern of total drought frequency across mainland China from 1982 to 2015 is shown
in Figure 6. Low drought frequency was detected in GXR, while high drought frequency was mainly
identified for SWCR and QTPR. According to our statistic, MGR was identified as the highest drought
frequency (with 2.09 times of drought each year, drought times refer to the frequency of annual average
drought occurrence), while the frequency is very low in GXR with a mean of 0.09 times per year.
Generally, the frequency of droughts across mainland China was 1.29 times every year. Figure 7
illustrates the percentages of annual drought area in each sub-region and mainland China from 1982
to 2015. The percentage of the drought area in the entire area of mainland China showed a slightly
increasing trend and the average annual area affected by drought accounted for 13.54% every year. The
drought-affected area of each year in both SWCR and LPR were relatively high, accounting for 15.43%
and 14.93%, respectively, while the drought area in GXR only accounted for only 7.45% every year.
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The drought events in the nine sub-regions and for the whole of mainland China from 1982
to 2015 were identified and the top five drought events were ranked by their severities, as listed in
Table 4. For the whole mainland of China (Figure 7), the most severe and longest drought occurred
from September 2006 to August 2007 and continued for 12 months and the drought area reached
2.89 × 106 km2, which accounts for about 33.4% of the total land areas of mainland China. During this
drought period, drought mainly occurred in QTPR, SWCR, and MGR (Figure 8c). The most widespread
drought lasted from July 2009 to March 2010 and affected 3.29 × 106 km2 area, covering 37.8% areas of
mainland China; during this period, vast areas of QTPR, GXT, SWCR, YRR, and MGR experienced
moderate to extreme drought (Figure 8d). During September 1986–April 1987, most of QTPR, HHHR,
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LPR, and YRR experienced moderate and severe drought (Figure 8a). The drought from October
2004 to February 2005 mainly affected areas in NCR, YRR, and LPR (Figure 8b). During August
2011–February 2012, drought mainly occurred in SWCR, YRR, and SCR (Figure 8e).
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In NCR, the most severe drought was from September 2001 to July 2002 (11 months) and has
affected an area of approximately 7.28 × 105 km2 (73.2% of the whole NCR). Surprisingly, the longest
lasting drought in SCR lasted for 12 months (October 2003 to September 2004) with an affected area of
2.86 × 105 km2 (accounting for 77.2% of the total area). In YRR, the widespread drought occurred from
February 2004 to January 2005 (12 months) and the drought area reached 4.96× 105 km2, accounting for
61.8% of the whole YRR. SWCR has experienced frequent large droughts in recent decades; for example,
severe and widespread droughts occurred during July 2006–June 2007, September 2009–September
2010, July 2011–June 2012, and June 2013–July 2014, with a drought area of more than 4.85 × 105 km2

(about 60% of the total area). The most severe drought in LPR lasted from August 1997 to June 1998
with nearly a 87.1% drought area. QTPR suffered the most large and extensive drought during August
1984–August 1985, with a coverage of over 1.14 × 106 km2. In HHHR, the most severe drought lasted
from July 2002 to May 2003, covering about 2.61 × 105 km2, while the most extensive drought area
during July 1999–January 2000 reached 3.87 × 105 km2, accounting for 96.8% of total areas. In MGR,



Remote Sens. 2018, 10, 1433 14 of 27

the most prolonged and severe drought happened from April 2001 to May 2002 (14 months) and the
drought area covered about 5.39 × 105 km2, accounting for 69.6% of the total area. There were no the
typical drought events in GXR from 1982 to 2015.

Table 4. Typical drought events across nine sub-regions and mainland China.

Region Persistent Period
(Month Year)

Duration
(Month)

Maximum Affected
Area (105 km2)

Percentage of
Drought Areas (%) Severity Intensity

Mainland
China

09.2006–08.2007 12 28.9 33.4 15.56 −1.9
07.2009–03.2010 9 32.7 37.8 11.55 −1.8
08.2011–02.2012 7 20.8 24.0 7.72 −1.5
09.1986–04.1987 8 22.4 25.8 7.38 −1.2
10.2004–02.2005 5 19.7 22.7 4.54 −1.2

NCR

09.2001–07.2002 11 7.28 73.2 19.38 −2.1
07.2007–06.2008 12 7.01 70.4 17.46 −2
07.1982–05.1983 11 6.42 64.5 15.34 −1.7
10.2004–03.2005 6 3.88 39.0 6.01 −1.3
06.2000–10.2000 5 4.76 47.9 4.54 −1.4

SCR

10.2003–09.2004 12 2.86 77.2 19.39 −2.2
06.2011–03.2012 10 2.60 70.2 11.80 −1.8
2009.10–2010.05 8 2.27 61.2 8.50 −1.5
08.1989–02.1990 7 1.76 47.6 8.11 −1.5
04.1999–08.1999 5 2.44 66.0 5.68 −1.7

YRR

02.2004–01.2005 12 4.96 61.8 16.26 −1.8
05.2011–02.2012 10 4.28 49.8 -14.18 −1.8
07.2007–05.2008 11 4.42 55.1 11.12 −1.7
08.1986–04.1987 9 3.76 46.8 9.76 −1.3
08.2009–12.2009 5 3.68 45.8 4.64 −1.3

SWCR

07.2006–06.2007 12 5.36 62.9 22.71 −2.3
07.2011–06.2012 12 5.67 66.5 21.62 −2.3
09.2009–09.2010 13 5.14 60.4 20.13 −2.1
07.2013–07.2014 13 4.85 56.9 17.53 −1.5
11.1992–07.1993 9 4.07 47.7 8.73 −1.5

LPR

08.1997–06.1998 11 3.13 87.1 22.67 −2.8
09.1986–05.1987 9 2.19 60.7 10.39 −1.5
05.1999–10.1999 6 2.53 70.3 7.52 −2.3
04.2000–09.2000 6 2.66 73.8 7.41 −1.9
02.1992–07.1992 6 2.92 81.2 6.91 −1.7

QTPR

08.1984–08.1985 13 1.14 58.2 19.86 −2.0
08.1994–07.1995 12 1.04 53.1 17.10 −1.8
08.2006–06.2007 11 6.79 34.5 13.50 −1.6
09.1986–06.1987 10 7.44 37.8 10.50 −1.3
09.2009–03.2010 7 8.80 44.7 7.70 −1.3

HHHR

07.2002–05.2003 11 2.61 65.2 13.16 −1.5
1982.01–1982.07 7 2.96 74.0 10.50 −1.9
1997.08–1998.04 9 3.30 82.6 10.16 −1.8
07.1999–01.2000 7 3.87 96.8 8.69 −2.0
11.2001–04.2002 6 2.79 69.7 7.32 −1.8

MGR

04.2001–05.2002 14 5.39 69.6 19.79 −1.8
06.2007–05.2008 12 4.35 56.2 14.78 −1.5
03.2006–02.2007 12 4.56 59.0 13.34 −1.3
08.2009–03.2010 8 4.29 55.4 9.72 −1.6
02.2000–07.2000 6 4.90 63.4 4.90 −1.6
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Figure 8. Spatial pattern of drought events (top 5) from 1982 to 2015 across the nine sub-regions and
mainland China. (a) Drought period: September 1986–April 1987, (b) Drought period: October
2004–February 2005, (c) Drought period: August 2006–August 2007, (d) Drought period: July
2009–March 2010, (e) Drought period: August 2011–February 2012.

3.3.2. NPP Variation during Drought Events

To explore the NPP response under drought conditions, we concluded the spatial pattern of
NPP changes percentages across China during some typical drought events (Figure 9). Figure 9a
indicates that nearly 39.9% of the national area of NPP showed a declining trend during the drought
from September 1986 to April 1987; a 10–30% reduction of NPP was detected in moderate drought
areas, mainly in HHHR, LPR, and QTPR. A decrease of NPP was observed over 32.3% of the area of
mainland China during the drought period of October 2004–February 2005; the severe drought areas
in SCR generally observed a 20–30% decrease; a 10–30% decrease in NPP was found for mild and
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moderate drought areas of NCR (Figure 9b). During the period of September 2006 to August 2007,
NPP generally reduced by about 10% in most of moderate drought areas, which were scattered in YRR
and concentrated in QTPR and LPR; a decrease by 20–30% was found in MGR; however, NPP showed a
reduction in non-drought areas in NCR (Figure 9c). Approximately 38.0% of the total area in mainland
China displayed a reduction in NPP during July 2009 to March 2010; a slight reduction (0 to 20%) was
generally observed in SCR and most areas of SWCR, while MGR showed a considerable decrease and
a small part of the regions even decreased by more than 50% (Figure 9d). Figure 9e indicates that NPP
presented a reduction of 39.7% of the whole of mainland China during August 2011 to February 2012;
a decrease by 20 to 30% was detected in moderate and severe drought areas of the southern China,
and a high decline was also detected in mild drought areas of MGR.
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2006–August 2007, (d) the NPP variation drought period: July 2009–March 2010, (e) the NPP variation
drought period: August 2011–February 2012.



Remote Sens. 2018, 10, 1433 17 of 27

To further identify the impact of typical drought disasters on NPP variation, we explored the
spatial pattern of NPP change percentage of each sub-region during drought events. The variation of
NPP of SCR induced by each drought event were distinct; the most extensive and longest drought
during October 2003–May 2005 generally decreased the NPP by 20–30%; NPP generally reduced by
10–30% during the widespread drought (June 2011–March 2012). In YRR, NPP generally decreased
by approximately 15% during the drought periods while the short severe drought from August
2009 to December 2009 caused an abnormal reduction of 20–30%. Nearly the entire MGR showed a
high decrease of NPP during the most widespread and lasting drought (September 2000–May 2002)
and in some areas even reduced by more than 50%; during the long duration drought (February
2006–February 2007 and June 2007–May 2008), NPP across the entire MGR displayed a reduction to a
different extent. In SWCR, a reduction by about 20% was observed during most of drought events;
for example, during the most extensive drought (July 2011–June 2012), most of the areas showed a high
reduction (20–30%). NPP usually decreased by about 20% in HHHR, while a 20–30% reduction was
observed during January–July 1982. In NCR, NPP generally decreased by about 20% during drought
events. QTPR generally showed a reduction NPP by about 10% during droughts. NPP in LPR showed
a decrease to a different extent during droughts.

The white colored areas on land are non-vegetated pixels. The changes percentage refers to
the NPP variation during drought events relative to the long-time average annual value of NPP
corresponding to the period. The positive/negative value represents the increase/decrease in NPP
during the drought event.

3.3.3. Relationship between NPP and Drought

According to Section 3.3.2, we found that the NPP reduced at different levels during the drought
events. Before analyzing the drought response on NPP change, we conducted a correlation analysis
between the NPP change and LUCC from 1990 to 2015 by GIS technique. We found that the correlation
coefficient of the two maps was −0.242 (p < 0.05), indicating that the LUCC and NPP change showed
a weak correlation at nation scale. Then we would mainly focus on the relationship between NPP
and drought. Figure 10a shows the spatial distribution of the correlation coefficient between annual
NPP and SPEI during 1982–2015. Overall, most of the areas of mainland China were dominated
by positive correlations, accounting for 82.0% of the total area. The significant positive correlations
(p < 0.1) were mainly distributed in GXR, MGR, NCR, and HHHR, covering 37.7% of mainland China.
Negative correlations were mainly scattered throughout QTPR, YRR, and SWCR (covering 18% of
mainland China), where only 10.0% were significantly negative. Seasonal relationships between NPP
and SPEI over China are summarized in Figure 10b–e. In spring (Figure 10b), positive correlations
were observed in more than half of the area of mainland China, mainly distributed in MGR, HHHR,
and SCR. Negative correlations were generally detected in central QTPR, YRR, and NCR. Positive
correlations between summer NPP and SPEI (Figure 10c) were identified for most regions of mainland
China, while negative correlations were dispersed in QTPR and southern China; 45.4% of the national
area showed significant positive relations, mainly distributed throughout Northern China. The spatial
distribution of correlation coefficient in autumn (Figure 10d) shared similar situations with summer;
a significant positive relation was detected in 53.3% of areas in mainland China while only 0.9% of
these were markedly negative. In winter (Figure 10e), 62.5% of the total area displayed negative
correlations, and these where mainly distributed in northern China and QTPR; among which 48.0%
was statistically significant. Area percentage of correlation coefficient between annual NPP and SPEI
during 1982–2015 is listed in Table 5.
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Figure 10. Spatial distribution of correlation coefficient of different time scales between NPP and SPEI
across the nine sub-regions and mainland China during 1982–2015. The white colored areas on land
are non-vegetated pixels. Time scale: (a) annual; (b) spring; (c) summer; (d) autumn; and (e) winter.

Table 5. Area percentage of correlation coefficient between annual NPP and SPEI across mainland
China during 1982–2015.

Period Positive
Correlation (%)

Significantly Positive
Correlation (%)

Negative
Correlation (%)

Significantly Negative
Correlation (%)

Year 82.0 37.7 18 1.8
Spring 51.8 0.98 48.2 9.2

Summer 83.8 45.4 16.2 1.4
Autumn 88.7 53.0 11.3 0.9
Winter 37.5 7 62.5 30

The temporal correlations between NPP and SPEI in nine regions and in whole China are
concluded in Table 6. For the entirety of mainland China, NPP and SPEI displayed a significant
positive correlation in summer and autumn, while a negative correlation was detected in spring and
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winter. NCR, SCR, MGR, and GXR showed a significant positive correlation in summer and autumn as
well as annually. Interestingly, a significant positive correlation was detected in HHHR except in winter.
A significant positive correlation was observed in summer and autumn in LPR. In addition, YRR had
an apparent positive correlation in autumn. However, in NCR, a significant negative correlation was
observed in spring and winter. To complement Table 6, Figure 11 shows times series of annual SPEI
and NPP anomalies between 1982 and 2015 in the nine sub-regions and mainland China. Annual NPP
showed a weak relation to SPEI in whole China, while NPP was relatively low during the drought
period (Figure 11a). As shown in Figure 11b–e, annual NPP was significantly correlated to the wet and
drought conditions in NCR, HHHR, MGR, and GXR; higher NPP values were found during the wetter
periods, and lower NPP values were found during typical drought events. However, a weak positive
correlation was observed in most of the humid regions, including SCR, YRR, and SWCR, indicating
that NPP variation was less sensitive to drought stress in these areas. In addition, NPP and SPEI also
exhibited a weak positive correlation during the whole study period in QTPR and LPR.

Table 6. Temporal correlation coefficient between NPP and SPEI across nine sub-regions and mainland China.

Region Year Spring Summer Autumn Winter

NCR 0.409 −0.374 0.341 0.548 −0.387
SCR 0.272 0.052 0.38 0.505 0.277
YRR 0.175 −0.147 0.113 0.432 0.118

SWCR 0.129 0.025 0.228 0.235 0.112
LPR 0.227 0.084 0.519 0.402 −0.155

QTPR 0.137 −0.198 −0.132 0.211 −0.096
HHHR 0.485 0.34 0.331 0.575 0.001
MGR 0.632 0.078 0.688 0.639 −0.622
GXR 0.334 −0.291 0.444 0.401 −0.326

Mainland
China 0.134 −0.216 0.378 0.322 −0.119

Note: values for the trend at 0.05 significant level are shown in bold.
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4. Discussion

4.1. NPP Trends Related to Climate Variation

In this study, an increase of total annual NPP was observed across mainland China from 1982 to
2015, indicating that China plays an increasing role for regional and global carbon sinks. However,
the summer NPP showed a highly decreased trend and the downtrend might be closely related to the
increasing summer temperature over the past three decades [38]. An increased temperature in summer
has imposed further environmental stresses on vegetation growth [28] and the high temperature led to
higher soil moisture evaporation and therefore reduced the available soil water in vegetation growth.
Moreover, increased summer temperature may accelerate plant respiration, thus resulting in less than
optimal conditions for vegetation productivity [9,25]. In contrast, the spring NPP across mainland
China displayed a significant increase, which is consistent with previous findings that the spring NPP
over the Northern Hemisphere has increased over the past several [51]. Several studies have also
reported that temperature mainly dominated the vegetation growth in spring and then showed a higher
correlation with NPP in China [52,53]. Warm temperature in spring generally increased vegetation
productivity by lengthening the growing season and by improving photosynthetic efficiency [54].
NPP in GXR also showed a high increase, which could result from the significant wetness in this region
over the past three decades [34]. However, a high decline in annual NPP was detected in YRR, SWCR,
and SCR, particularly after 2000. Decreased precipitation and increased temperature in these regions
might have contributed to the considerable decrease of NPP in recent decades [38,55,56].

4.2. NPP Variation Induced by Drought

This study found a positive correlation between annual NPP and SPEI across most areas of
mainland China, suggesting that the variation of NPP was (to some extent) related to drought
conditions. In northern China, a significantly positive correlation was detected except during spring
and winter. The global terrestrial ecosystem is mainly dominated by radiation, temperature, and water
availability [19,57]. However, in northern China (i.e., arid and semi-arid regions), water availability
rather than radiation or temperature is considered as the major constraint on plant productivity since
in those areas, the heat energy is adequate. The occurrence of drought in those regions is usually
caused by a deficiency of precipitation or higher evaporation [58], and thus leads to soil water deficits.
Moreover, the response of NPP to drought is also related to vegetation type. The major vegetation
types in GXR and MGR are meadows featuring typical desert steppe. Productivity would generally
increase either linearly or asymptotically with increasing rainfall amount in these two regions [59],
resulting in the SPEI and NPP exhibiting significant correlations. In winter, a negative relation between
SPEI and NPP was observed for northern China during winter because most of the vegetation in
these areas is normally dormant during winter [60,61] and water availability may not be an important
limiting factor. In contrast, temperature in those regions showed higher positive correlations with
plant productivity in winter [28]. Warm winter climate and increased radiation during the drought
period might increase plant productivity in this season, resulting in a negative correlation.

A weakly positive correlation was found between annual NPP and SPEI in most humid areas,
including SCR, YRR, and SWCR, which is consist with the previous findings that the variation of NPP
presented low sensitivity to drought stress in humid areas [1,19]. In wet regions that characterize
water surplus, a small or negative SPEI does not necessarily indicate water deficit [35], and thus the
vegetation productivity might not be affected. In addition, the cloud cover in wet areas is noticeably
larger compared to the rest of mainland China (less cloud coverage leads to more solar radiation).
During the drought period, the increase of radiation caused by declining cloud coverage might increase
plant productivity [53,62]. Additionally, the weak correlation might be related to the time scale of
SPEI (three-month) used in this study [36]. Generally, the resilience and restorability of vegetation to
drought stress is strong in the humid regions compared to other areas [63]. Most of the vegetation in
humid areas possesses residual water and deep root systems that can reduce the impact of short-term
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water shortages on plant productivity [64]. Such an understanding may explain the weak relationship
between SPEI and NPP in those humid regions. In LPR, the weak correlation was related to drastic
human activities. The drought resistant vegetation that was widely planted in recent decades over LPR
was capable of adapting to dry conditions [65], and mitigated the drought effect on plant productivity
to a certain degree. In QTPR, temperature was the dominant factor effecting the NPP variation, and the
recent climate warming contributed greatly to the increase in NPP [1]. The weak correlation in QTPR
indicated that the increase of NPP caused by warm temperature might offset the impact of drought on
plant productivity.

Although the above analysis indicates that the variation of NPP exhibited a weakly positive
relation to drought conditions in some local areas, our results still confirmed that, to different degrees,
NPP showed a reducing trend during the drought events. We believe that vegetation damage or even
mortality caused by drought was the main reason for the significantly decreasing NPP observed for
some regions. Most of the vegetation has some ability to resist a short-term or general drought via
physiological activities such as improving water use efficiency, reducing leaf area, and using deep roots
to transport water; however, they are vulnerable to long-term or severe droughts, which then resulted
in a high decrease of vegetation productivity [62,66]. These long-term and severe droughts can drive
vegetation damage or even mortality due to hydraulic-failure or carbon starvation [6,63]. For instance,
a period of drought occurred from 2009 to 2010 in southwest China, which resulted in damage and
mortality of large areas of vegetation and also triggered widespread forest fires [14,67], causing sharp
declines in plant productivity. With the ongoing economic and social development, mainland China
has become one of the major carbon emitters and the diverse vegetation of the prevailing ecosystems
provided a great potential for ecosystem carbon sinks [28,68]. However, according to the above
analysis, the carbon sequestration capacity of the terrestrial ecosystem might be wakened due to the
disturbance of the frequently severe droughts, indicating that effective measures are required to sustain
and enhance the carbon sink of the terrestrial ecosystem for removing the increase of CO2 emissions
across mainland China.

4.3. Other Potential Factors Affecting NPP Variation

Although the NPP variation is closely related to climate fluctuation, NPP change in some region
may mainly be dominated by other factors, such as land use/cover change (LUCC) and agricultural
activity. LUCC triggered by human activity fundamentally alters structures and functions of natural
ecosystem [37,69]. As one of the anthropogenic LUCC, the process of urbanization is associated
with the immigration from rural residential land to urban areas, accompanied by encroaching forests
and converting from cropland to urban land [70,71]. Such human disturbance directly decreases the
productivity of natural ecosystem, and even decline carbon sequestration potential of vegetation and
soil [72]. In this study, a significant decrease was found in Yangtze River delta, Pearl River Delta,
and Beijing region, which may be related to rapid urbanization in these regions during the past 30 years.
For Pearl River Delta, although warm and humid climate with abundant rainfall and heat are more
favorable to increase vegetation productivity in the urban areas [11,73], the increase of vegetation
productivity is still not enough to offset the NPP losses induced by urbanization [11,37,73]. Generally,
the LUCC has significant impact on NPP change at relatively small spatial scale. For the nation scale,
Tian and Qiao [74] assessed the impact of the urbanization process on net primary productivity in
China from 1989 to 2000, and they concluded that the total loss of NPP due to urban development
in China was speculated as 0.95 Tg C, which accounted for 0.03% of the national total NPP of 1989
(3129 Tg C). Li et al. [2] reported that the total losses of NPP in China attributed to urbanization
reached 1.695 Tg C between the late 1980s and 2015, which accounted for 0.06% of the national total
NPP of 2015 (2928 Tg C); and they also concluded that the conversion to grassland and forestland
from other land use typed have increased the total NPP by 5.703 Tg C from the late 1980s to 2015,
accounting for 0.19% of the national total NPP of 2015. In addition, He et al. [42] investigated the
impact of urban expansion on the cropland NPP in China from 1992 to 2015; they found that the total
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loss of the cropland NPP due to urban expansion from 1992 to 2015 was 13.77 Tg C, accounting for
1.88% of the cropland NPP in 1992. These results indicate that LUCC indeed have certain impacts
on NPP variation at nation scale especially in the mid-eastern and southeast coastal areas, however,
the NPP loss were relatively low relative to the annual total NPP. Overall, the LUCC induced by
human activity has decreased NPP to a certain extent.

Agricultural activity (e.g., irrigation, CO2 fertilization, and nitrogen (N) fertilization) is another
significant factor affecting NPP variation [75,76]. In this study, a significant increase of NPP was
observed in HHHR. This region is regarded as one of the most important grain production bases
of China where the increased NPP was greatly attributed to agricultural activities such as increased
irrigation and fertilization over the recent several decades [56]. The use of N fertilization could
contribute to increasing vegetation productivity to a certain extent; the addition N can accelerate the
uptake of carbon dioxide, increase water-use efficiency of foliage, and reduce the thermally dissipated
light [76]. During the past century, the atmospheric CO2 concentrations showed a significant increase
in the world [27]. With the social and economic development, China has become one of the major CO2

emitters since 2006 (about 1.5 Pg C year−1) [28]. The increasing CO2 concentrations cause a warming
climate and then enhance photosynthesis efficiency of vegetation independently of climatic impacts
and land-use patterns, making it conducive to extend the growing season of vegetation and increase
the vegetation productivity [77–79]. Although the CASA model is widely used to simulate the NPP
at regional or global scale [2,7,10,11,28], it does not directly consider N or CO2, which limits studies
concerning the NPP variation and its control more or less. Therefore, it is essential to consider the
impacts of N or CO2 on NPP variation and a more comprehensive model needs to be employed to
simulate NPP in the future studies.

5. Conclusions

In this study, the influences of drought on NPP across mainland China were investigated for
1982–2015 based on the CASA model and the SPEI index. The spatiotemporal characteristics of NPP
and droughts as well as their relation were also analyzed. The findings of this study are of scientific and
practical importance for improving our general understanding of the impact of climatic disturbance on
terrestrial ecosystem across mainland China. The main conclusions of this study can be summarized
as:

1. The estimate of NPP across mainland China conducted via the CASA model is satisfactory. For the
temporal dimension, the annual NPP of mainland China showed a slightly increased trend from
1982 to 2015; the NPP of spring increased significantly, while the summer NPP showed a higher
decreasing trend. For the spatial dimension, the annual NPP across mainland China increased
over 54.9% areas and over 13.8% of them significantly increased; 45.1% areas showed a declining
trend and 7.2% of them presented a significantly declining trend.

2. A positive spatial correlation between annual SPEI and NPP was observed in most areas of
mainland China. The temporal relationship between NPP and SPEI showed a significant positive
correlation in summer and autumn, while a negative relation was detected in spring and winter.
Specific to each region, annual NPP and SPEI showed a significant positive relation in NCR,
HHHR, MGR, and GXR. A weak positive correlation was observed for the remaining areas,
namely SCR, YRR, SWCR, LPR, and QTPR.

3. Based on the SPEI index, typical drought events were identified in the nine regions and in
mainland China from 1982 to 2015. There were five typical drought events in mainland China
that occurred during the periods of 1986–1987, 2004–2005, 2006–2007, 2009–2010, and 2011–2012.
During these drought events, more than 23% of the area of mainland China experienced drought
ravage, in which NPP decreased to different extents. The NPP in most sub-regions decreased by
approximately 30% during these events, while the NPP in QTPR generally decreased by about
10%. Generally, the NPP showed a reducing trend during the drought events.
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