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Abstract: In this paper, we present a convolutional neural network (CNN)-based method to efficiently
combine information from multisensor remotely sensed images for pixel-wise semantic classification.
The CNN features obtained from multiple spectral bands are fused at the initial layers of deep neural
networks as opposed to final layers. The early fusion architecture has fewer parameters and thereby
reduces the computational time and GPU memory during training and inference. We also propose
a composite fusion architecture that fuses features throughout the network. The methods were
validated on four different datasets: ISPRS Potsdam, Vaihingen, IEEE Zeebruges and Sentinel-1,
Sentinel-2 dataset. For the Sentinel-1,-2 datasets, we obtain the ground truth labels for three
classes from OpenStreetMap. Results on all the images show early fusion, specifically after layer
three of the network, achieves results similar to or better than a decision level fusion mechanism.
The performance of the proposed architecture is also on par with the state-of-the-art results.

Keywords: image classification; deep learning; multisensor data; sentinel data

1. Introduction

Semantic classification of aerial/satellite images is essential for land cover and land use
mapping, change detection, emergency response or management, and various other applications [1].
Numerous pixel- and object-based approaches, such as support vector machine (SVM) [2], random
forest [3], and others [1], have been proposed to classify these images. These methods typically
involve a feature generation and selection step before the classification stage. The intermediate step
allows for selecting minimal but highly discriminative features. Reducing the number of features
also avoids overfitting issues that often occur in remote sensing image classification, especially in
hyperspectral images [4], where high dimensional data is available with limited ground truth data.
Given this, extensive research has been conducted to select appropriate features and classifiers for
various classification scenarios. New methods [5,6] are also being actively proposed. On the other
hand, recent deep learning methods learn features automatically from the training data and have been
successfully applied to various computer vision tasks with improved performance. This was made
possible by improvements in neural network design, vast training datasets, and fast computation
through graphical processing units (GPUs). The networks are trained in either a supervised or
unsupervised fashion. In the supervised method, large input data and corresponding ground truth
data are used to train the deep neural networks. Imagenet [7] is one such large dataset, and VGG-16 [8]
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is a convolutional network that uses the dataset for image classification. In our work, we extend
the supervised deep learning methods for multisensor aerial/satellite image pixel-wise classification.
The neural network framework learns the complex relationships between the input and ground truth
data and generates results in the form of test data. The performance is significantly better than prior
methods like SVM or random forest.

In this paper, we investigate an optimal way to combine features from multisensor imagery in a
neural network framework [9]. Multiple convolutional neural network (CNN) branches were used to
generate and fuse features of the multisensor data and perform semantic classification. The dataset
used in the paper includes ISPRS Potsdam, Vaihingen, Sentinel-1, Sentinel-2, and IEEE Zeebruges
datasets [10–13]. The Potsdam dataset makes available four bands, IR, R, G, B, and an additional
normalized digital surface model (NDSM). These channels can be input to the neural networks in
numerous ways. We employ CNN architectures (specifically, fully convolutional neural network (FCN)
by Shelhamer et al. [14] and segmentation network (SegNet) by Badrinarayanan et al. [15]) on groups
of these bands, e.g., one set of convolutional layers for R, G, B bands and another set for IR, NDVI,
NDSM. Features from these branches are then merged at the initial and later stages of the network.
We compare the results from early fusion, late fusion, and a third composite fusion, where features are
merged throughout the network. Results from the three datasets indicate both late and early fusion
methods achieve similar performance. Hence, it is desirable to combine features at early layers of
CNN for a given multisensor image. Given our work, the main contributions of the paper include
the following:

• Fuse information from multi-sensor images at various layers of deep neural networks and compare
the results to find the optimal configuration. An example includes, combining RGB and LiDAR
features obtained from distinct branches of FCN at various layers of the network. Fusion of
features in early stages of neural networks, FCN and SegNet, achieve results similar to late fusion
but with less GPU memory and reduced run time.

• Propose a composite fusion architecture that combines information from multi-sensor images
throughout the network.

• Efficiently fuse multi-sensor data in neural network architecture and benchmark the proposed
methods on various datasets. The datasets include (a) Sentinel-1 and -2 data (SAR and
Multispectral), (b) ISPRS and IEEE datasets (Optical and LiDAR data). OpenStreetMap were used
for generating ground truth data for Sentinel-1 and -2 satellite images. The performance of these
proposed architectures are on par with the state-of-the-art results.

2. Literature Review

In the literature, many methods have been proposed to classify multisensor images. In this
section, we first discuss the different fusion mechanisms and methods that combine information from
multisensor data. We then proceed to examine the methods that combine multisensor information in a
deep learning framework. Since it relates directly to our proposed work, we briefly describe all the
recent approaches that yield state-of-the-art classification results. Finally, we review the general deep
learning-based methods that classify aerial/satellite images.

2.1. Multisensor Fusion

Fusion of remotely sensed data acquired from multiple sensors for image classification has been a
widely researched field [1,16–20]. The fusion techniques can be broadly categorized [1] into feature,
decision, and pixel-/subpixel-level fusion and ensembles of these methods. Our current work falls
into the categories of feature- and decision-level fusion. In decision-level fusion [19], the data are sent
to different classifiers and the individual results are merged to obtain the final map. Feature-level
fusion involves selecting features from multiple modalities and effectively combining them before a
classification step.
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In terms of the modalities, extensive research has been conducted to combine optical images
with synthetic aperture radar (SAR) and LiDAR data. Since SAR images are acquired by an active
sensor and the wavelength used could penetrate cloud cover, data can be obtained in any weather [21].
This allows SAR images to be used along with high-resolution optical data acquired at an earlier
time for disaster management, urban expansion, and other applications [22–24]. In an early work,
Waske et al. [25] first classified multitemporal SAR and multispectral Thematic Mapper (TM) images
and their segmentation at different levels using a support vector machine (SVM). The individual
predictions were then stacked and passed to another SVM and random forest classifier to obtain final
land-cover maps. The use of multilevel and multisource data in the framework provided robust results.
In a more recent study [26], 12 TM images and 25 SAR images captured over a period of time were
combined using a spatiotemporal fuzzy clustering method to classify changed/unchanged pixels.
With the availability of Sentinel-1 (SAR) and Sentinel-2 (multispectral) data, pixel-based [27] and
object-based [28] methods have been proposed to combine them for land-cover classification. Similarly,
optical images have been fused with LiDAR data for various applications, which include building
extraction [29,30], semantic segmentation of forest stands [31], and others. An IEEE GRSS data fusion
contest [32,33] is held every year, and new multisensor datasets like ISPRS Potsdam and Vaihingen [11]
have accelerated research in the field.

2.2. Deep Learning: Multistream Fusion Architecture

Deep learning methods that fuse information from different modalities were initially proposed
in the computer vision community [34,35]. Karpathy et al. [34] proposed several approaches to
fuse spatial and temporal information available on video for large-scale video classification tasks.
They used multiple frames in early, late, and slow fusion frameworks to predict various actions like
cycling, bowling, etc., that occur in input video. They reported that slow fusion has robust performance,
and in the future, they will test the framework on broader video categories. Another two-stream
neural network was proposed by Simonyan et al. [35] to combine spatial and temporal information
for action recognition. In their work, a single frame of video was input to the spatial stream of
VGG-16 network [8] and multi-frame optical flow images were passed to the second VGG-16 network.
The results from both branches were combined at the end for video classification. They report
competitive performance and indicate that results could be further improved with additional training
for the temporal branch.

In our initial work [9], we investigated the application of neural networks for multisensor aerial
image classification. We merged the features before the first fully convolutional layer of FCN-8
architecture (instead of decision-level fusion). The features from two branches were concatenated
and sent as input to a convolutional layer. The intuition was that an additional convolution layer
would learn to select the features from both branches that are optimal for pixel-wise classification.
We found that results obtained were similar to the decision-level fusion on the aerial image dataset
and led to the current thorough analysis. Feichtenhofer et al. [36], around the same period, proposed a
two-stream fusion architecture to combine single-frame and corresponding optical-flow images for
the action recognition task. Their method was able to find better pixel correspondence between the
spatial and temporal streams/branches. They did extensive experiments to combine features from
multiple streams through sum, max, convolution, and bilateral operations and reported that sum and
convolution strategies produced the best results. Another fusion architecture, named FuseNet [37],
which sums the features at every convolutional layer, was proposed to combine RGB and depth
information for semantic classification. Recently, Audebert et al. [38] proposed an efficient multiscale
approach for the semantic classification of multimodal high-resolution remotely sensed data (ISPRS
data). They compared results between the FuseNet method and a late fusion approach with residual
correction. In these methods, feature information is obtained from two or more streams and later
merged at some layer of the network. These fused features are then used to generate the final
classification result. Most often the individual streams use pre-trained weights from another domain
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to generate features. It is possible, for the given task, features generated could be redundant or
not optimized.

2.3. Deep Learning: Semantic Classification

Over the past few years, numerous CNN-based methods [39] have been proposed to assign
a label for each pixel of an image or video. FCN, proposed by Shelhamer et al. [14], was the first
method to train a network end-to-end for semantic segmentation. One of the limitations of the
method was that it had millions of trainable parameters. Badrinarayanan et al. [15], in their work,
reduced the number of parameters and proposed a new encoder-decoder architecture called SegNet.
This significantly reduced the network memory while achieving performance similar to the FCN
method. Another architecture, ResNet [40], has been augmented with conditional random fields [41]
to further improve the semantic segmentation performance. These methods have been applied to
multimodal data: RGB images [14,15,40], video [42], RGB + depth images [43], and others.

Deep learning methods for semantic segmentation are being actively applied to aerial images
for land-use classification. Paisitkriangkrai et al. [44] proposed a method that combines classification
results obtained from manually extracted and CNN features. Initially, two sets of features were
generated from an image patch: (a) features like NDVI, edges, saturation, etc., and (b) CNN features.
These features were then passed through two separate classifiers to obtain per-pixel probability
maps. A CRF-based method further processes the ensemble of the maps to generate the final
result. The performance of the method is better than stand-alone CNN methods. Sherrah [45]
proposed a no-downsampling FCN approach that used sparse filters for classification. The method
was tested on the Potsdam and Vaihingen datasets by employing two networks: FCN for color
infrared (CIR) data and no-downsampling FCN for DSM data. Even though training time increased
because of the no-downsampling operation, the method generated accurate and dense results for these
high-resolution images. In another work [46], CNN predictions from CIR data and logistic regression
classifier predictions from CIR and DSM data (manually extracted features) were combined within
a higher-order CRF framework. The method has a simple architecture and incorporates object-level
contextual information. However, the classification output is sensitive to the scale of initial segments
used in higher-order terms of the CRF model. Other recent works include downsampling–upsampling
CNN architecture [47] to obtain dense prediction and a patch-based CNN [48] to extract roads and
buildings in urban areas. With the availability of aerial/satellite images and corresponding dense
ground truth, like ISPRS [10,11], IEEE datasets [12,13], and SpaceNet challenge [49], numerous methods
are being actively proposed and evaluated on these datasets.

3. Methodology

This section describes the deep learning architecture and different fusion networks proposed for
combining information from multi-sensor images for pixel-wise classification.

3.1. Deep Learning Architecture

The building block of an artificial neural network is the neuron, where a weighted sum of the
inputs followed by a nonlinear operation is computed. In a convolutional neural network (CNN),
where the input is an image X of size m ∗ n ∗ b (e.g., 3D input for (R, G, B) images), these neurons are
arranged in 3 dimensions. Each neuron is connected to only a certain number of inputs in the previous
layer. Also, the weights are shared within each channel of the 3D neuron volume [50]. Let Xinp of
size m ∗ n ∗ d and Xout of size m ∗ n ∗ t be the input and output of a convolution layer, respectively.
Output at location (p, q, r) is obtained from the input as follows:



Remote Sens. 2018, 10, 1429 5 of 25

Xout[p, q, r] = (
k

∑
u=−k

k

∑
v=−k

d−1

∑
z=0

(Xinp[p + u, q + v, z] ∗ W[u + k, v + k, z, r])) + bs[r]

(p = 0, 1, ..m − 1)(q = 0, 1, ..n − 1)(r = 0, 1, ..t − 1)

(1)

Here, W is the weight matrix of size (2 ∗ k + 1) ∗ (2 ∗ k + 1) ∗ d ∗ t with k determining the
filter/kernel width, and bs is the bias vector of size t. For example, in a fully convolutional network
(FCN) [14], the input image is of size 224 × 224 × 3 (m = 224, n = 224, d = 3) and the first convolution
layer outputs 64 (t) features of size 224 × 224. The 64 filters with support 3 × 3 × 3 (here k = 1,
W is of size 3 × 3 × 3 × 64 and bs a 64 element vector) transforms the 224 × 224 × 3 input into the
224 × 224 × 64 feature volume. The above operation (denoted as Xout = g(Xinp, W)) is followed
by nonlinear activation (e.g., ReLU: Zout = max(0, Xout)). The features obtained are further passed
through multiple convolution, ReLU, and subsampling or pooling layers. These layers are then
followed by a fully connected convolutional layer, where the neurons again have a 3D arrangement but
each neuron has connections from all the features in the preceding layer. This transformation allows
the network to generate coarse maps with spatial support. A convolution transpose layer [51] is then
used to bring the coarse map to the original image resolution. The final prediction of the network is a
3-dimensional output Ŷ = f (X, Θ) of size m ∗ n ∗ classes. All the parameters (Θ) are learned during
supervised training and then applied on new test data to classify them. There are 2 variants of the FCN
architecture: FCN-32 and FCN-8. In FCN-32, the output from the scoring layer is upsampled to the
original image resolution in a single step and thereby generating a coarse semantic map. Whereas in
FCN-8, shown in Figure 1, gradual upsampling of scoring layer and merging of features from earlier
layers are made to obtain finer semantic segmentation.

Figure 1. Fully convolutional neural network architecture (FCN-8).

SegNet [15] is the second network used in our multimodal fusion analysis.
SegNet (encoder-decoder) architecture removes the fully connected convolutional layers
of the FCN and replaces them with multiple upsampling and convolution transpose layers.
The downsampling information in the initial layers is also passed to a corresponding upsampling
operation. These 2 modifications reduce the number of parameters of the network while achieving
results comparable to FCN.

3.2. Multisensor Fusion

In general, a CNN can take an arbitrary number of spectral bands as input. Such networks,
e.g., FCN or SegNet, will consist of a single stream of multiple convolutional layers. However,
a large training dataset (image and corresponding ground truth data) is required to avoid overfitting.
At present, only limited or moderate training datasets are available for aerial image collections.
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Randomly assigning values to the CNN parameters/weights and training the network from scratch
with limited data will generate poor results on the test data. Thus, to avoid overfitting, the weights
obtained from other tasks, like the semantic classification of RGB images, need to be used as initial
values and further fine-tuned with the given labeled aerial image set. This transfer learning process [52]
has been successfully used to classify aerial RGB images.

In a multisensor setup, where more than three bands are available, a simple approach is to employ
two or more neural network branches and fuse the features at the very end to obtain a classification map.
The parameters of the different streams could be initialized with pretrained weights from the image
categorization task [14] and then further fine-tuned with current labeled data. However, the main
drawback of late fusion architecture is that the number of neurons/operations is predominantly large,
hence they require more computation time in both the training and testing phase. Also, this fusion
approach may not provide the best results for a given dataset.

In our work, we propose a CNN that efficiently combines features from multiple spectral bands
for semantic classification. The task at hand is to design a network that (a) takes in multiple bands,
(b) requires minimal parameters and memory, (c) provides good quantitative results, and (d) uses
pretrained weights because of moderate training data size. The proposed fusion architecture uses
the existing CNN, e.g., FCN or SegNet, as a base network. The set of convolution filters that operate
on features of the same scale is referred to as a layer. In FCN-8, layer 1 and layer 2 consist of two
convolution filters each and layers 3 to 5 consist of three convolution filters (Figure 1). These are
followed by two fully connected convolutional (FC) layers and a final scoring layer. The FC layer by
itself consists of numerous parameters. Having multiple such layers in a network (e.g., late fusion) will
increase the computational memory considerably. Hence, to construct a memory-efficient network, it is
necessary to fuse the features before the FC layer (anywhere after layers 1 to 5). The features obtained
from early layers are more general and correspond to low-level features. Yosinski et al. [52] studied
the transition of features from general in shallow (early) layers of a network to specific ones for a given
task in deeper layers. In one of their experiments, they found that transferring shallow-layer weights
from one task to another and fine-tuning with additional new data provided results comparable to
transferring deeper-layer features. Based on these findings, we anticipated that fusing pretrained
features at some point before the FC layer and doing sufficient fine-tuning should provide results on
par with late fusion. Similarly, for the SegNet architecture, we combined features in the early layers
(encoder) of the network as opposed to the deeper layers (decoder).

The proposed fusion network consists of two or more branches/streams, depending on the
number of input bands. For example, two branches are needed for a six-band input. Each branch
consists of pretrained convolutional layers that operate on respective input bands to generate features.
We adopted two approaches to combine these features from the individual branches. In the first
method, we concatenated the features and passed them to a subsequent convolution layer where a
weighted sum of these features was obtained. During training, these weights attained a value that
minimized the global loss between the predicted class and ground truth. Thus, in principle, the network
learns the appropriate combinations of features from two streams. On occasion, the feature values
obtained from the multiple branches were at different scales and required an additional normalizing
step. Thus, in the second method, features from each branch were initially sent through convolution,
batch normalization, and ReLU layers before the concatenation step.

Let Z1, Z2, ... Zs be the outputs from different branches that needs to be fused.
The concatenation (without normalization) and convolution operations performed are given by
Equations (2) and (3) respectively.

Zcat = h(Z1, Z2, ...Zs) (2)

Znew = g(Zcat, Wc) (3)
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Here, function h is the concatenation operation in the third dimension, Wc are the weights, and g
denotes the convolution operation shown in Equation (1). Please note that, in general, the features
could be summed or multiplied instead of being concatenated. This would require features from
various branches to have some correspondence. In our setup, the pretrained weights are used in
multiple branches to generate features and may not have feature correspondence. Hence, we chose to
concatenate the features instead of doing other operations. Figure 2 shows the fusion network where
features from two branches are combined after layer 3. Here the features from two branches are passed
through the max pooling (subsampling), convolution, batch normalization (BN), and ReLU operations
and then concatenated. A comparison of fusing features after layers 1 through 5 is discussed in the
experimental Section 4.3.

Figure 3a shows the late fusion approach with an FCN-32 base network. As evident, the network
contains more parameters than the early fusion architecture. We also propose another fusion
architecture, named composite fusion, shown in Figure 3b. In this network, the features from two
branches are combined at multiple locations of the network (three locations in Figure 3b) as opposed
to a single point in the early fusion framework. The setup allows access to features from all layers
of the network but comes with a slightly increased computational load. We trained and tested these
networks on multisensor aerial and satellite images, and discuss the results in the next section.

Figure 2. Fusion of features after layer three of a CNN. The features from two streams are passed
through max pooling, convolution, batch normalization and ReLU layers. The two outputs are then
concatenated and form the input for the fourth layer.
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(a) Late Fusion

(b) Composite Fusion

Figure 3. Fusion of features at different layers of a CNN. (a) Late fusion: Results from two streams are
combined at the final layer. (b) Composite fusion: features from two streams are combined at multiple
locations of the network
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4. Experimental Setup and Results

The fusion architectures were evaluated on four datasets: Copernicus Sentinel-1,2 data,
ISPRS Potsdam, Vaihingen and IEEE Zeebruges images that have more than three bands of
spectral information.

4.1. Dataset Description

4.1.1. ISPRS Potsdam, Vaihingen and IEEE Zeebruges Dataset

ISPRS Potsdam and Vaihingen images, part of the ISPRS 2D semantic segmentation
contest [10,11,53], have ground sampling distances of 5 cm and 9 cm, respectively. The Potsdam
dataset consists of IR, R, G, B channels and a digital surface model (DSM). The collection is divided
into 38 image patches, with 24 images and corresponding ground truth released for training and the
remaining 14 images made available for testing. The Vaihingen set consists of IR, R, G, and DSM
channels and a total of 33 image patches (17 training and 16 testing images). The normalized DSM for
both sets is provided by Gerke [54]. For both datasets, ground truth consists of six classes: impervious
surface (white), buildings (blue), low vegetation (cyan), trees (green), cars (yellow), and clutter (red).
Information on image size and the original data can be found on the contest website [11]. Test images
of the Potsdam and Vaihingen collections are shown in Section 4.4.1.

The Zeebruges images, part of the IEEE data fusion contest [12,13] (referred as grss_dfc_2015),
consists of five images (R, G, B) of size 10,000 × 10,000 pixels and corresponding DSM images of
size 5000 × 5000 pixels. The dense ground truth created by the ONERA [55] team consists of eight
classes: impervious surface (white), buildings (blue), low vegetation (cyan), trees (green), cars (yellow),
clutter (red), boats (pink), and water (dark blue). The two test image classification results can be
uploaded to the IEEE GRSS data and algorithm standard evaluation website [56] to obtain accuracy
and F-measures.

When training the deep learning architectures in the Caffe toolbox [57], input images and ground
truth need to be at a fixed spatial size. We chose an image size of 224 × 224 pixels. The image patches
can be extracted from the training set in numerous ways. In our work, we generated a training set
using the following steps: (a) crop out image patches of size 224 × 224 pixels by sliding through each
training image without any overlap (between sliding window); (b) for each class, randomly chose
1000 pixels in each training image and obtained the 224 × 224 pixels sized patch with a selected pixel
as a starting point; and (c) included additional image patches for the car and boat classes. For the
Potsdam and Vaihingen sets, we randomly selected 50 cars from each training image and obtained
the patch enclosing these car pixels. Similarly, for the Zeebruges set, we randomly selected 200 cars
and boats each from three training images and obtained the patches enclosing them. Thus, a total of
43,516, 18,780, and 60,130 training images were generated from the Potsdam, Vaihingen, and Zeebruges
datasets, respectively. Data augmentation is necessary for training CNNs to avoid model overfitting.
The percentage of car/boat pixels in an image is small compared to other classes and creates a class
imbalance problem. We reduced the effect by including extra car/boat samples, as mentioned in the
third step. The class imbalance issue can also be mitigated by employing a weighted loss function.

4.1.2. Sentinel-1 and -2 Dataset

The Sentinel-1 (S-1) and Sentinel-2 (S-2) data, available from the European Space Agency (ESA)
website, were also used to validate the fusion networks. The training set consists of images that were
acquired over regions of Austria, Czech Republic, Portugal, and Italy. The testing images cover regions
over France, Netherlands, and Germany. The S-1 data consist of ground range–detected SAR images of
polarization VV and VH (interferometric wide swath mode). These images, with pixel spacing of 10 m,
were calibrated, orthorectified using the ESA S-1 toolbox, and then quantized to unsigned integer 0–255
range. We used 10 multispectral bands (bands 2–8, 8a, 11, and 12) of 10 m and 20 m resolutions from
the S-2 satellite data. The Sen2Cor method was first used to convert the top-of-atmosphere (Level 1C)
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to bottom-of-atmosphere data. Next, the 20 m S-2 bands were upsampled to 10 m resolution by bilinear
interpolation and then projected onto a WGS 84 coordinate system. Finally, all S-2 band values were
stretched and quantized to the eight-bit values (0–98% (intensity histogram) map to 0–255).

The ground truth for the images was created from OpenStreetMap (OSM). The classes considered
in our work are (a) water, (b) farmland, (c) forest and (d) urban area. Acquisition dates are available in
the supplementary materials and instructions for creating ground truth data are mentioned on the
website (https://github.com/sankar19/gthOSM). Even though the timestamp of OSM download
was close to the S-1 and S-2 image acquisition dates, the ground truth labels in the OSM has been
created over a period of time. The ground truth also does not cover the entire image, since it is a
volunteer-driven open source process. In the OSM data, the river class is represented by a single
pixel outline. Following the [58] approach, where road labels were widened, we did a morphologic
operation to widen the single-pixel river labels. The widened labels were only used during training.
Quantitative evaluation was made on the original OSM labels. It is necessary to have wider labels for
two reasons: (a) the network makes a prediction at a lower resolution, and (b) the number of pixels
representing the water class is increased (minimizing the class imbalance problem). The S-2 and S-1
images over the Czech Republic and the corresponding ground truth are shown in Figure 4.

(a) S-2 - Czech Republic (b) S-1 - Czech Republic (c) GT

Figure 4. Training image over the Czech Republic: (a) Sentinel-2 image (R, G, B) , (b) Sentinel-1 image
(VH) and (c) Ground truth (GT) synthesized from OpenStreetMap; Four classes: farmland (green),
forest (olive), water (blue) and urban (yellow). S-1 and S-2 images copyright: “Copernicus Sentinel
data [2017]”.

From the training set, 48,497 image patches of size 224 × 224 pixels were generated from each
band of preprocessed S-1 and S-2 data and the ground truth image. These images were generated by
(a) cropping out image patches of size 224 × 224 pixels by sliding through each training image without
any overlap between sliding windows, and (b) for each class, randomly selecting 3000 pixels in each
training image and obtaining the 224 × 224 pixels sized patch with a selected pixel as a starting point.
If only sparse labels were encountered in a patch (count of labels less than 1% of total pixels), then the
patch was ignored.

4.2. Network Training and Inference

The training and testing of neural networks were made using the Caffe toolbox [57]. The fusion
networks were trained in two stages. In the first stage, weights for all the layers before fusion were
assigned with pretrained weights (FCN-32 Pascal model weights [14]), and weights for layers after
fusion were initialized by the Xavier algorithm [59]. The network was then trained for 35 epochs with
an initial learning rate of 1 × 10−3. The learning rate was reduced by a factor of 0.1 after 15th and
30th epochs. In the second stage, all the layers assigned with weights from the first stage were trained
for another 35 epochs. A reduced learning rate of 1 × 10−5 was chosen. The learning rate was again
multiplied by 0.1 after 15th and 30th epochs. The momentum and weight decay parameter values
were chosen empirically to be 0.99 and 0.0005. The model was optimized through a stochastic gradient
descent algorithm. The multinomial logistic loss of the probability of each target class was chosen

https://github.com/sankar19/gthOSM
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as the cost function (Softmaxwithloss function in the Caffe toolbox). The weights after two-stage
training were employed to obtain the test results. During testing, 224 × 224 pixels sized patches
were obtained from the test images with a stride of 112 pixels (50% overlap rate) to avoid boundary
artifacts. Thus pixels, except at the image boundaries, were predicted twice by the network. (These
two predictions at corresponding locations were summed.) At each pixel location, the class that had
a maximum score was chosen as the final label. Please note that the four datasets considered in the
paper are of medium size and cannot be directly used to train the networks’ random initial weights
(Section 3.2). Hence, we used the FCN pretrained weights to initialize the fusion architectures and
have three channel inputs in each stream of the network.

4.3. Finding an Optimal Architecture

In this section, we (a) discuss the experiments conducted to find the optimal fusion point for the
early fusion network, (b) analyze the outcomes from different fusion networks, and (c) compare the
results from CNN trained with pretrained and random weights. The Potsdam and Vaihingen training
images were used for quantitative comparisons for the three tasks. Fourteen Potsdam images were
used for training (dev-train), and the remaining three (named 4_10, 6_8, and 6_11) for evaluation
(dev-val). We also validated the network trained on Potsdam images on three Vaihingen images.
The second validation will show how a network performs on an unseen image. We follow the same
steps in Section 4.1.1 to obtain image patches (37,884) from the dev-train set. The networks were then
trained by the two-stage method described in Section 4.2. However, to reduce computational time
during inference, only nonoverlapping patches of the dev-val set were used for quantitative evaluation
(each pixel of the image is predicted once). We also ignored the class “clutter”, in which numerous
objects have limited examples.

We first compare the outcome of training the FCN-32 network with random initial values and
with pretrained weights. Both setups were first trained on the Potsdam dev-train set (IR, R, G bands)
and then used to generate a pixel-wise classification of three Potsdam dev-val and three Vaihingen
images. Overall accuracy and average F1-score for the two setups are shown in the first and second
rows of Table 1. FCN-32 trained with random initial values had poor performance on Vaihingen
images (average F1-score: 43) when compared to FCN-32 trained with pretrained weights (average
F1-score: 57.31). This is because networks trained on limited training data with random initialization
usually overfit the data and generate poor results on unseen data. Hence, in the absence of large
ground truth data, it is desirable to train a network with pretrained weights with a reduced learning
rate (fine-tuning) instead of random initialization.

Even when the network is trained with pretrained weights, the classification results for Vaihingen
images are poor. One of the main reasons is the ground sampling distance. Vaihingen test images
are at 9 cm resolution whereas the network was trained with 5 cm Potsdam images. With Vaihingen
images, the filters look at the objects at a different scale than it did during training. This degrades the
classification performance on Vaihingen images. The car class which is scale dependent has an F1-score
of 30.62%. This is significantly lower than the F1-score of 79.09% for the car class in Potsdam validation
images. The classification accuracy will increase if the Vaihingen images are upsampled by a factor of
two. Please note that, in our analysis, we are mainly interested in comparing the results within the
Vaihingen set (e.g., what is the accuracy difference between training a network with pretrained and
random weights? (Table 1: rows 2–3 & columns 4–5)).

The multiple streams in an early fusion network can be combined anywhere after layers 1 through
5 of a CNN. So we trained and tested layer 1–5 fusion networks (layer n fusion denotes the fusion of
features after nth layer) on the dev-train and dev-test images. The layer 3 fusion network is shown in
Figure 2. Please note that the weights before and after the fusion layers are initialized with pretrained
and random weights, respectively. The (IR, R, G) data is input to one of the branches and (IR, NDVI,
NDSM) data to the other. Among the early fusion networks, layer 3 & 4 fusion achieved top results
on both Potsdam and Vaihingen images. The quantitative results for the five early fusion networks
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are shown in rows 4–8 of Table 1. We also found the accuracy and F1-scores for the late fusion and
composite fusion networks. The late fusion performed poorly on the Potsdam validation images
but achieved the best score on Vaihingen images, with an average F1-score of 63.11%. Since all the
layers of late fusion, except the final layer, used pretrained weights, the network generalized well to
achieve good results on a different scene (Vaihingen images). Layer 3 & 4 fusion had the next best
average F1-scores (62.91%, 61.91%). However, the layer 3 & 4 fusion networks had significantly fewer
parameters when compared to the late fusion architecture. We also did similar experiments with
SegNet architecture and found that the layer 3 & 4 fusion networks achieved similar results to the late
fusion approach. These results indicate that it is sufficient to combine multiband features early in the
network to achieve results on par with decision-level fusion. Please note that we have not validated
the step combination on a different modality. However, given that pretrained weights will be used for
layers before the fusion point, we expect the performance to transfer to other modalities including S-1,
S-2 data.

Table 1. FCN-32 network is trained on image patches obtained from 14 Potsdam training images.
The inference is made on remaining 3 Potsdam images and on 3 Vaihingen training images. In the
table, LaFsn denotes late fusion, CoFsn denotes proposed composite fusion, LnFsn denotes fusion after
layer n. The inputs for the fusion networks were (IR, R, G) & (IR, NDVI, nDSM) channels. The top two
results for both image sets are shown in bold-underlined and bold fonts.

Potsdam Val Vaihingen Val

Setup Overall
Accuracy

Average
F1-Score

Overall
Accuracy

Average
F1-Score

Pre-trained weights (IR, R, G) 89.85 87.01 66.63 57.31

Random weights (IR, R, G) 90.2 88.23 54.89 43.05

CoFsn 91.51 89.5 67.95 59.39

L1Fsn 90.43 88.28 68.86 59.02

L2Fsn 91.23 89.20 69.11 58.57

L3Fsn 91.36 89.27 68.89 61.91

L4Fsn 91.03 88.88 70.65 62.91

L5Fsn 88.42 85.52 70.39 62.09

LaFsn 90.41 87.53 72.97 63.11

4.4. Quantitative and Qualitative Analysis

In this section, we analyze the quantitative and qualitative results of the various fusion networks
evaluated on the four test datasets. Here, we employ FCN-8 instead of FCN-32 as the base architecture
to obtain finer semantic maps. Since FCN-8 has a skip connection after layer 3, we use the layer 3
fusion strategy as opposed to layer 4 fusion.

4.4.1. ISPRS Dataset Test Results

Table 2 shows the quantitative results for the Potsdam dataset. Among the proposed fusion
networks, fusion after layer 3 achieved the best average F1-score of 91.82%, closely followed by
the composite fusion framework, with 91.62%. We also computed the results for layer 3 fusion for
FCN-32 and SegNet architecture. Since FCN-32 provided a coarse segmentation map and SegNet
removed the fully connected convolutional layers, they achieved slightly lower scores. Also, late
fusion, where predictions were combined at the last layer, had an average F1-score of 89.28%. This
again shows that fusion at early stages generates results similar to the late fusion approach. The mean
F1-score of FCN-8 network trained with just with R, G, B bands was 87.08%, which indicates that
other bands provide complementary information that improves results. We also compared our results
against the state-of-art techniques listed on the benchmark website. The DST_5 approach is a late
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fusion framework where one stream of the network has IR, R, G bands as input and another stream
has just DSM as input. The DSM branch is structured such that there is no downsampling of the
image. The quantitative outcome of DST_5 is similar to our proposed approach of fusion after layer 3.
The top method, CASIA2 [11], which achieves an average F1-score of 92.52%, uses the recent network
ResNet [40] with IR, R, G bands as input. The increased performance can be attributed to the deeper
layers and residual connections of ResNet. We believe that if fusion analysis were made on ResNet
architecture, our results could be further improved.

Similarly, the quantitative results for the Vaihingen test images are shown in Table 3. On these
images, composite fusion and layer 3 fusion networks obtained comparable average F-measure values
(88.48% and 88.02%, respectively) and were slightly better than the late fusion approach. The table
also lists results from three other methods: DST_2 [45], DLR_10 [60], and NLPR3 [11]. The DLR_10
method is a two-step semantic segmentation algorithm. In the first step, boundaries are computed by
a memory-efficient neural network, and in the second step, boundary map and other image channel
information are used in the second neural network to obtain classification results. Even though DLR_10
produces an overall accuracy 0.6% higher than fusion after layer 3 of FCN-8, it consists of two neural
networks with a comparatively large number of neurons/parameters. The NLPR3 method includes an
additional post-processing step of conditional random fields to improve the neural network outcome.

Table 2. Potsdam dataset test results. The fusion networks were tested on (R, G, B) & (IR, NDVI,
nDSM) inputs. In the table, LaFsn denotes late fusion, CoFsn denotes proposed composite fusion,
L3Fsn denotes fusion after layer 3. Even though, the DLR_10 method produces an overall accuracy
0.6% higher than L3Fsn (shown in bold font), it consists of two neural networks with a comparatively
large number of neurons. The NLPR3 achieves the best result (bold and underlined) because of an
additional conditional random fields inference step.

F1-Score

Method Imp.
Surface Building Low

Veg. Tree Car Avg.
5 Classes

Overall
Acc.

FCN-8 (R, G, B) [46] 88.7 91.5 82.2 82.2 90.8 87.08 85.5

L3Fsn (SegNet) 92.0 96.3 85.5 86.5 94.5 90.96 89.4

L3Fsn (FCN-32) 92.3 96.8 86.5 87.3 91.3 90.84 90

L3Fsn (FCN-8) 92.6 97.0 86.9 87.4 95.2 91.82 90.3

LaFsn (FCN-8) 90.6 95.9 83.5 83.3 93.1 89.28 87.9

CoFsn (FCN-8) 92.5 97.0 86.5 87.2 94.9 91.62 90.2

DST_5 [45] 92.5 96.4 86.7 88.0 94.7 91.66 90.3

CASIA2 [11] 93.3 97.0 87.7 88.4 96.2 92.52 91.1

Table 3. Vaihingen dataset test results. The fusion networks were tested on (IR, R, G) & (IR, NDVI,
nDSM) inputs. In the table, LaFsn denotes late fusion, CoFsn denotes proposed composite fusion,
L3Fsn denotes fusion after layer 3 (with FCN-8 as a base network).

F1-Score

Method Imp.
Surface Building Low

Veg. Tree Car Avg.
F1-Score

Overall
Acc.

LaFsn 88.8 93.5 80.5 88.5 70.2 84.3 87.7

L3Fsn 91.2 95.3 83.1 89.2 81.3 88.02 89.7

CoFsn 91.7 95.2 83.5 89.2 82.8 88.48 89.9

DST_2 [45] 90.5 93.7 83.4 89.2 72.6 85.88 89.1

DLR_10 [60] 92.3 95.2 84.1 90.0 79.3 88.18 90.3

Structured RF [9] 88.1 93.0 80.5 87.2 41.9 78.14 86.3

NLPR3 [11] 93.0 95.6 85.6 90.3 84.5 89.8 91.2
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The classification results of fusion after the layer 3 network on the test Potsdam and Vaihingen
images are shown in Figures 5 and 6, respectively. The test (IR, R, G) image, corresponding normalized
DSM, the classification results, and misclassification results are shown in the figures. Red pixels in
Figure 5c represent the class “clutter”. Green and red pixels in Figures 5d and 6d denote locations that
have been correctly classified and misclassified, respectively. The buildings, except at the boundaries,
have been classified with high accuracy in both Potsdam and Vaihingen images. This occurs because
of the discriminative height features available in the normalized DSM data. In Figure 5, the helipad
on top of a building is classified as road instead of building. Since normalized DSM images have
low height value for these pixels, the network predicts it as road. These errors could be mitigated
with accurate normalized DSM data. There are four more large misclassified areas: three parking
lots and a dirt patch in Figure 5. These belong to the class “clutter” but are wrongly classified as
road or low vegetation. This is because only limited training examples are available for most objects
in the class “clutter”. Class “clutter” represents pixels that do not belong to the other classes and
thus contains numerous distinct regions/objects. For the Vaihingen images, we ignored the class
“clutter” during training, since very few pixels were available. As a consequence, the railway track
in Figure 6 is classified as low vegetation. For both datasets, the F1-score of the tree and vegetation
classes is less than 90%. Most often, trees get misclassified as vegetation and vice versa due to the
single scale input, noisy height information, and ambiguity in the ground truth. The first row of
Figure 7 shows an example of misclassification between trees and low vegetation. On the whole,
there are errors at the region/object boundaries for all classes due to the use of single scale input and
downsampling–upsampling operations in the network. In general, the layer 3 fusion and composite
fusion results look similar, which is in agreement with their quantitative scores (examples in Figure 7b
and c (columns 2 and 3). The late fusion results for the same areas are shown in Figure 7d (column 4).
Some of the cars and buildings in shadow have been misclassified. The classification results for all test
images can be found on the benchmark website [11].

(a) IR,R,G image (b) norm DSM (c) Result (d) Misclass. (red)

Figure 5. Potsdam test result: (a) Test image (IR, R, G), (b) corresponding normalized DSM image,
(c) Classification result (fusion after layer 3) and (d) Pixels that are misclassified are marked in red.
Boundaries in black were ignored during evaluation.
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(a) IR,R,G image (b) norm DSM (c) Result (d) Misclass. (red)

Figure 6. Vaihingen test result: (a) Test image (IR, R, G), (b) corresponding normalized DSM image,
(c) Classification result (fusion after layer 3) and (d) Pixels that are misclassified are marked in red.
Boundaries in black were ignored during evaluation.

(a) (R, G, B) or
(IR,R,G)

(b) Layer 3
Fusion

(c) Composite
Fusion

(d) Late
Fusion

Figure 7. Potsdam and Vaihingen test result: (a) Test image, (b) Fusion after layer 3 result, (c)
Composite fusion result and (d) Late fusion result.

4.4.2. Sentinel Dataset Test Results

The proposed fusion networks were trained on the 48,497 images generated from the four Sentinel
images that cover Austria, Czech Republic, Portugal, and Italy and then evaluated on three test
images (over France, The Netherlands, and Germany). The fusion network requires three band
inputs, and there are 286 ways to choose three bands from the 10 S-2 bands, two S-1 bands, and the
VV/VH band. In our work, support vector machines (SVMs) [61] were employed to find the best
three-band combination. First, 286 SVM classifiers were trained on respective triple band combinations.
The training data for the SVM consisted of 40,000 samples drawn randomly from training images over
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Austria and Czech Republic (5000 for each class). A linear kernel was used and the optimal value for
the cost parameter was found through grid search and cross-validation. The trained classifiers were
then tested on the France image. The LIBSVM toolbox [62] was used for both training and testing.
Among the combinations, (B6, B8a, B11) bands achieved the best overall accuracy (76.88%) and the best
average F1-score (55.92%) (Water = 53.12%; Farmland = 53.55%; Forest = 89.89%; Urban = 27.09%) on
the test image. In another experiment, SVM classifiers were trained on different 6 band combinations
with fixed (B6, B8a, B11) bands. The band combination (R, G, B, B6, B8a, B11) gave the best overall
accuracy (overall accuracy: 78.28% and average F1-score: 59.83%) on the test image. Hence, this
band combination was used to compare the fusion methods. This band selection process is a simple
approach and a good starting point for the CNN classification. However, the performance trend of
SVM might not carry over to the deep learning method. Finding the best band combination for the
latter requires a more thorough analysis. To evaluate the classification performance of SAR data, the
band combination (VH, VV, VV/VH) was selected.

Table 4 shows the quantitative results of the neural networks on different band combinations.
The results from (R, G, B), (VH, VV, VV/VH), and (B6, B8a, B11) data are shown in the first three rows.
Among the three, S-1 bands achieve the best results, with an overall accuracy of 84.87% and an average
F1-score of 75.80%. The overall accuracy and F1-scores shown in the table are averaged over the three
test images. The scores for the individual images can be found in the supplementary file. Except for the
water class, (R, G, B) and (B6, B8a, B11) bands perform better than (B6, B8a, B11) bands. This shows a
more detailed analysis is required to find the best combination in the deep learning setup. In addition,
the proposed fusion networks were also tested on different band combinations, and the corresponding
results are shown in rows 4 through 6 of Table 4. The quantitative results of layer 3 fusion are better
than the late fusion network (rows 4 and 5 of Table 4), which is consistent with our previous findings.
We also compared our fusion results against the FuseNet method [37] (kappa: 0.612). It is evident
from the results that the multistream approach is better than a single stream network. In the layer 3
fusion scenario, combining features from multimodal bands (R, G, B) and (B6, B8, B8a) improves the
performance of farmland, forest, and urban class. For the water class (F1-score = 55.96%), the score lies
in between the individual band results ((R, G, B)-36.18% and (B6, B8, B8a)-63.17%). However, in the
late fusion approach, where the decision is made at the very end, the result is better across all classes.
The network learns to preserve good decisions from both branches as opposed to early fusion where
the decision is based on the fused features.

Table 4. Quantitative Results for Sentinel-1 and -2 images. LaFsn denotes late fusion, CoFsn denotes
proposed composite fusion, L3Fsn denotes fusion after layer 3. The L3Fsn method achieves the best
results with a kappa value of 0.6161.

F1-Score

Method Water Farmland Forest Urban Acc. kappa

(R, G, B) 36.18 83.01 81.96 81.25 81.32 0.5019

(VH, VV, VV/VH) 51.53 85.02 84.80 81.87 84.87 0.5965

(B6, B8a, B11) 63.71 81.24 74.57 67.48 76.07 0.3618

L3Fsn (R, G, B) & (B6, B8a, B11) 55.96 87.65 85.84 82.57 85.60 0.6161

LaFsn (R, G, B) & (B6, B8a, B11) 66.82 86.38 85.07 82.54 85.11 0.6029

CoFsn (R, G, B) & (B6, B8a, B11) 55.26 87.92 85.63 81.69 85.37 0.6098

FuseNet [37] (R, G, B) & (B6, B8a, B11) 54.19 87.06 85.44 84.88 85.45 0.6120

The classification result for the layer 3 fusion network on the test image over France (Figure 8a)
is shown in Figure 8c. Ground truth with four classes obtained from OSM is shown in Figure 8b.
Farmland and forest cover most of the test area. We also display the classification result where
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GT is available in Figure 8d. There is potential for improvement in the results, especially for the
class “water”. The quantitative scores for the class “water” are significantly lower than those for
farmland and forest. In Figure 9, note that water boundaries of rivers do not align well with real
boundaries. Farmland on the banks or boundaries gets misclassified as water. One of the reasons is
that downsampling–upsampling operations of the neural network leads to coarse classification at the
boundaries. Another reason behind the low F1-score for the class “water” are the errors in the ground
truth data. There are many water regions in the test images that have dried up. Figure 10 shows one
such example in the center of the image. The ground truth may have been generated at a different
season/time and hence is not accurate. With the use of sparse convolution filters and accurate ground
truth (during training/testing), these errors could be further minimized. The qualitative results for
Netherlands and Germany images can be found in the Supplementary Materials.

(a) S-2 - France (b) GT (c) Result (d) Masked Result

Figure 8. France image. (a) Sentinel-2 (R, G, B) image. S-2 image copyright: “Copernicus Sentinel
data [2017]”, (b) Ground truth from OpenStreetMap, (c) Result from layer 3 fusion network, (d) Result
where GT is available (pixels where GT is not available are masked).

(a) S-2 - France (b) GT (c) Result (d) Masked Result

Figure 9. Section of France image. (a) Sentinel-2 (R, G, B) image. S-2 image copyright: “Copernicus
Sentinel data [2017]”, (b) Ground truth from OpenStreetMap, (c) Result from layer 3 fusion network,
(d) Result where GT is available (pixels where GT is not available are masked).



Remote Sens. 2018, 10, 1429 18 of 25

(a) S-2 - France (b) GT (c) Result (d) Masked Result

Figure 10. Section of France image. (a) Sentinel-2 (R, G, B) image. S-2 image copyright: “Copernicus
Sentinel data [2017]”, (b) Ground truth from OpenStreetMap. Four classes: farmland (green), forest
(olive), water (blue), and urban (yellow), (c) Result from layer 3 fusion network, (d) Result where GT is
available (pixels where GT is not available are masked).

The results of the proposed supervised classification method are impacted by multiple factors.
These factors include band selection, number of classes, image resolution and image quality (data
dependent) and filter size, the stride of convolution, number of downsampling operations (network
dependent). Here, we discuss the degree of influence of these factors on the classification performance.

The spectral bands play a major role in the classifier training and performance. The quantitative
impact of various spectral band combinations was discussed earlier. The classification results change
significantly with different band combinations (Table 4). Some prior information and in-depth analysis
of data are required to find the best band combination. Since forest and farmland are the two main
classes, the red edge and NIR bands should perform well in this classification task. Based on this prior
information, the results from (B7, B8, B8a) band combination was also computed. An average F1-score
of 78.28% (water = 62.20%, farmland = 86.02%, forest = 83.35%, urban = 81.52%), overall accuracy of
84.61% and a kappa value of 0.5895 was obtained. The results are similar to the S-1 data which attained
the highest accuracy among the single stream network.

Another important factor that affects classification performance significantly is the class type.
When a class with poor resolution or ground truth introduced, it can potentially bring down the
performance for all classes. To illustrate the effect, (R, G, B) bands of S-2 data was employed to classify
five classes: water, farmland, forest, urban and road. At 10 m resolution, the roads occupy only a few
pixels in the image. In addition, the network also has several downsampling operations. Given the
conditions, it is not ideal to introduce the road class. The quantitative results for (R, G, B) image
were: overall accuracy = 59.87%, average F1-score = 49.51% (water = 43.29%, farmland = 75.78%,
forest = 65.25%, urban = 41.56%, and road = 21.70%). Results are significantly lower than the four
class outcome shown in Table 4. The problem could be alleviated by any of the following options: (a)
ignoring the class, (b) modifying the loss function in the neural network or (c) using high-resolution
input. This shows that ground sampling distance (GSD) of the input data and the network design
determines how well a class can be discerned. In the ISPRS dataset (GSD of 5 cm and 9 cm), roads were
classified with high accuracy in the FCN setup. Hence, for classes like road, car, it is desirable to have
a higher resolution input (GSD of about 10 cm for cars and 50 cm for roads) for the given setup.

In our work, images at a single scale were used for training the neural networks. If the network
where to be tested on images at a different scale, the results will be poor. This was evident in Table 1,
where a network trained with ISPRS Potsdam images (GSD 5 cm) was tested on low-resolution
Vaihingen images (GSD 9 cm). Use of region proposal network [63] or training the network with
multiscale inputs should provide consistent results across multiple scales. Another aspect that
determines the classification accuracy is the input image quality. The factors that affect remote
sensing images include misalignment of spectral bands, cloudy or hazy atmospheric conditions,



Remote Sens. 2018, 10, 1429 19 of 25

and large shadows due to illumination. We expect the performance to degrade while testing on these
images. One example can be found in the ISPRS images, where numerous cars under the shadow
were misclassified.

To illustrate the impact of network structure or parameters on classification outcome, we designed
a new layer 3 fusion network with atrous convolution [41]. The new architecture downsamples the
features only once after the first layer. The rest of the network uses atrous convolution to increase the
field of view. Given the GPU memory limitation, some of the layers were removed and the number of
features at each layer was reduced. With these improvements, the overall accuracy increased to 88.17%
and average F1-score to 81.88% (water = 65.83%, farmland = 89.08%, forest = 88.98%, and urban =
83.61%). It could be seen that this is a significant improvement over other results listed in Table 4.
The network architecture can found in the supplementary file.

4.4.3. Zeebruges Dataset Test Results

We tested our fusion framework on Zeebruges images by passing R, G, B channels to one stream
of the network and a combination of DSM, (R − G), and relative luminance from RGB bands to the
second branch. As a preprocessing step, the luminance and (R − G) channels were scaled to the
range −127 to 127. For the R, G, B and DSM bands, the respective mean value is computed from all
the training images and then subtracted from its original intensity values. The quantitative results
obtained from the benchmark website are shown in Table 5. The kappa values of layer 3 fusion and
late fusion are 0.84 and 0.81, respectively, which is consistent with earlier results. Except for the boat
class, early fusion outperformed late fusion in all other classes. The classification result of a test image
for the layer 3 fusion method is shown in Figure 11c. Corresponding RGB and DSM images are shown
in Figure 11a,b, respectively. In two areas of the image, boats parked on the road were misclassified
as building/car/road. Please note that examples of this occurrence were not present in the training
images. Thus layer 3 and composite fusion, which combines RGB and height features early in the
network, performed poorly on this class. However, the late fusion method, which combines RGB and
height branch information only at the end, was able to correctly predict most of the boats parked on
the road (shown in Figure 11d). Hence, the F1-score for the car class in the late fusion network (63.71%)
is better than that of the layer 3 fusion network (55.77%).

(a) R, G, B image (b) DSM (c) Layer 3 (d) Late

Figure 11. A Zeebruges test result: (a) R, G, B image, (b) DSM, (c) Layer 3 result, (d) Late fusion result.
Zeebruges (a,b) images courtesy grss_dfc_2015 [12,13].

We also compared our results with two methods: (a) ONERA [55] and (b) RGBd trained
on AlexNet [13]. In the ONERA approach, a linear SVM was trained on features extracted from
VGG-16 initial convolution layers. Due to lack of data augmentation and low-resolution features, the
quantitative results obtained were significantly lower than those of the proposed fusion networks.
In the second method, AlexNet architecture was trained from scratch with all the input bands, and
it achieved a kappa value of 0.78. The DLR and DST teams (in Tables 2 and 3) did not evaluate their
results on this dataset.
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Table 5. Quantitative results for the Zeebruges test images. In the table, LaFsn denotes late fusion,
CoFsn denotes proposed composite fusion, L3Fsn denotes fusion after layer 3. The L3Fsn method
achieves the best results with a kappa value of 0.84.

Method Imp.
Srfc Bldg Low

Veg. Tree Car Cltr Boat Water Over.
Acc. k

L3Fsn 84.8 83.93 84.24 80.17 83.13 62.83 55.77 98.97 87.91 0.84

LaFsn 81.67 80.20 79.99 73.64 81.86 61.47 63.71 98.59 85.22 0.81

CoFsn 81.26 76.96 74.67 77.95 82.08 57.47 50.81 98.47 83.63 0.79

ONERA [55] 67.66 72.7 68.38 78.77 33.92 45.6 56.1 96.5 76.56 0.7

RGBd
AlexNet [13] 79.10 75.60 78.00 79.50 50.80 63.40 44.80 98.20 82.32 0.78

4.4.4. Computational Metrics

We computed the runtime and corresponding GPU memory for the three fusion networks (layer
3 fusion, composite fusion, and late fusion) using Caffe time and nvidia-smi commands. Tables 6
and 7 show the forward and backward pass time, GPU inference memory, and number of parameters
for each network. Run time was computed on a Titan X GPU with an input image of size 224 × 224
pixels, averaged over 50 iterations. The total computation time for processing the France test image
(5253 image patches) is also shown in the third column of Table 6. It includes time to (1) initialize the
network in GPU with weights, (2) transfer image patches from CPU to GPU, (3) process in GPU, and
(4) transfer output to CPU. It can be seen that layer 3 fusion has the lowest computational complexity.

Table 6. Computational time in ms for the forward and backward pass of the three fusion networks.
Time in seconds to generate the result for a test image (France). The test image (France) was divided
into 5253 image patches each of size 224 × 224 pixels. In the table, LaFsn denotes late fusion, CoFsn
denotes proposed composite fusion, L3Fsn denotes fusion after layer 3.

Method Time (ms) Total Time for

Forward Backward A Test Image (s)

L3Fsn 19.09 49.61 163

CoFsn 23.51 57.57 185

LaFsn 28.99 86.74 212

Table 7. GPU memory consumption at inference time and the number of parameters of the three fusion
networks. In the table, LaFsn denotes late fusion, CoFsn denotes proposed composite fusion, L3Fsn
denotes fusion after layer 3.

Method GPU Inference Parameters

Memory (MB) (M)

L3Fsn 1826 138.44

CoFsn 2084 137.99

LaFsn 2880 268

As discussed earlier, training for all the datasets was done in two stages: (a) train just the layers
after fusion point with random initialization, then (b) fine-tune all the layers. We analyzed the test
results after stages 1 and 2 individually, i.e., we used the weights obtained after stage 1 and 2 training
to generate (two corresponding) results on test images. This experiment shows that for layer 3 fusion,
the second-stage training does not improve the quantitative scores significantly. Also, there were only
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minor changes in the weights of the layers. Table 8 lists the layer 3 fusion and late fusion overall
accuracy for Vaihingen and Zeebruges images. This indicates that the second-stage training could
be neglected and the pretrained weights for layers 1 through 3 could be shared in both streams of a
network. This would be useful if numerous branches were to be used in a network.

Table 8. Two-stage results: overall accuracy of Vaihingen and Zeebruges images. The weights obtained
after stage 1 and 2 training were used to generate two corresponding test results.

After 1st Stage After 2nd Stage After 1st Stage After 2nd Stage

Method Overall Accuracy

Vaihingen Zeebruges

L3Fsn 89.6 89.7 87.93 87.91

LaFsn 87.0 87.7 84.82 85.22

5. Conclusions

In this paper, we compared early and late fusion of features in a neural architecture for application
in multisensor aerial/satellite image classification. The network consists of two or more branches,
depending upon the number of input channels available in the multisensor input. The features from the
different branches were concatenated and passed through additional convolutional layers to generate
an output. The results for four different images showed that fusion after layer 3 (early) was able to
achieve results on par with or better than late fusion architecture. The advantage of an early fusion
network is that it has fewer parameters, thus reduced computation time and GPU memory. We also
propose a composite fusion network that fuses features throughout the network, which achieved
top results on three of the four datasets. Utilizing OpenStreetMap, we were also able to apply these
networks for the semantic classification of Sentinel-1 and Sentinel-2 satellite images.

As future work, we plan to train neural networks on a self-supervised task and then use
them for semantic classification. Self-supervised learning does not require manual ground truth.
A self-supervised task includes the prediction of pixel values of an input image that were randomly
removed during training. The features learned by the process are then used for supervised classification
of satellite images. For Sentinel images, we plan to collect a large number of images and corresponding
ground truth from OpenStreetMap and then train the framework with random initialization.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/9/1429/
s1, Sentinel Qualitative Results, Sentinel Quantitative Results, Sentinel Image Information.
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Abbreviations

The following abbreviations are used in this manuscript:

CIR Color-infrared
CoFsn Composite fusion
CRF Conditional random field
CNN Convolutional neural network
DSM Digital Surface model
FC Fully connected layers
FCN Fully convolutional network
GRSS Geoscience and Remote Sensing Society
GPU Graphics Processing Unit
IR Infrared
IEEE Institute of Electrical and Electronics Engineers
ISPRS International Society for Photogrammetry and Remote Sensing
LaFsn Late fusion
L3Fsn Fusion after layer 3
NDVI Normalized Difference Vegetation Index
NDSM Normalized Digital Surface model
OSM OpenStreetMap
ReLU Rectified Linear Unit
SegNet Segmentation Network
SVM Support Vector Machine
SAR Synthetic Aperture Radar
VGG Visual Geometry Group
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