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Abstract: Forest canopy gaps are important to ecosystem dynamics. Depending on tree species, small
canopy openings may be associated with intra-crown porosity and with space among crowns. Yet,
literature on the relationships between very fine-scaled patterns of canopy openings and biodiversity
features is limited. This research explores the possibility of: (1) mapping forest canopy gaps from
a very high spatial resolution orthomosaic (10 cm), processed from a versatile unmanned aerial
vehicle (UAV) imaging platform, and (2) deriving patch metrics that can be tested as covariates of
variables of interest for forest biodiversity monitoring. The orthomosaic was imaged from a test area
of 240 ha of temperate deciduous forest types in Central Italy, containing 50 forest inventory plots
each of 529 m2 in size. Correlation and linear regression techniques were used to explore relationships
between patch metrics and understory (density, development, and species diversity) or forest habitat
biodiversity variables (density of micro-habitat bearing trees, vertical species profile, and tree species
diversity). The results revealed that small openings in the canopy cover (75% smaller than 7 m2)
can be faithfully extracted from UAV red, green, and blue bands (RGB) imagery, using the red band
and contrast split segmentation. The strongest correlations were observed in the mixed forests
(beech and turkey oak) followed by intermediate correlations in turkey oak forests, followed by the
weakest correlations in beech forests. Moderate to strong linear relationships were found between
gap metrics and understory variables in mixed forest types, with adjusted R2 from linear regression
ranging from 0.52 to 0.87. Equally strong correlations in the same forest types were observed for
forest habitat biodiversity variables (with adjusted R2 ranging from 0.52 to 0.79), with highest values
found for density of trees with microhabitats and vertical species profile. In conclusion, this research
highlights that UAV remote sensing can potentially provide covariate surfaces of variables of interest
for forest biodiversity monitoring, conventionally collected in forest inventory plots. By integrating
the two sources of data, these variables can be mapped over small forest areas with satisfactory
levels of accuracy, at a much higher spatial resolution than would be possible by field-based forest
inventory solely.

Keywords: Unmanned Aerial systems (UAS); RGB high resolution imagery; forest canopy gaps;
understory; vertical species diversity; microhabitat-bearing trees; contrast split segmentation; drone

1. Introduction

Forest canopy gaps are regarded as hotspots that provide ideal conditions for rapid plant
reproduction and growth, maintenance of floristic richness in the understory, and an increase of
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diversity and structural complexity of the forest habitat [1]. Gaps dynamics, associated with the fall of
individual or clumped canopy trees, are observed in boreal, subalpine, temperate, and tropical forest
types worldwide, especially in late stages of forest development [2–5]. In managed forests, exploiting
gaps’ dynamic is at the root of gap-based close-to-nature silviculture [6,7].

Small canopy openings may be attributed to tree crown architecture, namely, intra-crown porosity
and the space among crowns. Even in fully stocked forest areas, some tree species display so-called
‘canopy shyness’, characterized by a canopy cover with inter-crown gaps. However, little is known
about the relationships between this fine-scale pattern of canopy openings, the sunlight penetration
into the canopy, and its impact on the forest understory layer.

Remote sensing from unmanned aerial vehicles (UAV) allows the detection of small size canopy
gaps and their spatial patterns [8]. Since the optimal spatial resolution of the sensor is suggested to be
five times smaller than the monitored object [9], the new versatile imaging platforms offer the potential
to explore canopy features at a very high spatial resolution. UAVs have many benefits in forest
remote sensing, such as the flexibility of data acquisition with low material and operational costs, and
high-intensity data collection [10]. However, the use of UAVs is hindered by a set of challenges such
as coverage of small areas per flight due to low flight altitude, limited battery capacity, and existing
regulatory requirements to keep the UAV in visual line-of sight (VLOS) of the pilot. Nevertheless,
lightweight fixed-wing UAVs can cover a larger area with one flight (up to 150 ha) than multicopter
drones. Furthermore, the use of multiple batteries on lightweight fixed wing UAVs may enable aerial
coverage of up to 1000 ha in one working day in optimal weather conditions [11].

UAVs can be equipped with a variety of sensors [12]. In recent years, practitioners have gained
interest in UAV applications in forestry either by using solely optical cameras [12–15] or by combining
them with Structure-from-Motion (SfM) [11,16], which offers new possibilities to easily derive 3D data
(e.g., image-based point cloud) [13,14,17] and 2D data (e.g., digital surface model and orthomosaic).

UAV 3D image-based point clouds, normalized by high resolution Digital Terrain Model (DTM),
have been explored for the estimation of forest structural variables (e.g., tree density, growing stock, or
above-ground biomass) as a cheaper alternative to airborne laser scanning [13,18,19]. In contrast, UAV
orthomosaic applications cover the detection of canopy openness [20], tree species identification [21],
and assessment of infestation and damages at tree level [22–25]. Most studies have focused on
wall-to-wall fine scale mapping of forest canopy attributes over small forest areas [13,26–32]. As an
alternative, however, using UAV orthomosaic images to extract covariates has been less explored.
Covariates, such as canopy gap-related metrics, are potentially correlated with compositional and
structural biodiversity variables. Indeed, the definition of canopy gap remains unclear and inconsistent
in the literature [33,34].

Although it is known that gap size and shape considerably influence gap microclimate [1,35],
unambiguous indication of thresholds for these gap metrics is lacking [35]. Forest canopy gaps
depend on the geographical context and the forest composition, in addition to the ability of detecting
those gaps. Bonnet et al. [36] defined canopy gaps as ‘openings in the canopy with a minimum area
of 50 m2, a minimum width of 2 m and a maximum vegetation height of 3 m’. Getzin et al [37],
adopting a different definition, mapped canopy gaps of 1 m2 from a true colors UAV product of 7 cm
spatial resolution in beech-dominated deciduous and mixed deciduous-coniferous forests in Germany.
Furthermore, Getzin et al. [8] extracted forest gaps and their spatial pattern from ten different plots of
1 ha. The authors recommend collecting aerial data in a cloudy condition in order to reduce the effect
of the shadow that could lead to the misinterpretation of dark pixels as gaps.

Likewise, gap age is important, since canopy openings fill with time, and biodiversity varies
between newly opened gaps versus older gaps [1]. In addition, according to Muscolo et al. [6],
canopy gap age and size are the primary factors affecting the regeneration of understory besides
the suitable substrate. Techniques and packages developed for manned airborne and satellite-borne
images hardly suit UAV imagery classification for gap mapping because of different data acquisition
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parameters [38,39]. Although some studies attempted to overcome some of the challenges [8,20,37],
they used methods rarely available at low cost or suitable for forest managers.

Since lightweight fixed-wing UAVs equipped with a digital commercial camera with red, green,
and blue (RGB) bands are most common in forest remote sensing [12,13], testing their use for exploring
correlations between canopy openness and the occurrence of key forest biodiversity features in the
understory and overstory is an interesting opportunity. This study explores this potential correlation
in a small test site with temperate deciduous forests in central Italy. An integrated survey combining
RGB imagery acquisition by UAV with field-based forest inventory was conducted at an experimental
site in 2016 in the framework of the LIFE project “FREShLIFE—Demonstrating Remote Sensing
integration in sustainable forest management”. The subsequent data were processed in the present
study. Our objectives were to explore relationships between canopy gaps and certain variables
describing the structure and diversity of forest stands and of the understory. Specifically, we examined
the following questions:

(1) Are there adequate image processing techniques to delineate openings in the canopy cover
from UAV imagery?

(2) Are patch metrics of these canopy features correlated with structural and biodiversity-related
variables of the forest understory or of the forest stand? Does this correlation vary across stands
characterized by different dominant canopy species?

2. Materials and Methods

2.1. Study Site

The test site extends over 240 hectares on the slopes of Mount Venere (500–800 m a.s.l.) in
Caprarola Municipality (Central Italy). In the study, there were three forest types (Figure 1):
beech-dominated forest (Fagus sylvatica, 149 ha), turkey oak forest (Quercus cerris, 76 ha), and mixed
forest of the two species (14 ha). The vertical profile is, to a large extent, mono-layered in the beech
forest and bi-layered in the other two forest types.

The presence of very fertile volcanic soils and the microclimate as a result of the presence of a lake
create favorable conditions for the growth of beech, even at a low elevation. In fact, the conformation
of the basin, the frequent formation of mists, the high relative air humidity, and the protection from
extreme winds ensure a suitable habitat for this species. As a result, the beech forest of Monte Venere is
ecologically important, as it grows at much lower altitudes (around 500 m above sea level) than those
usually occupied by beech in the Central Apennines (optimum between 1000 and 1700 m a.s.l.).

Beech forest of Monte Venere belongs to the Aquifolio-Fagetum association, which reaches the
extreme northern boundary of its ecological range in the Province of Viterbo [40]. Beech is usually
accompanied by other deciduous trees like Quercus cerris L. (turkey oak) in the upper layer and only at
lower altitudes, and by Carpinus betulus L. (hornbeam), Castanea sativa Mill. (Chestnut), Acer opalus L.
(maple), Corylus avellana L. (hazel), and Ilex aquifolium L. (holly) in the dominated layer.

Turkey oak becomes the dominant species on the south-facing aspects. Turkey oak forests also
contain accompanying species such as ash (Fraxinus ornus L.) and hornbeam (Ostrya carpinifolia L.).
Turkey oak forests present a well-developed shrub layer including Rosa canina L., Cornus sanguinea L.,
Crataegus monogyna Jacq., Crataegus oxychanta L., and Ruscus aculeatus L.
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Figure 1. Study area map with three main forest types and 50 sample plots.

The test site contains 50 forest inventory plots, each 23 m × 23 m in dimension (area of the plot
529 m2), distributed according to a one-per-stratum systematic sampling design. This sampling scheme
partitions the study area into square grids of 529 m2 plots spatially aggregated into 50 equal size
strata. One sample-site location is independently and randomly selected in each stratum, resulting
in the spatial distribution displayed in Figure 1. There were 28, 13, and 9 plots in beech, turkey oak,
and mixed forests, respectively.

2.2. Field Data Processing

The spatial position of the center of inventory plots was recorded with a sub-meter accuracy
Trimble GEO7X GNSS receiver and was post-processed with data from local base stations situated
approximately 30 km from the study area. At each plot, all plants (trees and shrubs) with a diameter
at breast height (DBH) greater than 2.5 cm were inventoried during the 2016 growing season.
Key measurements included species identification, diameter at breast height (DBH), tree height,
and the presence of microhabitat-bearing living trees according to the reference catalogue provided
by Winter and Möller [41]. These elements, which are characteristic of natural forests, especially of
the old-growth phases, are often absent or rare in managed forests and are, therefore, considered key
indicators of biodiversity.

Tree and shrub data were processed in the present study to distinguish the understory species
from canopy trees (living trees). The understory layer was identified as the layer including plants with
heights up to 50% of the maximum tree height observed in the plot [42]. In each plot, we calculated for
the understory:

(1) density and development, by means of the parameters such as number of plants (N_PLANTS),
mean DBH (MEAN_DBH), mean plant height (MEAN_HTOT), total basal area (G_TOT), and total
understory volume (V_TOT), which is calculated based on species-specific allometric equations
developed using a combination of height and diameter;

(2) species diversity, by means of number of species (N_SPECIES), Shannon’s index (I_SHANNON,
H’) [43], and Pielou index (I_PIELOU) [44].

Data collected on living trees were processed to derive structural data (mean DBH, MEAN_DBH;
mean total height, MEAN_HTOT) and biodiversity data such as number of habitat trees (HAB),
percentage of habitat trees (%HAB) of total number of plants in the plot, vertical species profile
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by the index of Pretzsch (I_PRETZSCH), Shannon’s index (I_SHANNON), and Margalef index
(I_MARGALEF) [45]. Table 1 displays the summary of biodiversity indices computed for each plot.

Table 1. Summary of diversity indices.

Indices Formulae Range of Variation Description

Shannon index (H′) −∑ pi ln(pi) [0,ln(S)]

The Shannon index expresses the frequency of the
i-th species in a community; its values generally lie

between 0 and 3.5; higher values correspond to
higher species diversity. Its maximum value
(MAX_SHANNON) is given by the natural

logarithm of the number of species found in the test
area and occurs when all species are equally present.

Pielou index (E) H′/ ln(S) [0,1]

The Pielou index measures the relative abundance of
species groups. The index can take values between 1
(all species are equally abundant) and 0 (there is only

one species).

Pretzsch index (Ap) −
S
∑

i=1

Z
∑

j=1
pji ln

(
pij

)
[0,ln(SxZ)]

The Pretzsch index summarizes and quantifies
species diversity and the vertical distribution of

species in a forest. The index is lowest in one-story
pure forests, whereas it rises for pure forests with

two or more stories. Peak values are reached in
mixed woodlands with heterogeneous structures.

Margalef index (D) (S− 1) ln(N) [0,∞)

It quantifies the presence of a number of species in a
community. It also depends on the number of plants

found in the sampling area. The index value
increases with increasing species diversity.

S = number of species; N = total number of plants; pij = the frequency of species i in the layer j; pi = frequency of the
specie i. z = number of layers.

2.3. UAV Data

Aerial images of the study area were collected near peak greenness during two consecutive days
of the last week of May 2016 by a fixed-wing eBee UAV (SenseFly, Cheseaux-Losanne, Switzerland).
The eBee was equipped with a commercial SONY WX 18.MP RGB camera, recording in blue (450 nm),
green (520 nm), and red (660 nm) wavelengths. The eBee, a hand-launched fixed-wing UAV with an
electric motor-driven pusher propeller, has a 96 cm wingspan and a weight of about 700 g including
camera, inertial measuring unit, GPS, and battery payloads. The maximum area covered in a single
flight is about 140 ha at 120 m altitude or 9 km2 at 2,000 m altitude, with a maximum flight time of
45 min.

Before UAV image acquisition, 15 ground control points (GCPs) were placed in open areas on the
ground using 50 × 50 cm targets with a black and white chalkboard pattern to ensure high visibility in
the images. The coordinates of the center of the GCPs were recorded with a Trimble Geo 7X receiver,
with a 2-s logging rate for approximately 15 min each. The recorded coordinates were post-processed
with data from the nearest ground station, located at 30 km from the study area, using the Pathfinder
software. The post-processed GCP coordinates resulted in an average standard deviation from north
and east and heights of 0.9 m, 0.7 m, and 1.9 m, respectively.

The flight altitude was 145 m above ground level, and the flight lines were set to obtain a
longitudinal overlap of 85% and lateral of 75%. The total flight time was 2 h and 43 min among eight
flights, launched from two different areas. Flight line spacing was 42 m, and the distance between two
adjacent photos was 34.6 m. The focal length of the camera was set to 4 mm, and the ISO sensibility
was ISO-100 with a shutter speed of 1/2000 s. A total of 433 images was acquired with a field of view
of 200 m × 150 m.

Visual inspection of the acquired images revealed no problems related to light and atmospheric
conditions or saturation. Orthomosaic images were derived from the UAV images using the SfM
photogrammetry software Agisoft PhotoScan Pro [46]. This software allows one to fully automate the
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photogrammetric workflow to process aerial images and produce 3D (e.g., image-based point cloud)
and 2D (e.g., Digital Surface Model and Ortomosaic) models, thanks to the multi-view stereo-matching
and SfM algorithm implemented. This software has been already used for forest analysis [11,13,47–50],
and the UAV images were processed using the following steps: (a) image alignment, (b) mesh building,
(c) guided marker positioning and optimization of camera alignment (georeferencing of created
scene), (d) dense cloud building, (e) raster grid DSM generation with a resolution of 0.2 m × 0.2 m,
and (f) building orthomosaic. From the SfM photogrammetric workflow, we obtained a raster grid
orthomosaic with a spatial resolution of 10 cm.

2.4. Methods

2.4.1. Image Processing and Variable Selection

We tested different settings of the Contrast Split segmentation algorithm to map forest canopy
openings from the RGB orthomosaic images. The red band was the only one that significantly changed
with openings in the canopy cover and the crowns. The Contrast split algorithm is considered effective
in separating dark objects from bright objects [51]. The purpose of testing different settings was to
extract forest canopy openings as accurately as possible, which are expected to appear darker, compared
to surrounding canopy pixels. This process was accomplished using eCognition Developer (http:
//www.ecognition.com) software. We validated the gap delineation from contrast split segmentation
by visual interpretation of the orthomosaic image to identify omission or commission errors. The visual
validation techniques have been often used in forest canopy gap mapping [33]. We later tested different
thresholds to filter small openings that might not affect ecological phenomena under investigation
and, therefore, constitute a noise masking of relevant data. We only considered mapped features
falling within the plot boundary and gaps within the plot boundary for at least 50% of their area.
For each feature, we calculated the shape and size indices and other gap patch metrics commonly used
in landscape-scale analyses. In total, 19 patch metrics (see Supplements; more details in [52]) were
processed for each gap in each plot. This suite of metrics reflects different nuances of two- dimensional
gap properties that may be potentially important for linking image-detected higher-level structures to
dependent lower- level processes of the biota [37].

The size or extent gap patch metrics are the area (A), length, border length (or the perimeter),
ratio of length/width, and the width. The shape metrics include border index (B.Index), asymmetry
(Asym), roundness (Round), compactness (Comp), shape index, density, rectangular fit (Rect.fit), radius
of the largest enclosed ellipse (RLE), radius of the smallest enclosed ellipse (RSE), elliptic fit, and other
composite indices such as the shape complexity index (GSCI). The gap shape complexity index is an
important measure of forest gaps [53]. It is the ratio of a gap’s perimeter to the perimeter of a circular
gap of the same area. A value of 1 describes a perfect circle, while increasing values indicate increasing
shape complexity. For example, values of 1.20 and 2.70 have 20% and 170% complexity, respectively.
The last three gap metrics are the patch fractal dimension (PFD) [54], the fractal dimension (FD) [55],
and the fractal dimension index (FDI) [56]. A description of each metric and its range of variation is
given in Table A1 (Appendix A).

For each patch metric, we calculated the median (mdn), mean (avg), standard-deviation (SD),
sum (SUM), and the coefficient of variation (cv) per plot. We tested gap metrics with two different gap
size thresholds, namely, greater than 1 m2 and greater than 2 m2. This leads to two times 95 variables
for each plot. These two thresholds were set, because some ecological phenomena, such as understory
structure dependencies, are only quantifiable if small gaps are taken into account, yet very small gaps
may not affect at all the lower dependency phenomenon and therefore constitute noise [57].

2.4.2. Statistical Analysis

First, we performed exploratory analysis with the field data using ANOVA (Analysis of Variance)
tests when the distribution was normal, and KRUSKAL-WALLIS analysis otherwise with the

http://www.ecognition.com
http://www.ecognition.com
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categorical variable being the forest type characterizing each single plot. Statistical analyses were
performed with R Foundation 3.2.3 (https://www.r-project.org/foundation/). The code used in this
paper is available at https://github.com/MartinBagaram/forest_gaps.

We used all gap variables for Pearson’s product-moment correlation analysis and Spearman’s
rank correlation with the field data, using post-stratification of sampling units by forest types where
appropriate. Usually, the two correlations give approximately the same results (see [58]). To avoid
the fact that the observed correlation, although significant according to the p-value lower than 5%,
could have occurred by chance, its significance was further tested using the 9999 permutation method
proposed by Legendre and Legendre [59]. This method has been successfully used in investigating the
relationship between forest canopy gap metrics and biodiversity [37].

For gap variables correlated with field data, we tested the correlation among significant potential
predictors. This third step allowed a decrease in the redundant information brought by potentially
correlated predictors and eliminated the collinearity or singularity. To determine the most significant
variables to be used as possible predictors, we used a forward stepwise analysis, since this approach
selects only the minimum significant number of predictors. There exist three methods for model
selection known as best, forward, and backward subset selection. In general, the three methods lead to
similar though not identical results [60]. Owing to the huge number of predictors (190 in this study),
the best subset selection requires for each field parameter to compare up to two of 190 models, which
deterred us from using the best set selection.

When the forward stepwise yielded only one predictor variable as sufficient to model the field
parameter (which was often the case), we compared the correlation coefficients of Spearman and
Pearson. If these two coefficients were significant and close to one another, then the patch metric was
selected as a predictor if it passed the 9999 permutations test of Legendre. Otherwise, the second
variable with the highest values of both Spearman and Pearson coefficients was selected, and then we
repeated the 9999 permutations method. This approach has the advantage of, on one hand, excluding
variables depicting high Pearson’s correlation due to extreme values, and on the other hand, not solely
relying on the Spearman’s correlation, which is a measure of monotony [61] and not of linearity.
Furthermore, using 9999 permutation assures that the p-value observed does not occur by chance.

Finally, we performed linear regression tests using the selected significant variables. Following
Møller and Jennions [62] and Getzin et al. [37], who considered a coefficient of determination R2 > 0.25
as meaningful, since the predictor value leads to a great change if it explains over 25% of variance,
we used a threshold of R2 > 0.5. We then validated the regression by checking regression quality
assumptions such as the normality of residuals, the homoscedasticity of residuals, and that the mean
of the residuals is zero. For forest parameters that can be predicted with R2 greater than 50%, we
generalized the model to the whole forest type extent using the grid of 529 m2 plots. We performed
the validation with cross-validation (Leave-One-Out Cross-Validation), which produced root mean
squared errors (RMSE).

For inference, it is important to provide the variance, confidence interval, and bias of R2.
Bootstrapping is a method commonly used for that purpose [63–65], especially in the case of linear
regression [66]. Bootstrap is a resampling method developed by Efron and Tibshirani [67]. We
computed those statistics for variables with R2 greater 0.50 using formulas given by Mura et al. [63].
Although it is suggested that the bootstrap sample size should be big enough (greater than 200), there
is no consensus yet on what should be the actual size. Following Mura et al. [63], we set the bootstrap
sample size to 500. The mapping of biodiversity attributes was achieved with ArcGIS 10.2. A graphical
abstract of the methodology is presented in Figure 2.

https://www.r-project.org/foundation/
https://github.com/MartinBagaram/forest_gaps
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Figure 2. The overall workflow and methods implemented.

3. Results

3.1. Canopy Gaps Mapping

The contrast split algorithm based on the red band accurately differentiated dark objects (shaded
canopy gaps) from bright objects, which, in most cases, corresponded to forest canopy. The mapping
faithfully delineated shaded canopy gaps but performed poorly in illuminated gaps when the bare soil
was apparent (Figure 3). Detected gaps from plots ranged from 100 cm2 (1 pixel) to 122 m2. This range
encompassed small openings or inter-crown cracks in the canopy cover and larger gaps generated by
the fall of one or more canopy trees. The gap size distribution is roughly the same in the three forest
types. When considering gaps greater than 1 m2, over 75% of gaps in the three forest types were less
than 5 m2. When considering gaps greater than 2 m2, over 75% of gaps in the three forest types were
less than 7 m2 (Figure 3).

The collinearity analysis of gap patch metrics indicated that patch metrics were strongly correlated
to each other. A sample result of collinearity analysis of predictor variables is reported in Figure 4.
The lowest correlations were obtained with the coefficient of variation, whereas the highest correlations
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were associated with the plot-level sum of patch metrics. These findings indicate that gap patch metrics
are not suitable for a multiple linear regression.Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 27 
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variables: (A) Pearson’s Correlation of patch metrics variables associated with the sum and (B) Pearson’s
correlation from the patch metrics associated with coefficient of variation.

3.2. Correlation between Gap Metrics and Understory Variables

The understory layer exhibits density, development, and diversity features that seem to vary
with forest types cover. Namely, variables related to density, development, and diversity of the
understory had significant differences amongst the forest types, except for Pielou index, MEAN_HTOT,
and MEAN_DBH (Table 2).

All eight field parameters presented significant correlations (p < 0.05), with gap patch metrics
in at least one of the three forest types (Table 3). Tables A2–A4 of Appendix B present the threshold,
Pearson’s, and Spearman’s correlations of gap patch metrics and understory. The regression coefficient
had the lowest standard error in mixed and Fagus forests compared to Quercus forest; MEAN_DBH
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in mixed forest had a very low variability as shown by the coefficient of the regression predicting
MEAN_DBH in mixed forest is merely equal to zero.

As shown in Table 3, the highest coefficient of determination was in mixed forest (MEAN_HTOT,
R2 = 0.87, p < 0.000) and the lowest was in Fagus forest (N_SPECIES, R2 = 0.15, p < 0.05). The best results
were found in Quercus and mixed forests, whereas the worst ones were in Fagus forest. I_SHANNON
and MEAN_DBH in Quercus forest, and MEAN_HTOT and N_PLANTS in mixed forest were predicted
with R2 > 0.50. All patch metrics, except one (cv_Length in Fagus forest), correlated with the field
parameters were related to gap shape.

Table 2. Summary of exploratory statistics on understory data.

Normal Distributed Variables

Variables ANOVA TUKEY

Pielou index (I_PIELOU) no significant difference
Mean total height (MEAN_HTOT) no significant difference

Variables Non Normal

Variables KRUSKAL-WALLIS MANN-WHITNEY

Number of plants (N_PLANTS) *** (1 vs. 2) ***; (2 vs. 3) **
Number of species (N_SPECIES) *** (1 vs. 2) ***; (1 vs. 3) **
Shannon index (I_SHANNON) *** (1 vs. 2) ***; (1 vs. 3) **

Mean DBH (MEAN_DBH) no significant difference
Total basal area (G_TOT) *** (1 vs. 2) ***

Total volume (V_TOT) ** (1 vs. 2) **

* p < 0.05; ** p < 0.01; *** p < 0.001; 1 = beech forest; 2 = oak forest; 3 = mixed forest.
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Table 3. Results of linear regression with understory data (B = slope of linear regression; SE = standard error, N = sample size). Bold values refer to adjusted R2 higher
than 50%.

Quercus Forest

N_PLANTS N_SPECIES I_SHANNON I_PIELOU

N = 13 B SE
(B) R2 p-value B SE

(B) R2 p-value B SE
(B) R2 p-value B SE

(B) R2 p-value

Linear regr. Linear regr. Linear regr Linear regr
Intercept −28.85 16.8 Intercept 7.21 0.71 0.000 Intercept 1.70 0.13 0.000 Intercept 1.02 0.10 0.000

Mdn_GSCI 18.61 5.24 0.49 0.005 Sd_rect.fit −20.66 7.02 0.39 0.013 Sd_rect.fit −4.83 1.28 0.52 0.003 Sd_Density −1.10 0.41 0.34 0.021

MEAN_DBH MEAN_HTOT V_TOT G_TOT

N = 13 B SE
(B) R2 p-value B SE

(B) R2 p-value B SE
(B) R2 p-value B SE

(B) R2 p-value

Linear regr. Linear regr Linear regr Linear regr
Intercept −23.27 7.38 0.009 Intercept 9.54 1.04 Intercept 5.34 1.48 0.004 Intercept 1.05 0.35 0.012

Avg_rect.fit 48.39 11.43 0.60 0.001 Mdn_B.Index −56.61 24.15 0.27 0.039 Mdn_Asym. −6.60 2.36 0.36 0.018 Avg_Asym −1.36 0.59 0.26 0.041

Mixed forest

N_PLANTS N_SPECIES I_SHANNON I_PIELOU

N = 9 B SE
(B) R2 p-value B SE

(B) R2 p-value B SE
(B) R2 p-value B SE

(B) R2 p-value

Linear regr. Linear regr Linear regr Linear regr
Intercept 47.02 9.62 0.002 Intercept 0.86 0.93 Intercept 0.11 0.35 Intercept 0.1 0.3

Avg_Round. −23.79 6.40 0.62 0.007 Mdn_RSE 8.29 2.92 0.47 0.025 Mdn_RSE 2.73 1.08 0.40 0.040 Avg_RLE 0.42 0.17 0.43 0.045

MEAN_DBH MEAN_HTOT G_TOT V_TOT

N = 9 B SE
(B) R2 p-value B SE

(B) R2 p-value B SE
(B) R2 p-value B SE

(B) R2 p-value

Linear regr. Linear regr Linear regr Linear
regr.

Intercept 9.70 0.82 0.000 Intercept 0.90 0.82 Intercept −0.02 0.05 Intercept 3.48 1.23 0.026
Sum_width −0.00 0.00 0.51 0.018 avg_Asym 10.39 1.40 0.87 0.000 Sd_Asym. 0.59 0.21 0.45 0.027 Avg_Comp −1.16 0.48 0.37 0.048

Fagus forest

N_SPEIES I_SHANNON I_PIELOU MEAN_HTOT

N = 28 B SE
(B) R2 p-value B SE

(B) R2 p-value B SE
(B) R2 p-value B SE

(B) R2 p-value

Linear regr. Linear regr Linear regr Linear regr
Intercept 3.13 0.77 0.000 Intercept 1.01 0.29 0.002 Intercept 0.26 0.18 Intercept 5.46 1.40 0.000

Cv_Round. −6.02 2.64 0.15 0.033 Sd_Round. −1.85 0.72 0.21 0.018 Mdn_PFD. 0.06 0.02 0.48 0.022 Cv_Length 11.14 4.20 0.23 0.016
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The spatial patterns of the understory models to the extent of their respective forest types
underscored some key features (Figure 5). In Quercus forest, I_SHANNON ranged from just above
0 to 1.8 with RMSE of 0.21. These values are in the range of variation of data collected on plots.
The variability in MEAN_DBH in Quercus forest was from 2 to 17 cm with an RMSE = 1.3 cm.

In mixed forest, MEAN_HTOT went up to 11 m, with the majority of grids falling between 5
and 9 m, and the RMSE was 0.43. The number of plants per grid ranged from less than 5 to 33 with
an RMSE of 3.84 (Figure 5). We did not perform the spatialization of MEAN_DBH in mixed forest,
even though the R2 was greater than 0.5, because the linear model slope was close to zero. The empty
cells in the figure correspond to cells in which the prediction gives unreasonable values.
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3.3. Correlations between Gap Metrics and Living Tree Variables

All living tree diversity and structural variables exhibited significant differences among the
three forest types, except total basal area (G_TOT) and total volume (V_TOT) (Table 4). As with the
understory, some gap patch metrics appear to be significantly correlated with these field parameters
(p < 0.05). Tables A5–A7 in Appendix C summarize the threshold, Spearman’s, and Pearson’s
correlations associated with gap patch metrics and living trees parameters. In Quercus forest, eight
field parameters yielded good results, compared to mixed forest which had four. For Fagus forest,
habitat trees and percentage of habitat trees only denoted significant correlations. Coefficients of the
linear regression had the lowest standard errors in Quercus forest.

The highest coefficient of determination was in mixed forest (HAB, R2 = 0.79, p < 0.000) and the
lowest was in Fagus forest (%HAB, R2 = 0.11, p < 0.05). Best results were in Quercus forest (I_PRETZSCH,
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HAB, and %HAB) and mixed forest (HAB, %HAB, MEAN_DBH, and MEAN_HTOT). HAB, %HAB,
MEAN_HTOT in mixed forest and HAB and I_PRETZSCH in Quercus forest had R2 exceeding 0.50
(Table 5). Among the patch metrics correlated with living tree parameters, all but the length (cv_Length
in mixed forest), which is gap size related patch metric, were gap shape-related patch metrics.

Table 4. Summary of exploratory statistics on living trees.

Variables with Normal Distribution

Variables ANOVA TUKEY

Number of plants (N_PLANTS) *** (1 vs. 2) ***; (2 vs. 3) ***
Pretzsch index (I_PRETZSCH) *** (1 vs. 2) ***; (1 vs. 3) ***

Total basal area (G_TOT) no significant difference
Total volume (V_TOT) no significant difference

Number of habitat trees (HAB) * (1 vs. 2) **
Percentage of habitat trees (%_HAB) ** (1 vs. 2)*

Non Normal Distributed Variables

Variables KRUSKAL-WALLIS MANN-WHITNEY

Number of species (N_SPECIES) *** (1 vs. 2) ***; (1 vs. 3) ***
Margalef index (I_MARGALEF) *** (1 vs. 2) ***; (1 vs. 3) ***
Shannon index (I_SHANNON) *** (1 vs. 2) ***; (1 vs. 3) ***

Mean diameter at breast height (MEAN_DBH) *** (1 vs. 2) ***; (2 vs. 3) ***
Mean total height (MEAN_HTOT) ** (1 vs. 2)**

* p < 0.05; ** p < 0.01; *** p < 0.001; 1 = beech forest; 2 = oak forest; 3 = mixed forest.
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Table 5. Results of linear regression of living trees (B = coefficient of linear regression, SE = standard error, N = sample size). Bold values refer to adjusted R2 higher
than 50%.

Quercus forest

N_SPECIES I_SHANNON I_MARGLEF I _ PRETZSCH

N = 13 B SE
(B) R2 p-value B SE

(B) R2 p-value B SE
(B) R2 p-value B SE

(B) R2 p-value

Linear regr. Linear regr Linear regr Linear regr
Intercept 8.13 0.71 0.000 Intercept 1.81 0.14 0.000 Intercept 1.94 0.18 0.000 Intercept 2.32 0.1 0.000

Sd_Rect.fit −21.46 7.04 0.41 0.011 Cv_Density −2.61 0.95 0.35 0.019 Sd_Rect.fit −6.02 1.80 0.46 0.006 Sd_Density −2.68 0.45 0.74 0.000

MEAN_DBH MEAN_HTOT HAB %HAB

N = 13 B SE
(B) R2 p-value B SE

(B) R2 p-value B SE
(B) R2 p-value B SE

(B) R2 p-value

Linear regr. Linear regr Linear regr Linear regr
Intercept 11.30 3.42 0.007 Intercept −15.73 11.99 Intercept 20.54 2.44 0.000 Intercept 41.87 5.45 0.000

Sum_rect.fit 1.29 0.50 0.32 0.02 Mdn_rect.fit 45.41 18.68 0.29 0.033 Sum_rect.fit −3.10 0.73 0.59 0.001 Sum_RLE −1.86 0.54 0.47 0.006

Mixed forest

MEAN_DBH MEAN_HTOT HAB %HAB

N = 9 B SE
(B) R2 p-value B SE

(B) R2 p-value B SE
(B) R2 p-value B SE

(B) R2 p-value

Linear regr. Linear regr Linear regr Linear regr
Intercept −10.86 13.32 Intercept 27.74 2.70 0.000 Intercept 14.34 1.20 0.000 Intercept 108.24 17.54 0.000

Avg_Round 25.92 8.86 0.49 0.022 Sd_Asym. −49.06 11.72 0.67 0.004 Cv_Length −14.01 2.51 0.79 0.000 Avg_RSE −208.99 53.19 0.64 0.005

Fagus forest

HAB %HAB

N = 28 B SE
(B) R2 p-value B SE

(B) R2 p-value

Linear regr. Linear regr
Intercept 4.00 1.21 0.003 Intercept 61.35 7.88 0.000
cv_PFD 11.82 5.23 0.15 0.034 Avg_RSE −58.21 27.71 0.11 0.045
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The spatial patterns of regression models for living trees parameters are presented in Figure 6.
In Quercus forest, I_PRETZSCH varied from 1 to 2.4 with RMSE of 0.40. A majority of cell grids had
indexes higher than 1.7, indicating a complex vertical structure. In the same forest type, the number of
habitat trees reached 20 with RMSE of 3.89.

In mixed forest, however, most of cell grids had the number of habitat trees higher than 9. In this
forest, the prediction error is relatively smaller with an RMSE of 1.6. The percentage of habitat trees
per grid is more variable with values ranging from 0 to 100%. The MEAN_HTOT varied from 6 to
28 m with an RMSE of 1.86.
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radius of the smallest enclosed ellipse.

3.4. Quality Assessment

The bootstrap R2 was relatively close to the experimental R2 (computed from the actual data) for
both the understory and the living trees. The standard error and the bias are very low. The highest
negative bias was related to I_SHANNON with a bias of −0.05. This suggests that the actual R2 of
I_SHANNON is lower than the one observed. Similarly, the highest positive bias was recorded with
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HAB in mixed forest (living trees with a value of 0.03)suggesting that the actual R2 associated with
habitat trees in mixed forest is higher than 0.79 (Table 6).

Table 6. Results of bootstrapping for parameters with R2 greater than 0.50.

Forest Types Parameters Bootstrap R2 Standard
Error (95%) R2 Bias

Understory

mixed
Mean total height 0.877 0.006 0.872 −0.005
Number of plants 0.623 0.016 0.616 −0.007

Mean DBH 0.507 0.022 0.515 0.008

Quercus Mean DBH 0.577 0.017 0.600 0.024
Shannon index 0.576 0.010 0.523 −0.053

Living trees

Quercus Pretzsch index 0.755 0.008 0.738 −0.016
Number of habitat trees 0.554 0.018 0.586 0.032

mixed
Mean total height 0.682 0.012 0.674 −0.008

Number of habitat trees 0.757 0.014 0.790 0.032
Percentage of habitat trees 0.627 0.019 0.644 0.017

4. Discussion

4.1. Mapping Forest Canopy Gaps

Gap mapping from UAV RGB 10 cm orthomosaic images produced very promising results. In this
study, we mapped openings in canopy as small as 100 cm2, corresponding either to intra-crown
openings or to inter-crown cracks in the canopy cover. This fine-scale mapping of canopy openings is
important, because some ecological phenomena, such as understory structure dependencies, are only
quantifiable if small gaps are taken into account. Though it is known that different forests, depending
on ecological and geographical contexts, exhibit different canopy structure, there is not yet a rule
for a minimum gap size. As a consequence, different authors set, arguably, minimum gap size of
1 m2 [8,37,57,68–70], 5 m2 [71], 10 m2 [33,72], and 50 m2 [36]. To circumvent this problem, we did not
set any gap size limit but let the ecological phenomenon under investigation dictate the appropriate
gap size limit. Hobi et al. [73] used the same approach by not setting any gap size limit. The gap
mapping used in this paper does not take into account the vegetation height. Therefore, our mapping,
although consistent with the definition given by Brokaw [74], focuses only on shaded gaps or dark
objects. Zielewska-Büttner et al. [33] reported as well that in their attempt to map forest canopy gaps,
the shadow occurrence and forest height affected the mapping accuracy.

Other authors who mapped forest gaps from remote sensing used either LiDAR-derived forest
canopy height models [53,68,70,75–77] or RGB imagery and photogrammetrically-derived canopy
height model (CHM) [33,34,75,78]. Alternatively, fish eye [79] airborne lidar derived data [76,80] or
terrestrial laser scanning [81] can be used. All those techniques, although effective, are not affordable
for small forest land owners.

Furthermore, the forest canopy mapping was highly affected by the quality of the orthomosaic
and image acquisition conditions. In this study, the orthomosaic co-registration presented some
flaws in certain areas. Those areas displayed a low quality in gap delineation and even in the visual
interpretation of what constitutes a gap. The second limitation came from the difference in reflectance
between the datasets acquired in the two consecutive days. Although the images were acquired at
noon to reduce the bidirectional reflectance effect [22], the sun illumination between the two days was
not the same, leading to two sets of images with slightly different brightness. The best practice would
be to collect data covering the site in the same light conditions and, if possible, in the same day.

Finally, the contrast split algorithm failed to detect illuminated canopy gaps where the bare soil is
visible, because the bare soil reflectance is as high as the one of the vegetation. Therefore, the algorithm
missed big gaps with no vegetation but with apparent bare soil. As an alternative, multiresolution
segmentation would allow one to detect both types of canopy gaps, though it requires all image
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objects to be subsequently classified by the user (more time consuming than contrast split). The
second alternative would be to use image-based 3D point clouds. This dataset, possessing a third
dimension, is sufficient for detecting local minima in the digital crown model, e.g., by means of hotspot
analysis [82].

4.2. Modeling Understory Variables through Canopy Gaps Covariates

The very high-resolution mapping of gaps in the canopy cover provided a set of metrics that
proved to be useful as covariates in regression estimation of the density (number of plants), the diversity
(Shannon index) and the development (mean DBH, mean HTOT) of the understory in Quercus and
mixed forest types. The same cannot be said for Fagus forest. One explanation for Fagus’ poorer
performance lies in the different light conditions under Quercus and Fagus canopy cover. The crown of
Turkey oak, when grown in fully stocked high forest, is oval-shaped, with high canopy base height and
medium-textured. Due to this structure, oak does not cast a dense shadow, and therefore allows other
trees or shrubs to grow in lower layer. By contrast, beech casts a dense shadow under which relatively
few plants can grow (e.g., shade-tolerant seedlings of beech). As a result, the presence of relatively
small openings in the canopy cover, as those mapped here (75% smaller than 7 m2), might have an
influence on the growth and diversification of the understory in Quercus and mixed forest types.
The same level of canopy openness is not sufficient to modify light availability under beech canopy
cover. This is confirmed by the relatively low-density values of beech understory.

The patch metrics correlated to the understory parameters, in mixed and Quercus forest types,
are all shape metrics (except for the mean DBH in mixed forest). The density and development of the
understory in mixed forest tend to increase as gap shape fits to an ellipse. A similar trend is observed in
Quercus forest, where the mean DBH positively correlates with gap shape, when it fits to a rectangular
geometry. On the other hand, the negative correlation between the diversity of the understory in
Quercus forest and its covariate (standard deviation of Rectangular fit) does not have a straightforward
ecological interpretation.

It seems reasonable that the diversity and development of the understory can be affected by
the micro-porosity pattern of canopy cover, which light can shine through. The cumulative effect of
differently shaped small gaps affects understory development under forest canopies dominated by
Turkey oak and mixtures between Turkey oak and beech. In fact, two different gaps with the same
extent can have different shape metrics. Our findings suggest that regular shapes (rectangular or
elliptic) are influential for understory density and diameter growth.

This is a relatively new finding, as most previous studies focused on relationships between gap
size and understory features. Popma and Bongers [83], for instance, demonstrated that the growth and
morphology of seedlings in a tropical rain forest depended on the size of gaps; likewise, the dominance
of understory vegetation by shade tolerant species or shade intolerant species [84].

4.3. Modeling Living Trees Biodiversity through Canopy Gaps Covariates

As for the understory, strong correlations were found between canopy shape gap metrics and
density of micro-habitat bearing living trees and vertical species profile in Quercus and mixed forest
types. The patch metric correlated with the density of micro-habitat bearing trees in canopies
dominated by Turkey oak are negatively related to the presence of gaps fitting into a rectangular
shape (Sum_rect fit), whereas vertical diversification in species profile is negatively correlated with
the variability of gap density (Sd_Density). This reflects variability from filament shape (low value)
to high dense shape (square). In mixed forest stands, the density of micro-habitat bearing trees is
negatively correlated to the variability of gap length (CV_Length), while the mean height of the stand
is positively correlated with the variability in gap shape asymmetry (Sd_Asym).

There might be different interpretations for these findings. Firstly, one could assume that the
presence of canopy openings affects the growth in diameter and height of living trees. Schliemann
and Bockheim [72] stipulated that after the opening of the canopy, the increased solar radiation allows
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plants to grow faster. Accordingly, the observed micro-porosity of canopy cover might favor sunlight
penetration into the canopy layer(s), enabling conditions for species distribution along the vertical
profile. In addition, the increased exposure to weather conditions and biotic agents might influence
micro-habitat differentiation along the trunk and branches (e.g., cavities and holes, injuries and
wounds, trunk and crown breakage, epixilic species colonization). This idea was primarily developed
by Runkle [85] who contended that, in a tree fall gap, the microclimate changes associated with the
gap formation extend to the bases of trees surrounding the canopy gap. Secondly, one might argue
that micro-habitat bearing trees, which are frequently old large trees, create a structural diversity in
the forest canopy because of their multiple dead tops, bole, and top decays. This specific structure
influences the canopy arrangement and, therefore, creates small canopy gaps with specific patch
metrics that can be used as a footprint of habitat trees occurrence.

4.4. Comparison with Other Studies and Implications

In the Mediterranean region characterized by complex environmental conditions and
high seasonal variability of vegetation properties, UAV remote sensing offers advantages for
capturing canopy parameters correlated with biodiversity metrics, in terms of costs and precision
compared to alternative remote sensing technologies. A potential niche UAV fills—by providing
covariates combined with field-based forest inventory data—can be used in regression models for
spatially-explicit estimation of forest biodiversity variables over small forest areas. This study showed
that canopy openness metrics can be used to predict, by linear regression in certain types of broadleaved
deciduous forests, understory features (density, development, and diversity), vertical species profile,
and functional forest ecosystem attributes such as density of micro-habitat bearing trees, which are
considered difficult to measure directly [86]. This latter result is particularly interesting considering
the recent attention given to the inventory of tree microhabitats [87].

The results obtained in this study are far from being random or happening by chance.
The correlation was controlled using permutation tests [59], and all linear regression models satisfied
linear regression assumptions. The confidence of the results was further bolstered by bootstrap
resampling technique. To the best of our knowledge, this study is the first investigating the relationship
between living tree parameters such as habitat trees and gap patch metrics from UAV RGB images.

Gap size distribution was roughly the same in the three forest types, with over 75% of gaps being
smaller than 7 m2, when gaps smaller than 2 m2 are not considered. Strong relationships between this
micro-porosity of the canopy layer and ecological phenomena beneath and inside the forest canopy
were found only in two out of the three examined forest types. This finding suggests that variability
in canopy cover composition and the size of field inventory plots are to be taken into account when
dealing with phenomena associated with spatial patterns of sunlight penetration into the canopy.

In this regard, the poor results of our study in beech-dominated forest types likely stemmed
partially from the field inventory plot size, which might have been too small to capture significant
relationships. Fagus forest is constituted with few big trees per plot. These horizontal and vertical
structures make it impossible to observe a great variety of canopy gaps in a plot of only 529 m2. In their
study, Getzin et al. [37] found relevant relationships in forest areas with beech as canopy-dominant
species using plots almost twenty times larger than the plot size adopted in this study.

Furthermore, gap age is another important characteristic that could be taken into account to
improve the quality of correlations. A newly opened gap has different biodiversity characteristics [1],
and its effect on understory and living trees would be minimal compared to an old gap of the same
size and shape. Therefore, gap age can be used as another variable to be tested in future studies in
which forest canopy gaps are used as covariates of biodiversity-related variables of interest.

5. Conclusions

This research highlights that UAV remote sensing can potentially provide covariate surfaces of
variables of interest for forest biodiversity monitoring, which are conventionally collected in forest
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inventory plots. By integrating the UAV images and field-based data, these variables can be mapped
over small forest areas with satisfactory levels of accuracy, at a much higher spatial resolution than
would be possible by field-based forest inventory solely. From a statistical perspective, it matters
little if the covariate that best correlates with the variable of interest is gap shape or size metrics.
Nonetheless, knowledge of the nature and signs of these correlations can help inform gap-based
silvicultural approaches aimed at the development and temporal continuity of specific biodiversity
components. This knowledge is crucial in the new silvicultural paradigm, in which managers adopt
operations mimicking nature.
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Appendix A.

Table A1. Summary description of patch metrics.

Patch Metric Formula Values Range Description

Border length
(bv) [0, ∞) Is basically the perimeter of the gap

Length (lv)
√

pv · γv [0, ∞) pv is the total number of pixels contained in the patch v
γv is the length-width ratio of an image object v

Length/Width
(γv) - [0, ∞) The length-to-width ratio of an image object

Width (wv) pv
γv

[0, ∞) The width of an image object is calculated using the length-to-width ratio

Asymmetry - [0,1]
The Asymmetry feature describes the relative length of an image object, compared to a regular polygon. An ellipse
is approximated around a given image object, which can be expressed by the ratio of the lengths of its minor and

the major axes. The feature value increases with this asymmetry

Border Index bv
2·(lv+wv)

[1, ∞)
1 = ideal

The Border Index feature describes how jagged an image object is; the more jagged, the higher its border index.
This feature is similar to the Shape Index feature, but the Border Index feature uses a rectangular approximation

instead of a square. The smallest rectangle enclosing the image object is created, and the border index is calculated
as the ratio between the border lengths of the image object and the smallest enclosing rectangle

Compactness - [0, ∞)
1 = ideal

The Compactness feature describes how compact an image object is. It is similar to Border Index, but is based on
area. However, the more compact an image object is, the smaller its border appears. The compactness of an image

object is the product of the length and the width, divided by the number of pixels

Density - [0, depending on shape of
image object]

The Density feature describes the distribution in space of the pixels of an image object.
In eCognition Developer 9.0, the most “dense” shape is a square; the more an object is shaped like a filament, the

lower its density. The density is calculated by the number of pixels forming the image object divided by its
approximated radius, based on the covariance matrix

Elliptic Fit - [0,1]; 1 = complete fitting, 0
= <50% fit.

The Elliptic Fit feature describes how well an image object fits into an ellipse of similar size and proportions. While
0 indicates no fit, 1 indicates a perfect fit. The calculation is based on an ellipse with the same area as the selected
image object. The proportions of the ellipse are equal to the length to the width of the image object. The area of the
image object outside the ellipse is compared with the area inside the ellipse that is not filled by the image object
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Table A1. Cont.

Patch Metric Formula Values Range Description

Radius of Largest
Enclosed Ellipse

(εmax
v )

- [0, ∞)

The Radius of Largest Enclosed Ellipse feature describes how similar an image object is to an ellipse. The
calculation uses an ellipse with the same area as the object and is based on the covariance matrix. This ellipse is

scaled down until it is totally enclosed by the image object. The ratio of the radius of this largest enclosed ellipse to
the radius of the original ellipse is returned as a feature value

Radius of Smallest
Enclosing Ellipse

(εmin
v )

- [0, ∞)

The Radius of Smallest Enclosing Ellipse feature describes how much the shape of an image object is similar to an
ellipse. The calculation is based on an ellipse with the same area as the image object and based on the covariance
matrix. This ellipse is enlarged until it encloses the image object in total. The ratio of the radius of this smallest

enclosing ellipse to the radius of the original ellipse is returned as a feature value

Rectangular Fit - [0,1] ; where 1 is a perfect
rectangle.

The Rectangular Fit feature describes how well an image object fits into a rectangle of similar size and proportions.
While 0 indicates no fit, 1 indicates for a complete fitting image object. The calculation is based on a rectangle with

the same area as the image object. The proportions of the rectangle are equal to the proportions of the length to
width of the image object. The area of the image object outside the rectangle is compared with the area inside the

rectangle

Roundness εmax
v − εmin

v [0, ∞); 0 = ideal The Roundness feature describes how similar an image object is to an ellipse. It is calculated by the difference of the
enclosing ellipse and the enclosed ellipse

Shape Index bv/4
√

A [1,∞) ; 1 = ideal The Shape index describes the smoothness of an image object border. The smoother the border of an image object is,
the lower its shape index

Gap shape
complexity index

(GSCI)
bv/
√

4πA [1,∞) ; 1 = perfect circle It is the ratio of a gap’s perimeter to the perimeter of a circular gap of the same area

Patch fractal
dimension (PFD) 2 · ln(bv)/ln(A) - -

Fractal dimension
(FD) 2 · ln(bv/4)/ln(A) - -

fractal dimension
index (FDI)

2 ·
ln(bv/

√
4π)/ln(A)

- -
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Appendix B. Correlations with understory data

Table A2. Coefficient of correlations of Pearson and Spearman for some selected explicative and understory dependent variables in Quercus forest.

N_PLANTS N_SPECIES I_SHANNON I_PIELOU MEAN_DBH MEAN_HTOT V_TOT G_TOT

Mdn_GSCI Sd_Rect.fit Sd_Rect.fit Sd_Density Avg_Rect.fit Mdn_B. Index Mdn_Asy Avg_Asy

Threshold 1 m2 2 m2 2 m2 1 m2 1 m2 2 m2 1 m2 1 m2

Pearson 0.73 −0.66 −0.75 −0.64 0.79 −0.58 −0.64 −0.57
Spearman 0.70 −0.73 −0.88 −0.68 0.75 −0.67 −0.57 −0.55

Table A3. Coefficient of correlation of Pearson and Spearman for some selected explicative and dependent variables in mixed forest.

N_PLANTS N_SPECIES I_SHANNON I_PIELOU MEAN_DBH MEAN_HTOT G_TOT V_TOT

Avg_Round. Mdn_RSE Mdn_RSE Avg_RLE Sum_width Avg_Asym. Sd_Asym. Avg_Comp.

Threshold 2 m2 1 m2 1 m2 2 m2 2 m2 2 m2 2 m2 2 m2

Pearson −0.81 0.73 0.69 0.71 −0.78 0.94 0.72 −0.67
Spearman −0.83 0.70 0.70 0.75 −0.70 0.92 0.72 −0.77

Table A4. Coefficient of correlation of Pearson and Spearman for some selected explicative and dependent variables in Fagus forest.

N_SPECIES I_SHANNON I_PIELOU MEAN_HTOT

Cv_Round Sd_Round Mdn_PFD Cv_Lenght

Threshold 1 m2 1 m2 1 m2 2 m2

Pearson −0.43 0.50 0.74 0.52
Spearman −0.45 0.56 0.87 0.57
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Appendix C. Correlations with living trees data

Table A5. Coefficient of correlations of Pearson and Spearman for some selected explicative and living trees dependent variables in Quercus forest.

N_SPECIES I_SHANNON I_MARGALEF I_PRETZSCH MEAN_DBH MEAN_HTOT HAB %HAB

Sd_rect_fit Cv_Density Sd_rect_fit Sd_Density Sum_Rect.fit Mdn_Rect.fit Sum_Rect.fit Sum_RLE

Threshold 2 m2 2 m2 2 m2 2 m2 1 m2 1 m2 2 m2 2 m2

Pearson −0.68 −0.64 −0.71 −0.87 0.61 0.59 −0.79 −0.71
Spearman −0.72 −0.61 −0.74 −0.90 0.70 0.56 −0.70 −0.64



Remote Sens. 2018, 10, 1397 24 of 28

Table A6. Coefficient of correlations of Pearson and Spearman for some selected explicative and living
trees dependent variables in mixed forest.

MEAN_DBH MEAN_HTOT HAB %HAB

Avg_Round. Sd_Asym. Cv_Length Avg_RSE

Threshold 2 m2 1 m2 2 m2 1 m2

Pearson 0.74 −0.84 −0.90 −0.83
Spearman 0.82 −0.95 −0.92 −0.92

Table A7. Coefficient of correlations of Pearson and Spearman for some selected explicative and living
trees dependent variables in Fagus forest.

2m
HAB %HAB

Cv_PFD Avg_RSE

Pearson 0.43 −0.38
Spearman 0.50 −0.39
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