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Abstract: As the Global Precipitation Measurement (GPM) Core Observatory satellite continues
its mission, the latest GPM-era satellite-based precipitation estimations, including Global Satellite
Mapping of Precipitation (GSMaP) and Integrated Multi-satellitE Retrievals for the GPM (IMERG),
have been released. However, few studies have systematically evaluated these products over
mainland China, although this is very important for both the end users and data developers. To these
ends, the final-run uncalibrated IMERG V05 (V05UC), gauge-calibrated IMERG V05 (V05C) and
IMERG V04 (V04C), and latest gauge-calibrated GSMaP V7 (GSMaP) are systematically evaluated and
mutually compared against a merged product obtained from the China Meteorological Data Service
Center via continuous statistical indices and an error decomposition analysis technology suite over
mainland China from April 2014 to December 2016 at a 3 hourly scale and 0.1◦ × 0.1◦ resolution. The
results show that, irrespective of the slight overestimation in the southeast and underestimation in the
northern Tibetan Plateau, all four GSPEs could generally capture the spatial patterns of precipitation
over mainland China. Meanwhile, the overall quality of the GSMaP is slightly superior to the IMERG
products in east and south China; however, it also suffers from an overestimation of light rain and an
underestimation of heavy rain. Such overestimation and underestimation are primarily from a large
false precipitation in light rain and a negative hit bias in heavy rain, respectively. The latest IMERG
V05 products have not shown significant improvement over the earlier version (V04C) in east and
south China, but the calibrated V05C can best reproduce the probability density function in terms
of precipitation intensity. Furthermore, V04C shows remarkable underestimation over the Tibetan
Plateau, while this shortcoming has been resolved significantly in V05C. Alternately, the effects of the
gauge calibration algorithm (GCA) used in IMERG are examined by comparison of V05UC and V05C.
The results indicate that GCA cannot reduce the missed precipitation, and even enlarges the false
precipitation over some regions. This reveals that GCA cannot effectively alleviate the bias resulting
from the rain areas’ delineation and raining or not-raining detection. In addition, all of the products’
performance can be improved, particularly in the dry climate and high-latitude regions. This is a
systematic estimation for GSPEs, providing deep insight into the characteristics and sources of error,
and it could be valuable as a reference for both algorithm developers and data users, as well as for
associated global products and various applications.
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1. Introduction

In China, floods and droughts are two primary frequently occurring and disastrous natural
hazards that have caused tremendous loss of life and property over past decades [1,2]. Precipitation, as
one of the most important components of global water and energy cycles, is vital to flood forecasting
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and control, drought monitoring, and related emergency management [3]. However, obtaining accurate
precipitation has always been challenging because of the great spatial heterogeneity of precipitation at
different spatiotemporal scales [4].

Currently, precipitation can be measured by three methods, namely: gauge, weather radar,
and satellite-based sensors. Spatial interpolation and geostatistical analysis using gauge-based
observations are primary approaches to obtain the spatial precipitation distribution for different
regions. However, for sufficient accuracy, these approaches require an adequate and dense rainfall
observation network. In fact, these requirements are too harsh for many remote parts of the world and
most developing countries. In regard to China, the complex topography and relatively underdeveloped
economy have led to sparse and uneven distributions of rain gauge stations, particularly for the
mountainous or highland western and northern China. Additionally, the data latency and limited
spatial representativeness caused by the inhomogeneous distribution of rain gauges hamper the use
of these data for some applications, especially for flood simulation and forecasting. Ground-based
weather radar, which can provide real-time high spatiotemporal-resolution monitoring, is another
important source for acquiring localized precipitation information. Nevertheless, the weather radars
also suffer from shortcomings, including limited coverage, variable accuracy, and limited utility in cold
weather and mountainous terrains [5,6]. Furthermore, the distribution of the weather radars is much
more sparse than rain gauges, which means that precipitation estimations based on weather radars
cannot be widely used in China. The only practical way to achieve the comprehensive estimation of
precipitation on regional and national scales relies on earth observation satellites [3,7] due to their
extensive spatial coverage and consistent measurements. Although satellite-based precipitation
estimations (SPEs) may not be precise to within a single pixel, some of them can provide near
real-time data and even accurate information on precipitation occurrence, amount, and distribution in
area-averaged estimations over sub-basins [8].

Since the Tropical Rainfall Measuring Mission (TRMM) was launched as the first dedicated
meteorological precipitation satellite in 1997, a growing number of quasi-global SPEs with various
temporal and spatial resolutions have been released publicly by combining many international satellite
platforms. Among them, TRMM Multi-Satellite Precipitation Analysis (TMPA) [9], the National
Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) morphing
technique (CMORPH) estimations [10], Precipitation Estimation from Remotely Sensed Imagery using
Artificial Neural Networks (PERSIANN) [11], Global Satellite Mapping of Precipitation (GSMaP) [12],
and other precipitation products have achieved great success and been widely applied in global and
regional disaster forecast and monitoring or water resource management. The application of these free
and open-access products has yielded substantial scientific and societal benefits. After over 17 years of
productive data gathering, the instruments on TRMM were turned off in April 2015 and re-entered
the atmosphere on June 2015. As TRMM’s successor, the Global Precipitation Measurement’s (GPM’s)
Core Observatory (CO) satellite was deployed on February 2014 by a joint effort of the American
National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration
Agency (JAXA), marking a transition from the TRMM era to the GPM era.

The GPM mission is an international constellation of satellites, including one CO satellite and
approximately 10 partner satellites. The CO satellite is equipped with a dual-frequency precipitation
radar (DPR; Ku-band at 13.6 GHz and Ka-band at 35.5 GHz) and a conical-scanning multichannel GPM
Microwave Imager (GMI; frequencies range between 10–183 GHz), is regarded as the foundation of the
GPM mission, providing a reference standard to unify precipitation measurements from a constellation
of research and operational satellites. Moreover, the joint application of sensors in the CO satellite can
detect light and solid precipitation more accurately, making it possible to estimate the precipitation in
arid and cold regions.

The GSMaP products using a newly developed algorithm for the GPM mission [13] were released
by JAXA in late 2014. In this version, various attributes derived from all of the available passive
microwave radiometers except for the DPR have been used to retrieve rain rates. Meanwhile, NASA
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also published their first GPM-era SPEs (GSPEs), namely, the Integrated Multi-satellitE Retrievals for
the GPM (IMERG). The IMERG was performed by integrating the TRMM Multi-satellite Precipitation
Analysis (TMPA), the Precipitation Estimation from Remotely Sensed Imagery using Artificial
Neural Networks–Cloud Classification System (PERSIANN-CSS) and the Climate Prediction Center
Morphing–Kalman Filter (CMORPH-KF) techniques into the unified United States (US)-developed
algorithm. Based on accuracy and latency, the GSMaP can offer the global rainfall map in near
real-time (GSMaP_NRT), the microwave-infrared (IR) reanalyzed product (GSMaP_MVK), and the
gauge-calibrated product (GSMaP_Gau). Similarly, IMERG also provides early, late, and final-run
model precipitation products. All of the products from GSMaP and IMERG are at the fine spatial
resolution of 0.1◦, but the temporal resolutions of GSMaP products are 1 h, while the temporal
resolutions of IMERG products are 30 min.

The continuous efforts by the scientific community to improve the retrieval algorithms and
estimation techniques have motivated the improvements of these GSPEs. Now, the latest GSMaP
V7 and IMERG V05 are available from their official website. In recent years, these GSPEs have an
even broader application, from near real-time extreme weather monitoring to climatological and
hydrometeorological research, especially for developing countries (such as China). Nevertheless, there
are also some potential limitations for these applications due to the inherent biases and indeterminate
errors contained in the GSPEs, which can be propagated and amplified through the applied integration
processes [2,14]. To facilitate the applications of these GSPEs, it is important to quantitatively validate
them and identify the error characteristics before serving as applied settings at regional and national
scales. In addition, mainland China has a complex topography and precipitation regime. The large
spatial variability of the topography and the precipitation distribution makes mainland China a good
test bed for assessing the accuracy of GSPEs. Additionally, water shortages in northwest China and
the high risk of flooding in southeast China have generated a large number of potential users who
want to employ GSPEs in their research regarding water resource management or flood warning and
forecasting. Thus far, Chen and Li [15] have evaluated IMERG and compared it with TMPA 3B43
products at a monthly scale using gauge measurements over mainland China from March 2014 to
February 2015, whereas a much finer time-scale analysis may be more necessary. Ning et al. [16]
quantitatively compared two GSPEs (IMERG and GSMaP) with a network of 840 precipitation gauges
over China. However, the sparsely distributed gauge stations could not provide accurate spatial
precipitation information, and thus resulted in greater uncertainty in the evaluation system. Moreover,
Tang et al. [17] have assessed the gauge-calibrated IMERG product at multiple temporal and spatial
scales with hourly ground-based observations, while Guo et al. [18] have systematically evaluated and
compared gauge-calibrated and uncalibrated IMERG products over mainland China. The works of
both Tang et al. [17] and Guo et al. [18] compared the performance of IMERG with the post-research
TMPA product, but the assessments and comparisons were only performed over a short time frame
(nine months for Tang et al. [17] and one year for Guo et al. [18]). In addition, most of the previous
research has mainly focused on evaluating the overall performance of GSPEs, but exploring where
the retrieval errors come from is also an essential aspect when evaluating the accuracy of GSPEs.
The error-component analysis introduced by Tian et al. [19] is a particularly effective approach for
tracking the error sources of GSPEs, since it has close correspondence to the precipitation retrieval
processes. The decomposition evaluation scheme has been employed by Xu et al. [20] to investigate
the characteristics and sources of the errors contained in gauge-calibrated and uncalibrated IMERG
products over the eastern part of mainland China during the warm season. Additionally, Ning et al. [21]
comprehensively analyzed the error characteristics and performance of the two GSPEs (IMERG and
GSMaP) over eastern China from April 2014 to March 2016 by using the error-component analysis.
To provide user guidance, they further compared these two products within eight first-level basins of
eastern China—namely, Songhua River, Liaohe River, Haihe River, Huaihe River, Yellow River, Yangtze
River, Southeast River, and Pearl River—and gave their recommendations for the GSPE users in these
regions. However, the above analyses are mainly focused on evaluating outdated versions of GSPEs or
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the improvement of GSPE over TRMM. There are very few assessments of the latest version of GSPEs.
In addition, with the new version of IMERG released on November 2017, worldwide ground validation
is quite desirable to identify and quantify the similarities and differences of products between the two
successive versions, as well as the improvement of IMERG V05 over V04.

Therefore, the final-run IMERG V05 including uncalibrated and gauge-calibrated products
(hereafter referred to as V05UC and V05C, respectively) and final-run gauge-calibrated IMERG V04
(hereafter referred to as IMERG V04C) are employed in this study. Meanwhile, the latest gauge-adjusted
GSMaP V7 (hereafter referred to as GSMaP) is also employed as a controlled comparison. The objectives
of this study are threefold: (1) evaluating the quality of the four GSPEs over the entirety of mainland
China at 3 hourly (3-h), 0.1◦ × 0.1◦ resolution against an hourly merged product obtained from the
China Meteorological Date Service Center (CMDSC) over mainland China with the conventional
statistical approaches and the error-component analysis technique; (2) performing an intercomparison
between variant IMERG products to explore the improvement of IMERG version upgrades and the
performance boost achieved by the gauge-calibrated process; and (3) intercomparing IMERG and
GSMaP products to explore the similarities and differences between the two products using different
retrieval algorithms.

This study will reveal the 3-h error features of multiple IMERG products and GSMaP and provide
basic accuracy information regarding the four products over mainland China for potential users who
wish to use these products in their research. The cross-comparison of IMERG products and between
IMERG and GSMaP products could provide valuable information for algorithm developers to better
understand the error features of satellite precipitation and their generation mechanisms. This paper is
structured as follows. Section 2 introduces the study area and related precipitation datasets. Section 3
provides the details of the error analysis methods. Sections 4 and 5 present the main results and the
discussion, respectively. Finally, a summary of the work is provided.

2. Study Site and Materials

2.1. Study Areas

The study area is the entirety of mainland China located between 73◦–135◦E and 18◦–53◦N. The
geography of China is variable, with regional differences in topography. The topographic variability
described by the digital elevation model (DEM) from the Geospatial Data Cloud (http://www.gscloud.
cn) is given in Figure 1a. From it, the terrain of China is gradually reduced from the northwest to the
east, and can be broadly divided into three elevation belts: the first belt is the Tibetan Plateau, whose
average altitude is above 4500 m; the second belt includes central and northern China, with an average
elevation between 1000 m and 2000 m; and the third belt is mainly located in eastern China, with an
average elevation of less than 500 m. The first belt is known as “the roof of the world”, and contains
many star-studded mountains and glaciers. Moreover, the Qaidam Basin, whose average altitude is
below 2000 m, is also within the first belt. There are many plateaus and basins scattered on the second
ladder, including the Inner Mongolia, Loess, and Yunnan–Guizhou plateaus, and the Tarim, Junggar,
and Sichuan basins. The third belt is dominated by hills, low mountains, and plains. The three major
plains of China, namely, the Northeast, the North, and the Middle-Lower Yangtze plains, are all on the
third belt.

China is located in the typical Asian monsoon region where the monsoon circulation plays an
important role in the transportation of water vapor, and the path, source, and sink of water vapor
transport determine the distribution of precipitation. Coupled with the effects of complex terrains,
mainland China can be divided into four climate districts based on the spatial distribution of average
annual precipitation [22]. The spatial distribution of the four climatic zones is shown in Figure 1b.
It is obvious that a dry climate generally dominates vast areas of northwestern China, except for the
Tianshan Mountains, where there is higher precipitation accumulation than the surrounding areas.
Meanwhile, the southeastern part of China is mainly controlled by the humid climate, benefitting
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from the influence of the subtropical and tropical monsoons. For regional analysis, six subregions are
selected based on Tang et al. [17]. Regions 1–2 are located in the semi-humid climate zone in northeast
China, which is primarily controlled by the monsoon climate of medium latitudes and characterized
by hot and wet summers and cold and dry winters [23]. Regions 3–4 are in the moist area of southern
China, with hot and wet summers and a mild and dry intensity in winter. Region 5 is dominated by the
temperate continental climate, with its little precipitation evenly distributed throughout the year [24].
Region 6 is situated across the transition from wet to dry, and is dictated by the plateau mountain
climate. This region is characterized by complex topography and high elevation, and exhibits great
precipitation spatial variability [25].
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2.2. Ground Reference Data

The ground reference data is an hourly gauge-satellite merged product obtained from the
CMDSC (http://data.cma.cn). This data set is produced by merging the ground data from more than
30,000 automatic weather stations (AWSs) over China with the CMORPH product by an improved
probability density function–optimal interpolation method (PDF–OI) [26]. The entire process for
generating the merged data requires four steps, which include: (1) interpolating the hourly AWSs’
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observations with strict quality control onto regular grid points with a spatial resolution of 0.1◦ over
mainland China using a modified climatology-based optimal interpolation (OI) algorithm [27–29];
(2) obtaining the CMORPH precipitation estimates (the original spatiotemporal resolutions are 8 km
and 30 min, respectively), accumulating to an hourly rate and resampling onto a horizontal resolution
of 0.1◦; (3) correcting the hourly CMORPH by matching its probability density function (PDF) with the
gauge precipitation analysis [29]; and (4) merging the bias-corrected CMORPH precipitation with the
gauge-based analysis to generate the hourly merged precipitation product with a horizontal resolution
of 0.1◦. It turned out that the monthly spatial distribution of the merged product was similar to that of
the China gauge-based daily precipitation analysis based on approximately 2400 national stations [26].
Moreover, the merged product performs reasonably well in China, and can capture the varying features
of hourly precipitation in heavy weather events [30]. Furthermore, the merged product has already
been used as reference data in the evaluation of GSPEs [20,31]. Therefore, we believe that the merged
product can act as a benchmark for evaluating GSPEs. However, most of the hourly AWSs are located
in southern and eastern China, and a relatively sparse gauge network exists across the northern and
western parts, especially over the Tibetan Plateau. Thus, uncertainty still exists in the merged data,
especially for sparse gauge areas, and could be a source of error in the evaluation of GSPEs in such
regions [32]. Given that, the six selected subregions all have relatively high densities of gauges. Note
that the assessment is performed at a 3-h temporal scale, so the reference data is summed up from
hourly to the 3-h scale.

2.3. Satellite-Based Precipitation Products

For the primary objectives mentioned above, four GSPEs—namely, V05UC, V05C, V04C, and
GSMaP—are used in this paper from April 2014 to December 2016. The four GSPEs are first
accumulated to a 3-h scale to match the reference. Then, they are respectively grouped with the
reference for further evaluation. Furthermore, the comparison of performance between V05UC and
V05C can help quantify the improvement of the gauge calibration algorithm (GCA) used in V05C, and
the difference between V05C and V04C can help accurately posit the promotion of the latest version.
Meanwhile, the addition of GSMaP helps the subsequent analysis to be more rational and persuasive.
The following is a brief introduction to the used GSPEs.

2.3.1. IMERG Products

The IMERG algorithm providing the multi-satellite precipitation products has been developed
as a unified US algorithm, drawing on strengths from TMPA, PERSIANN-CSS, and CMORPH-KF.
To obtain high spatiotemporal resolution precipitation estimations, the IMERG algorithm collects
observations from the passive microwave (PMW) sensors flying on a series of satellites in low earth
orbits (LEO) and the infrared (IR) sensors equipped in geosynchronous orbit (GEO) satellites. Given
that the PMW provide intermittent but relatively accurate estimations by directly sensing rainfall,
while the IR sensors provide excellent temporal resolutions but have great uncertainty caused by
the indirect relationship with precipitation [33], the IMERG algorithm is designed to use as many
PMW estimations as possible and fill in gaps with GEO-IR estimations. For this purpose, the PMW
estimations are gridded, intercalibrated, and morphed, following the GEO-IR-based feature motion,
and integrated by the GEO-IR estimations from PERSIANN-CCS when the PMW estimates are too
sparse. Then, the monthly gauge precipitation data from the Global Precipitation Climatology Center
(GPCC) Monitoring Product are introduced to provide crucial regionalization and bias calibration
to the satellite estimates. More detailed information regarding IMERG can be obtained from the
“IMERG Algorithm Theoretical Basis Document” [34] and the technical document that is accessible in
Huffman et al. [35].

IMERG provides three types of products: early-run, late-run, and final-run products with spatial
and temporal resolutions of 0.1◦ and 30 min, respectively, among which the early-run and late-run
products are near real-time, with latencies of 4 h and 12 h, respectively, while the final-run product
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is a post real-time research product with a latency of approximately 2.5 months. Compared with the
early and late products, the final products, as the research-level products, provide the uncalibrated
and gauge-calibrated multi-satellite precipitation information. The difference between them is that the
monthly gauge data set from GPCC is introduced into the bias-calibration algorithm for calibrated
estimation, but not for the uncalibrated one. As noted above, the algorithm of IMERG has now been
upgraded to V05, and the final-run IMERG are available as of November 2017. Similarly to the previous
versions, the data record begins on 12 March 2014. The main changes from V04 to V05 are as follows:
(1) the Goddard Profiling Algorithm (GPROF) that is used for computing precipitation estimates from
all of the PMW sensors onboard GPM satellites has been updated from GPROF V04 to GPROF V05;
(2) the high quality (HQ) precipitation field spatial coverage has been increased from 60◦ N–S to 90◦

N–S; (3) a Quality Index has been added for all of the 0.5-h and monthly products; and (4) gauge
error estimates are refined to provide proper weighting when combined with satellite-only estimates.
Detailed information on this conversion can be found in the V05 IMERG Final Run Release Notes [36].
Although, given the main objectives of this study, just three final-run IMERG products are employed
in this paper, the near real-time IMERG products, including early-run and late-run products, also
need to be assessed, given their widespread application in hydrometeorological modeling and disaster
forecasting [37]. Future researches investigating this aspect should be recommended.

2.3.2. GSMaP Product

The GSMaP project [38] was originally sponsored by the Japan Science Technology Agency (JST)
and is now sponsored by the Japan Aerospace Exploration Agency (JAXA). Since the GPM mission
was launched, the GSMap project has released corresponding GPM-era precipitation products, namely,
GSMap V6, by adding information from GPM Core GMI. In this version, the precipitation estimates
were generated by the following three steps [39]: (1) calculating the rainfall rate from PWM sensors;
(2) propagating the rainfall-affected area using forward and backward morphing techniques [40];
and (3) refining the estimated data based on infrared brightness temperature by a Kalman filter
approach [41]. In the latest GSMaP V7 released in January 2017, some changes have been made to
improve their performance, such as the DPR observations from the GPM-CO satellite being used as a
database to improve the GSMaP algorithm, the snowfall estimation method and the NOAA multisensor
snow/ice cover maps being implemented to improve the accuracy of precipitation estimation in the
high latitudes, and the gauge calibration method and orographic rain calibration method having
been improved. In this paper, the GSMaP_Gau (hereafter referred to as GSMaP) produced from
GSMap_MVK and adjusted by the CPC global daily gauge data analysis [27] is employed.

3. Methods

To quantitatively evaluate the overall performance of the four GSPEs, a set of widely used
traditional statistical metrics were adopted. Then, an error decomposition technique and the
corresponding categorical statistical indices were applied to trace the sources of the errors in the GSPEs.

3.1. Continuous Statistical Indices

Two categories of statistical metrics were selected to comprehensively evaluate GSPEs. The first
category includes the correlation coefficient (CC), describing the degree of linear correlation between
the GSPEs and gauge observations. The second category includes the root mean square error (RMSE),
the mean absolute error (MAE), and the relative bias (Rbias), which are used to describe the error and
bias of GSPEs compared with gauge observations. Formulas and perfect values of those indices are
listed in Table 1.
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Table 1. List of the continuous statistical indices used to compare the Global Precipitation Measurement
(GPM)-era satellite-based precipitation estimations (GSPEs) and the gauged observations.

Statistic Metrics Equation Unit Rang Perfect Value

Correlation Coefficient
(CC)

CC =
∑n

i=1 (Ro,i−Ro)(Rs,i−Rs)√
∑n

i=1 (Ro,i−Ro)
2
√

∑n
i=1 (Rs,i−Rs)

2
NA 0~1 1

Root Mean Square Error
(RMSE) RMSE =

√
1
n ∑n

i=1 (Rs,i − Ro,i)
2 mm 0~+∞ 0

Relative bias (Rbias) Rbias = ∑n
i=1 (Ro,i−Rs,i)

∑n
i=1 Ro,i

× 100% % −∞~+∞ 0

Mean Absolute Error
(MAE) MAE = 1

n ∑n
i=1
∣∣Rs,i − Ro,i

∣∣ mm 0~+∞ 0

Notation: n represents the number of samples; Rs,i and Ro,i are GSPEs and gauged observations, respectively;
Ro and Rs are the mean values of the corresponding elements.

3.2. Error Decomposition

In this study, the simple and effective error decomposition scheme proposed by Tian et al. [19]
and extended by Yong et al. [22] has been adopted and applied to trace the source of the errors in
the four GSPEs. Through this method, the total precipitation bias (hereafter referred to as TB) can be
decomposed into three independent components: hit bias (HB), missed precipitation (MP), and false
precipitation (FP). The detailed concepts of the hit, missed, and false scenarios for the selected GSPE
against the gauged observations are expressed in Table 2, in which a hit scenario represents GSPE
and gauged observation reporting precipitation events simultaneously, a missed scenario shows that
the precipitation signal is missed by GSPE but detected by gauged observation, and a false scenario
indicates the opposite case of a missed scenario. In practice, two simple binary values (i.e., 1 and 0)
can be used to identify raining and not-raining for GSPEs and gauged observations, respectively.
According to this design, a binary mask and its Boolean complement are employed by Tian et al. [19] to
divide the three error components. Given a precipitation field, R(

→
x , t), one can derive a binary-valued

raining mask, P(
→
x , t), as follows:

P(
→
x , t) =

{
1 if R(

→
x , t) > 0

0 if R(
→
x , t) = 0 or missing

. (1)

Table 2. Contingency table showing how three independent error components (hit, missed, and false)
are identified by dichotomous variables (satellite products and ground reference).

Satellite Products

Rain: 1 No rain: 0

Gauged Observations Rain: 1 Hit Missed
No rain: 0 False 0

In reality, a small value (e.g., 0.3 mm/3 h) instead of 0 is usually used as the rain/no-rain
threshold to determine the mask. Then, the respective event masks of the GSPE (Rs(

→
x , t)) and the

gauged observation (Ro(
→
x , t)) can be performed using Equation (1). Subsequently, the hit mask (Ps,o),

the missed mask (Ps,o), and the false mask (Ps,o) for the chosen GSPE against gauged observation can
be defined as: 

Ps,o = Ps × Po

Ps,o = Ps × Po
Ps,o = Ps × Po

; (2)
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where Ps and Po denote the binary precipitation masks for the corresponding Rs(
→
x , t) and Ro(

→
x , t),

and Ps and Po are the Boolean complements of the corresponding elements. Here, the TB is defined as
the difference between GSPE and gauged observation:

TB = Rs − Ro. (3)

Then, the HB, MP, and FP are defined following Tian et al. [19]:
HB = TB× Ps,o

MP = Ro × Ps,o
FP = Rs × Ps,o

. (4)

According to the derivation of Tian et al. [19], the relation between the three independent error
components and the TB can be expressed as:

TB = HB−MP + FP. (5)

Significantly, TB, HB, MP and FP still contain spatial and temporal information, and the relation
described in Equation (5) still holds when spatial and temporal averaging is applied. Meanwhile,
because the three individual components make variable contributions to TB (e.g., MP and FP always
generate opposite biases, canceling each other out, and HB could be positive or negative for hit
scenarios), the three individual components could have larger amplitudes than TB. This indicates that
the TB employment by most conventional studies is not enough to truly understand the error features
of GSPEs. In addition, to better trace the error source and understand the error structure contained
in GSPEs, three categorical statistical indices, including FAR (false alarm ratio), POD (probability of
detection) and CSI (critical success index), are also adopted in this paper. Their detailed descriptions
are as follows: 

FAR = ∑k
1 Ps,o/∑k

1 Po

POD = ∑k
1 Ps,o/∑k

1 Ps

CSI = ∑k
1 Ps,o/∑k

1 (Ps,o + Ps,o + Ps,o)

. (6)

where k represents the number of time samples. Actually, POD gives the fraction of hit events among
all of the actual precipitation events, and FAR gives the fraction of false events among all of the events
detected by GSPEs. CSI is a more balanced index, combining the characteristics of false alarms and
missed events, and can be expressed as a function of POD and FAR [17]. In practice, the categorical
statistical indices FAR, POD, and CSI are very effective in assessing rain area delineation and raining
or not-raining detection, while the error decomposition scheme is a quantitative assessment for hit,
missed, and false scenarios.

4. Results

4.1. Spatiotemporal Analyses of Precipitation Accumulation

To analyze the accuracy in capturing precipitation accumulation between April 2014 and
December 2016, the spatial distributions of daily average precipitation derived from CMDSC and
GSPEs are illustrated in Figure 2 at 0.1◦ × 0.1◦ resolution. Intuitively, the spatial patterns of the
GSPEs shown in Figure 2 are visually compatible with CMDSC, which means that the four GSPEs can
generally capture the spatial patterns of precipitation accumulation over mainland China. Even so,
differences between disparate products or multiple versions still exist. For instance, the calibrated
V04C, compared to other estimations, shows obvious underestimates in the Tibetan Plateau, but holds
a higher level over southeast China, while V05UC has the lowest precipitation of the multiple GSPEs
over southeast China. In addition, from the CMDSC (Figure 2a), it is notable that the precipitation
shows strong spatial heterogeneity, with the precipitation intensities gradually decreasing from the
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southeast to the northwest and northeast. Meanwhile, the highest precipitation is concentrated on the
southeast coast, while the lowest precipitation appears in the Tarim Basin. Considering the regional
difference, there is a need to subdivide national-scale analyses into regional components.Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 26 
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Figure 2. Spatial distribution of daily average precipitation (mm/day) during April 2014 and December
2016 at 0.1◦ × 0.1◦ resolution derived over mainland China: (a) China Meteorological Date Service
Center (CMDSC), (b) V05UC, (c) V05C, (d) V04C and (e) GSMaP.

Daily average precipitations from four GSPEs within the six regions of mainland China during
April 2014 and December 2016 have been plotted in Figure 3 versus the CMDSC. The corresponding
quantitative indices, including the CC, Rbias, and RMSE computed from all of the records within the
corresponding region, are also added in Figure 3. The figure clearly shows that all four GSPEs exhibit
serious overestimation in regions 1–2 with relatively high positive Rbiases (31.24%, 28.87%, 25.31%
and 21.16% for Region 1, and 37.09%, 25.52%, 25.84% and 23.41% for Region 2). This overrated pattern
is primarily due to ice or snow cover and the high latitude, which complicate satellite observations [42].
Note that, although the overrated situation is not effectively assuaged, the CCs and RMSEs of V05C,
VO4C, and GSMaP are significantly improved by gauge calibration, indicating that gauge calibration is
beneficial for acquiring more accurate precipitation distributions in cold regions. In summary, GSMaP
is the best of the four GSPEs in regions 1–2, with the highest CCs (0.76 for Region 1 and 0.75 for
Region 2), and the lowest Rbiases (21.16% for Region 1 and 23.41% for Region 2) and RMSEs (0.37 mm
for Region 1 and 0.41 mm for Region 2).

In regard to the low-latitude and moist aspects of regions 3–4, all four GSPEs perform better
than in regions 1–2. The performance boost of the four GSPEs over regions 3–4 mostly benefits from
the relatively flat terrain and humid climate, which suit satellite observations. Furthermore, the
differences between uncalibrated V05UC and the three calibrated products (V05C, V04C, and GSMaP)
are remarkable. V05UC has the best Rbiases (6.42% versus 16.91%, 16.12%, and 13.40% for Region 3,
and 6.99% versus 11.31%, 12.71% and 8.81% for Region 4), but also the worst CCs (0.73 versus 0.85,
0.84 and 0.85 for Region 3, and 0.66 versus 0.83, 0.81 and 0.85 for Region 4). Moreover, the gauge
calibration algorithms used in V05C, V04C, and GSMaP all tend to increase precipitation accumulation
over high-precipitation regions (daily average precipitation higher than four mm/day) and thus lead
to greater Rbiases. Therefore, the three calibrated products do not show sufficient advantages in Rbias
and RMSE in spite of the improvements in CC within regions 3–4.
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six selected regions of mainland China during April 2014 and December 2016.

As for Region 5, which is characterized by an arid climate, the uncalibrated V05UC shows
significant overestimation, with an Rbias over 30%. This is not surprising, since hydrometeors detected
by the spaceborne sensors (which generally sample from the ice phase or cloud tops) may partially
or totally evaporate before they reach the surface due to the strong evaporation. Although the
Rbias appears to be effectively controlled in V05C, V04C, and GSMaP (11.12%, 12.76% and 21.75%
versus 30.62%, respectively), because the CCs (0.5, 0.33 and 0.47 versus 0.47, respectively) and RMSEs
(0.41 mm, 0.44 mm and 0.43 mm versus 0.48 mm, respectively) do not have remarkable improvements,
they all struggle in capturing accurate spatial precipitation accumulations. Hence, the application of
the four GSPEs over Region 5 should be used with caution. Besides, some high-precipitation grid
cells (above 2 mm/day) are found in uncalibrated V05UC, but they are not detected by the calibrated
products (V05C, V04C, and GSMaP). The primary reason is that the ground-based observations used
in IMERG and GSMaP have not detected these high-precipitation areas, and thus remove these outliers
via the gauge calibration algorithm.

Most parts of Region 6 are located within the Tibetan Plateau and sit astride the transition
zone from a humid area to an arid area. Although the bias-adjusted process corrected the notable
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underestimation of V05UC, with the Rbiases improving from −35.53% to 3.89%, many points of the
calibrated V05C still scatter far from the 1:1 reference line and present polarization features. This
indicates that some inner subregions of Region 6 still exhibit extreme overestimated or underestimated
scenarios. The basin-scale or finer subregion analyses are needed to locate the error. Meanwhile,
the CC Rbiases contained in GSMsP are close to those in V05C with greater spatial heterogeneity.
Furthermore, a severe underestimation (Rbias = −47.77%), which does not appear in IMERG inchoate
versions [17], is displayed in V04C. Fortunately, this underestimation has been suppressed in the
latest calibrated version. This situation should be borne in mind for IMERG users dealing with the
Tibetan Plateau. Besides, Region 6 shows the most dispersed graphs among the six subregions. Several
factors could contribute to these distributed graphs: (1) the topography and climate over this region
are complex, posing a great challenge for remote sensing observations; (2) the performance of current
retrieval algorithms is limited in catching the warm rain processes or short-lived convective storms
caused by topography and climate over this region; (3) few gauges are used in the gauge calibration
algorithm, which potentially degrades the quality of these GSPEs.

In general, compared to the satellite-only product (V05UC), the bias-corrected products have
a positive correction over regions 1–4. However, the overestimation of precipitation still cannot be
ignored, especially for regions 1–2, where the containing Rbiases are above 20%. Similarly, with a slight
performance improvement, the expected quality improvements do not appear in the IMERG product
update (from IMERG V04 to V05) over the above regions. It may benefit from the addition of the IR
streams that slightly improved the relative balance, and the performance of GSMaP is faintly superior
to the three IMERG products based on the CCs, Rbiases, and RMSEs over regions 1–4. The application
of the four GSPEs should be used with caution over Region 5 given the struggling performance in
obtaining accurate precipitation accumulation. For stable results, more sophisticated segmentation is
required over Region 6.

To check the consistency of the precipitation in the time series, the 3-h timescale regional averaged
precipitation accumulations from the four selected GSPEs versus the CMDSC are scattered in Figure 4.
Meanwhile, the Quantile–Quantile (Q–Q) plot technique is also adopted to illustrate more insight into
the natural differences between the four GSPEs and the CMDSC over the six regions of mainland China.
It is well known that if the GSPEs are close to the observed ones, the points in the Q–Q plots (green)
should fall close to the 1:1 reference line (blue lines). The greater the departure from the reference
line or the nonlinearity of the resulting graph, the greater the evidence of heterogeneity [43]. It is
evident that, despite the slight overestimation in high-precipitation events, the performances of GSMaP
are remarkably better than those of the other three GSPEs over regions 1–4. Additionally, in each
corresponding region of regions 1–4, GSMaP possesses the best CC and RMSE. Meanwhile, in Region
1 and regions 3–4, the two calibrated IMERG products (V05C and V04C) display slight improvements
relative to the uncalibrated product (V05UC), but do not effectively inhibit the overestimation of
heavy precipitation. In Region 2, the uncalibrated V05UC tends to overestimate the moderate
precipitation (3–6 mm/3 h), but underestimate the heavy rainfall (more than 6 mm/3 h). Note that this
overestimation and underestimation have been effectively controlled in its calibrated version, V05C.
In general, with high CCs, the four GSPEs better delineate the regional average precipitation process
in the 3-h timescale over regions 1–4. However, the abilities of the four GSPEs in depicting 3-h-scale
regional averaged precipitation accumulation are significantly reduced in regions 5–6. In these two
regions, V05C exhibits a slight advantage, but the undulate properties in high-precipitation events
(underestimation in Region 5 but overestimation in Region 6) demonstrate that there is much room
for improvement.
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2014 and December 2016.

4.2. Spatial Statistical Analysis

Spatial distributions of continuous statistical indices for the chosen four GSPEs at 3-h and 0.1◦ ×
0.1◦ resolution over mainland China are shown in Figure 5. From it, the spatial distributions of CCs are
positively correlated with precipitation accumulations (Figures 1b and 2). In humid and semi-humid
regions, the CCs oscillate approximately 0.6. However, they get lower in semi-arid and arid regions,
particularly for the Tarim Basin and northern Tibetan Plateau, where the CCs are mainly under 0.2.
The main causes of this situation are the interferences of complex topography and climate, which pose
a great challenge for accurate satellite precipitation estimation [44]. Meanwhile, a limited number of
gauges are adopted by the GPCC monthly gauge or CPC global daily gauge data analysis over such
areas, thus generating a potential performance reduction compared to the other regions. Furthermore,
the deterioration of CMDSC data is also a reason behind the reduced reliability of statistical indices.
The RMSEs and MAEs also show similar spatial distributions to that of precipitation accumulations.
This indicates that RMSEs and MAEs are closely interrelated for precipitation accumulation. Moreover,
despite the prominent underestimation of V04C over the entire Tibetan Plateau, the GSPEs are all better
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or slightly overestimate the precipitation in east and south China, and significantly underestimate the
precipitation in the northern Tibetan Plateau. In addition, all four GSPEs extremely overestimate the
precipitation over northwestern mainland China, especially for GSMaP in the Tarim Basin, where the
Rbias is above 80%.
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Figure 6 shows vertical error bars (±σ) of continuous statistical indices for the chosen four GSPEs
at a 3-h timescale over the six selected regions. The contrast of CCs (Figure 6a) and Rbiases (Figure 6c)
between the six regions proves that all four GSPEs show better performance in regions 1–4 than that
over regions 5–6. Meanwhile, the stable property is approved over regions 1–4, while strong spatial
heterogeneity is contained in the GSPEs over regions 5–6. This phenomenon is reasonable, because
regions 1–4 have greater precipitation intensities and relatively flatter topography than regions 5–6,
which is beneficial to precipitation estimation. Since the RMSE and MAE vary greatly over the six
regions due to the heterogeneity of precipitation accumulation, they are not suitable to be compared
between multiple regions. However, for each of the six regions, the comprehensive consideration of
four statistical indices can effectively provide advice on which one of the four GSPEs is most suitable.
Compared to the three IMERG-based products, GSMaP has a slight advantage over regions 1–4, but
shows steep regression over regions 5–6. Of the three IMERG-based products, V05C is the best in
the statistical analysis, but the minor improvements have not resulted in a qualitative upgrade in
quality. This result is consistent with the above analysis in Section 4.1. Besides, although all four GSPEs
have relatively finer spatial resolution (0.1◦), given the greater spatial heterogeneity of precipitation in
complex terrain, the spatial resolution of these GSPEs is still too coarse to resolve the mountain valley
precipitation contrasts in complex topography where the terrain varies considerably. This may be
one of the reasons why GSPEs performed poorer in regions 5–6 than in regions 1–4. The quantitative
precipitation estimations from regional kilometer-scale climate modeling are really promising in
complex terrains, especially for extreme storm events. How to select the optimal precipitation data
source will be an important topic for disaster forecasting (e.g., floods and mudslides) in such areas.
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4.3. Error Components Analysis

Figure 7 displays the spatial distribution of the error components that were each accumulated
for the entire study period from April 2014 to December 2016. Meanwhile, the spatial distributions of
corresponding categorical statistical indices (FAR, POD, and CSI) are illustrated in Figure 8. It is very
evident from Figure 8 that the spatial distributions of FAR, POD, and CSI for V05UC and V05C are
identical. This indicates that the GCA calibration used in V05C cannot change the rain area delineation
and raining or not-raining detection, and further results in the MPs of V05UC and V05C in Figure 7
exhibiting the same spatial distribution. Since gauge calibration is mainly focused on rain signals
determined by GSPEs, this failure in MP is understandable. Moreover, the amplitude of TB for V05C is
slightly less than that for V05C over northeast China (e.g., regions 1–2), indicating a slight improvement
in V05C. Further analysis indicates that this improvement is mainly attributed to the reduction of
FP and HB via GCA calibration in these regions. Moreover, one can see that V05UC systematically
underestimates the precipitation over most parts of south China and the Tibetan Plateau (regions 3–4
and Region 6 as examples), while an opposite overestimation occurred in V05C. This shows that the
upward adjustment of the GCA calibration can alleviate the underestimation that occurred in the
uncalibrated V05UC over south China and the Tibetan Plateau, but meanwhile, the amplitude of the
FP is also magnified. The most notable difference between the two calibrated IMERG products (V05C
and V04C) occurs in the eastern Tibetan Plateau. V04C shows an extreme underestimation over the
eastern Tibetan Plateau, but mainly because of the elevated POD and the upward adjustment of the
latest GCA calibration, and this underestimation is effectively alleviated in V05C. In addition to the
southern Tibetan Plateau, the error components as well as categorical statistical indices of V04C are
almost identical to V05C, which indicates that the performance of V05C is not substantially improved
over most of mainland China. Nevertheless, due to the lack of accurate precipitation, the performance
improvement of V05C on the southern Tibetan Plateau is still exhilarating.

Although the spatial distribution of TB is similar, the error components of GSMaP are a far
cry from those of V05C. For southern China, GSMaP has the best POD and CSI, but also the worst
FAR (Figure 8). We speculate that this can mostly be attributed to overestimation in precipitation
occurrence probability. It is also why GSMaP contains the largest FP and lowest MP over southern
China (Figure 7). Moreover, GSMaP shows a remarkable negative HB over southern China, which
leads to underestimation, but the amplitude is much less than the corresponding FP. Therefore, GSMaP
has slightly overestimated precipitation in southern China, which is similar to V05C. With regard to



Remote Sens. 2018, 10, 1420 16 of 26

northeast China, GSMaP has similar MP and FP values to the IMERG products, but contains a lower
HB. Hence, the better TB is monitored in GSMaP over northeast China, whereas abrupt FP appears in
GSMaP over northwest China, particularly in the Tarim Basin, resulting in the poor performance of
GSMaP over these regions.Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 26 
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Figure 8. Spatial distributions of categorical statistical indices—false alarm ratio (FAR), probability
of detection (POD), and critical success index (CSI)—of the four GSPEs—i.e., uncalibrated Integrated
Multi-satellitE Retrievals for the GPM (IMERG) V05 (V05UC), gauge-calibrated IMERG V05 (VU05C),
gauge-calibrated IMERG V04 (V04C), and Global Satellite Mapping of Precipitation (GSMaP)—for
the entire study period from April 2014 to December 2016 at a 3-h and 0.1◦ × 0.1◦ resolution over
mainland China.

In general, the largest FPs of the four GSPEs are situated in low-latitude humid areas. Meanwhile,
HB and MP also have the largest amplitudes in these regions. This may be related to the limitation of
current satellite precipitation retrievals in catching the warm rain processes or short-lived convective
storms [19]. In addition, although the error component is different, the four GSPEs all show limited
performance in the Tibetan Plateau and Tianshan Mountains. This is possibly due to the perturbance
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of complex topography and arid climate. However, the reduced performance of the reference data is
also a major reason.

To investigate the temporal variations of error components for the four GSPEs during the study
period (from April 2014 to December 2016), a time series of regional averaged error components and
TB are depicted in Figure 9 at a 3-h resolution. For smoothing and reducing visual clutter, a 10-day
(80 samples at a 3-h scale) moving average was applied to the entire time series. Obviously, there
exists an obvious seasonality in the error components, particularly for the summer and winter months.
Generally, almost all of the error components and TB show higher values in the summer and lower
ones in winter over the six regions. Such a significant season-driven error structure is primarily related
to the uneven seasonal distribution of precipitation over China. Meanwhile, the changing tendency of
error components and TB also shows remarkable regional differences.Remote Sens. 2018, 10, x FOR PEER REVIEW  18 of 26 
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In terms of uncalibrated V05UC, the changing tendency of HB generally agrees well with that of
TB, while the amplitude of HB is relatively lower than TB. Over regions 1–2, the positive HB and FP
are the main contributors to the TB of V05UC. For regions 3–4, as the proportion of MP increases, MP
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and FP tend to be symmetrical, such that their overestimation and underestimation may cancel each
other out. As a result, the curves of HB are very close to those of TB over regions 3–4. Notably, HB is
inclined to be negative in summer and positive in winter, and thus leads to a similar seasonal cycle of
TB. With respect to Region 5, because the HB and MP are considerably smaller, the overestimation of
total errors in V05UC is primarily from FP. For Region 6, it is quite obvious that the curve of the TB
almost coincides with that of MP to cancel out the negative HB and positive FP.

In regard to the calibrated V05C, the most striking feature is the decrease of amplitude in HB
and TB. However, as described above, the MP has barely improved. Moreover, the calibrated effect
also has remarkable regional differences. Taking regions 3–4 as examples, one can see that the
adjustment is mainly to increase the rain rates in summer rainy events and suppress the rain rates
in the winter. Simultaneously, with the increase of summer rain rates, the FP in summer is also
slightly strengthened. An opposite process takes place in Region 5; the overestimation caused by
FP and HB has been effectively suppressed in summer, but in winter, the overestimation has a faint
magnification. Compared to its successor V05C, V04C contains nearly the same error structure over
regions 1–5. However, the excessive FP has resulted in the systematic underestimation over Region 6,
and limits its application over these regions. Since the error components and the TB are all similar
to that of the corresponding V05UC, the poor performance in Region 6 may be due to the failure of
the calibration process. For GSMaP, the FP is the highest of the four selected GSPEs, and the MP is
the lowest. Meanwhile, the HB of GSMaP usually behaves as negative numbers over the six regions,
especially in summer months, which is not the same as the two calibrated IMERG products (V05C
and V04C). Benefiting from the mutual melting of error components, the TB of GSMaP is usually the
lowest over regions 1–4. However, the excessive FP still brings a potential pitfall in the application
of hydrology.

4.4. Intensity Distribution Analysis

Accurate documentation of rainfall frequencies with different intensities plays the same important
role with the average amount and spatiotemporal variation patterns of precipitation [42], because
the same precipitation amount in the form of long-lasting light rain or a short-duration storm will
yield quite different impacts in many aspects [28,45]. The PDFs of 3 h of precipitation accumulation
for the four GSPEs and the gauged observation over six selected regions are shown in Figure 10.
Since the PDFs are closer to lognormal than to Gaussian, the logarithmic scale is used to bin the
precipitation rates across the range of 0.3–256 mm/3 h on the x-axis. The values on the y-axis stand
for the proportion of precipitation accumulation for each bin in the corresponding total precipitation.
Here, the threshold for rain or not-rain is 0.3 mm/3 h, but it may be slightly higher for the arid areas
of Region 5 and Region 6 with complex climates. Research merely for these areas may require a
smaller threshold.

The PDFs of both V05C and V05UC are generally similar to those of gauged observation over
regions 1–4. This indicates that both V05C and V05UC show excellent capacity in capturing accurate
PDFs over these regions, and that the calibration process used in V05C has not taken remarkable
effect over regions 1–4. However, Region 5 is an exception, since the PDFs of both V05C and V05UC
overdetect light and moderate precipitation events (rain rate <3 mm/3 h) and underdetect heavy
precipitation events (rain rate >3 mm/3 h). Simultaneously, V05C does not show its advantages for a
super performance in PDF match. In reality, the overestimation of light and moderate precipitation
and the underestimation of heavy precipitation of V05C become even more pronounced over Region
5. This may be related to the arid climate condition and little gauge observation participating in the
calibration procedures. The performance of V05UC in Region 6 is similar to that in Region 5, but the
curve of V05C in Region 6 is very close to that of the CMDSC, which shows that the calibration process
has been very effective for Region 6. With predominant overdetection of heavy precipitation events,
the curves of V04C are far from the reference curves, particularly in regions 5–6, where the curves
show extreme volatility. At this point, IMERG’s V05 values show a significant improvement from those
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of V04. As shown in Figure 10, the GSMaP overestimates light rain volumes (<6 mm/3 h for regions
1–4 and <2 mm/3 h for regions 5–6), but underestimates heavy rain volumes, which is quite different
from the IMERG products over regions 1–4. In general, the calibrated V05C has the best performance
for PDFs over selected regions. Meanwhile, the performance of the latest IMERG products (V05C and
V05UC) is remarkably superior to V04C and GSMaP in capturing heavy precipitation, reflecting that
the latest IMERG products can better reconstruct extreme events such as hurricanes [46].
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Figure 10. Probability density function of 3 h of precipitation intensity for four GSPEs (i.e., V05UC,
U05C, V04C, and GSMaP) and the gauged observation in six selected regions.

To further understand the error features in various intensities, we computed the relative ratio of
TB and its error components in the corresponding bin at a 3-h temporal resolution for the six selected
regions during the study period (Figure 11). Obviously, the ratios of TB are probably lower than some
of its error components. In fact, this is not surprising in GSPEs, owing to the mutual melting of the
error components. For V05UC and V05C, the error features of FP and MP are very similar in that they
both have large amplitudes at lower rain rates (<8 mm/3 h). Simultaneously, over northern China
(regions 1–2 and Region 5), the amplitudes of FP are significantly higher than those of MP, while
an opposite scenario has occurred in southern China. Meanwhile, the HBs are close to 0 or slightly
positive values at lower rain rates in northern China, but they exhibit negative values in southern
China. All of these factors lead to an overestimation for V05UC and V05C in northern China and an
underestimation in southern China. With increasing precipitation density, the contributions of FP
and MP decrease rapidly, but the amplitudes of HB increase dramatically, particularly for V05C in
regions 3–4. Thus, the curves of TB in heavy precipitation events are closer to HB. Note that, compared
to V05UC, although the FP and MP are not effectively controlled in Region 6, the amplitudes of HB
and TB are greatly reduced. This could be the most symbolic improvement of V05C. For the anterior
version, V04C, the distributions of FP and MP are very similar to V05UC and V05C over regions 1–4,
but the amplitudes of TB and HB are much higher than the latest version in heavy precipitation events,
showing a positive improvement. Moreover, the unstable FP, enhancive MP, and larger negative TB
in regions 5–6 indicate that V04C has poor performance in these regions. Fortunately, this situation
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has been greatly improved in the latest version. For GSMaP, one can see that the distributions of
TB have an evident tendency to overestimate lower precipitation rates (<8 mm/3 h for regions 1–4
and 3 mm/3 h for regions 5–6), and underestimate higher ones, which is a common error feature
of satellite-based retrievals [47] caused by the nonunique relation between surface precipitation and
brightness temperature [22]. Meanwhile, the curves of the TB are close to FP in lower precipitation
rates, but close to HP in higher ones. This indicates that the primary contribution of TB is FP in
lower precipitation rates, but turns to HP in higher ones, and further indicates that the gauge-adjusted
process used in GSMaP does not effectively correct the HB contained in higher precipitation rates.
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Figure 11. Probability density function of total bias, hit bias, missed precipitation, and false
precipitation intensity for four GSPEs (i.e., V05UC, U05C, V04C, and GSMaP) from April 2014 to
December 2016 in six selected regions.

5. Discussion

Although GSPEs can provide finer spatial and temporal resolution for precipitation estimation
with the implementation of a GPM mission, it can be inferred from the results of this study that they
still present notable bias over some regions. Considering the spatial heterogeneity of precipitation and
the complicated relations between surface precipitation and remote observations, efforts on GSPEs
are still praiseworthy. However, as SPEs have done, the retrieval processes for both PMW and IR
still contain two steps, namely, screening to detect raining and not-raining pixels and establishing the
relationship between remote observations and surface rain rates for rainy pixels. Each step can contain
errors, i.e., a missed error or false error may exist for the screening step and hit error for the other step.
All of the errors can be spread through the applied integration processes. Conventional approaches
for GSPEs assessment are directly compared against gauge data or ground-based radar estimates by
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using continuous statistical indices [15,17,18,31]. Guided by this principle, the overall performance of
GSPEs can be investigated and quantitatively analyzed. Another way to assess GSPEs is based on their
predictive ability of streamflow rate in a hydrological modeling framework [2,14]. Additionally, some
researchers have combined the two approaches into a single study to comprehensively evaluate the
performance of GSPEs [48,49]. Notably, these methods can provide the overall performance of GSPEs,
but they all fail to locate where the retrieval errors are coming from. The error decomposition analysis
introduced by Tian et al. [19] solves this problem by separating the total bias into three decompositions
corresponding to the generation process. The integrated systems approach containing the continuous
statistical indices and error decomposition analysis surely provides an in-depth exploration of the
error structure, and thus provides deep guidance for algorithm developers or data users. However,
because there are no records of the hydrological simulation of these GSPEs, further studies regarding
their utility in hydrology and associated uncertainty analyses should be conducted. Moreover, the
retrieval algorithms of GSPEs are usually optimized for particular regions [50], which could cause mild
maladaptation for other regions. China has vast land, varieties of climates, and some unique terrains,
but to our knowledge, there has been no evidence regarding the adjustment of GSPEs for mainland
China thus far [20]. This may be one possible challenge for GSPEs in mainland China, particularly for
northwest China and the Tibet Plateau, where GSPEs have room to further improve their capability.
Besides, the diurnal cycle is one of the most important characteristics of precipitation, which is closely
related to the formation mechanism of precipitation, but the diurnal cycle of precipitation in China
shows remarkable regional discrepancy and seasonal variation. Although we have selected six typical
subregions for in-depth analysis, the spatial heterogeneity of the diurnal cycle within these subregions
is still strong. Therefore, we do not provide a performance evaluation for a diurnal cycle of precipitation
in this paper; however, we highly recommend this aspect for future research studies that aim to assess
satellite-based products over small or medium regions.

Since ground observation networks provide more accurate precipitation observations while
SPEs have fine spatial and temporal coverage, the gauge combined or calibrated satellite-based
precipitation estimation (termed as CSPE) is considered to be more advantageous in obtaining accurate
regional precipitation estimation [2,51]. In this research, V05UC is a satellite-only precipitation
estimation, and the other three are CSPEs, of which V05C and V04C were calibrated by GPCC
at a monthly scale via GCA [9], and GSMaP was corrected by CPC global daily gauge data analysis via
the GSMaP_Gauge algorithm (GGA) at a daily scale [52]. GCA and GGA may benefit from reducing
the regional and seasonal TB contained in GSPEs, but they do not change the rain area delineation and
raining or not-raining detection. Thus, the MP and FP contained in high-resolution CSPEs could not be
alleviated [53]. This limitation may lead to various influences on the performance of these algorithms.
For instance, the GCA used in IMERG was performed by creating a correction coefficient for each
grid and each month, but it could not influence the MB, because the missed detected value was set to
zero. Meanwhile, for some regions (i.e., the south part of mainland China), the multiplication of the
correction coefficient enlarges the magnitude of the FP and thus offsets the improvement of the HB,
reducing the performance of GCA. Similar results were also supported by the verification of IMERG
over eastern China [20]. This phenomenon needs to be taken seriously.

Furthermore, GCA and GGA were operated on a global scale, but the global gauge network’s
distribution used in GPCC or CPC is relatively sparse (i.e., only 194 of China’s International Exchange
Stations (CIESs) were adopted by GPCC over the entirety of China [54]) for most regions, which
further limits the performance of the calibration algorithm greatly. Since Sun et al. [51] indicated that
regional-scale or national-scale modifications that employ more available rain gauge observations
show great advantages in improving the quality of precipitation data, readjustment for each study
area is an effective way to reduce errors before use in practical applications. Moreover, Su et al. [2]
reiterated that fine time-scale modifications have an edge over coarseness, particularly for wickedly
heavy precipitation. Note that GSMaP was adjusted in a finer time-scale than IMERG; this may be why
GSMaP has slightly superior performance over regions 1–4 than IMERG. Additionally, the short latency
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time (one or two days) is also a significant advantage of GSMaP in comparison with the final-run
IMERG’s two to four months.

In addition, it should be noted that the reference used in this paper is a gauge-satellite merged
product produced by merging 30,000 AWS records and 8-km and 30-min resolution CMORPH
estimation into a unified product via PDF–OI. Since the reference is not a truly independent
reference, and the CMORPH approach is also used in the construction of IMERG, there might
be some cross-correlated errors between the reference and IMERG, thus biasing the assessment
result of IMERG. Even so, given the excellent performance in capturing the spatial and temporal
distribution of precipitation, CMDAS has already been employed as the reference in assessing
IMERG [31,55,56]. Further uncertainty analyses regarding these cross-correlated errors should be
conducted. Moreover, it should be noted that the evaluation results for V04C are highly consistent with
previous studies [21,55,57,58]. Furthermore, Omranian and Sharif [37] indicated that the performances
of GSPEs are sensitive to changes in temporal and spatial resolution. However, the impacts of temporal
and spatial downscaling or upscaling of these GSPEs on their accuracy are not studied in this paper.
Therefore, more efforts are urgently needed to explore how these impacts work.

6. Conclusions

In this study, we comprehensively evaluated the quality of four GSPEs (i.e., V05UC, U05C, V04C,
and GSMaP) over mainland China between April 2014 and December 2016 via continuous statistical
indices against ground-based observations from CMDSC. In this process, their overall performances
were quantified and cross-compared at national and regional scales. Then, the total biases (TBs) of
these data sets were decomposed into three independent components, namely, hit bias (HB), missed
precipitation (MP), and false precipitation (FP), based on Tian et al. [19]. In this manner, error sources
and error characteristics were closely associated with the precipitation retrieval algorithms. The key
findings are summarized as follows:

(1) Compared to the CMDSC, the four GSPEs could generally capture the spatial patterns of
precipitation over mainland China in spite of the overestimation in the southeast and the
underestimation in the northern Tibetan Plateau. Overall, the quality of the four GSPEs in
the humid and flat east was better than that in the arid and hypsographic west, with higher CCs
of approximately 0.6 occurring in the east, but relatively lower CCs appearing in the west.

(2) In regional analysis, two calibrated IMERG products (V05C and V04C) showed similar
performances in both detecting accurate daily average precipitation and capturing 3-h-scale
regional averaged precipitation accumulation over regions 1–4. The uncalibrated V05UC achieved
comparable performance to calibrated IMERG products over these regions. This indicated that the
latest IMERG (V05UC and V05C) did not achieve superior improvement in these areas, despite
the slight improvement in detecting regional heavy precipitation events. Moreover, GSMaP
outperformed all of the IMERG products in regions 1–4 in regard to almost all of the metrics.
However, all four products should improve their quality in arid areas (Region 5) and the Tibet
Plateau (Region 6) for better application.

(3) The error components and TB of the four GSPEs showed strong regional differences over mainland
China. Much of the overestimations over the North China Plain and northeastern China for
IMERG V05 can be traced to significant FP and noticeable HB. Since the GCA used in IMERG
V05 was prone to increase the rain rates over the southern Tibetan Plateau and southeastern
China, the negative HB had been changed to positive, and FP was significantly enlarged, but
could not correct the MP. Thus, the negative TB contained in V05UC had been turned to positive
over these regions. V04C had similar error component distributions to V05C except for over the
Tibetan Plateau, where larger MP and non-negligible negative HB had generated remarkable TB.
For GSMaP, much of the overestimations over the east and south are the comprehensive impact
of HB and FP, although MP may counteract some of this impact.
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(4) The regional time-series analyses clearly illustrated that the TB resulted from the interaction
of the three independent components. The positive HB and FP played a dominant role in the
overestimation of IMERG over northeast China (regions 1–2). Benefiting from the mutual melting
of FP and MP, the curves of HB in IMERG were very close to the corresponding TB over south
China (regions 3–4), although a more obviously positive HB appeared in the calibrated IMERG.
The uncertainty in IMERG caused by MP and FP cannot be ignored in high-altitude (Regions 6)
and dry (Region 5) areas, particularly for V04C in the Tibetan Plateau, where it showed obvious
underestimation principally caused by MP. Larger FP was a main problem of GSMaP over almost
the entirety of China. Meanwhile, the HB contained in GSMaP over Region 4 also needs to
be noted.

(5) From the perspective of the intensity distribution, V05C can best match the PDF of CMDSC over
almost all of the regions, but the overestimation in heavy rain, which was mainly caused by
positive HB, was still a large problem. V05UC had better ability than V05C in detecting heavy
rain. In addition, GSMaP tended to overrate light rain and underrate heavy rain, particularly for
regions 1–4. Such overestimation and underestimation were mainly caused by large FP in light
rain and negative HB in heavy rain, respectively.

In summary, the two calibrated V05C and V04C were at about the same level, except for over the
Tibetan Plateau, but showed significant improvements from the uncalibrated V05UC over most of the
parts of mainland China. Meanwhile, GSMaP was identified to be the best performed precipitation
estimation over the east and south of mainland China in spite of the performance reduction over
the arid northwest. In order to improve the quality of precipitation, more research methods should
be explored, such as the integration of multi-source precipitation information (e.g., satellite-based
precipitation estimations, ground gauge/radar observations, reanalysis precipitation products, climate
model products, and so on) and the data assimilation method using precipitation related geophysical
variables (e.g., soil moisture [59] and snow depth [60]). Besides, further investigations should be also
carried out to assess IMERG Level-2 retrieval algorithms and thus provide the underlying insights of
how the uncertainty propagates to the IMERG Level-3 precipitation products. Also, more localized
studies focused on investigating and improving the quality of GSPEs for specific regions should be
encouraged to perfect the calibration algorithms. In addition, as applications are the driving force for
technological progress, a broader application of GSPEs in hydrological simulation, disaster forecasting,
and water resource management should be called on.
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