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Abstract: A novel approach has been developed to estimating river discharge solely using satellite-derived
parameters. The temporal river width observations from Moderate Resolution Imaging Spectroradiometer
(MODIS), made at two stream segments a distance apart, are plotted to identify the time lag. The river
velocity estimate is then computed using the time lag and distance between the width measurement
locations, producing a resultant velocity of 0.96 m/s. The estimated velocity is comparable to that
computed from in situ gauge-observed data. An empirical relationship is then utilized to estimate
river depth. In addition, the channel condition values published in tables are used to estimate the
roughness coefficient. The channel slope is derived from the digital elevation model averaged over a river
section approximately 516 km long. Finally, the temporal depth changes is captured by adjusting the
estimated depth to the Envisat satellite altimetry -derived water level changes, and river width changes
from Landsat ETM+. The newly developed procedure was applied to two river sites for validation.
In both cases, the river discharges were estimated with reasonable accuracy (with Nash–Sutcliffe values
>0.50). The performance evaluation of discharge estimation using satellite-derived parameters was also
analyzed. Since the methodology for estimating discharge is solely dependent on global satellite datasets,
it represents a promising technique for use on rivers worldwide.
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1. Introduction

Measurement of river discharge is necessary in hydrology and water resource management.
The knowledge of river flow propagation speed and the time for flows to pass downstream is
critical for flood forecasting, reservoir operations, and watershed modeling [1]. Therefore, there
is a great need for long-term, continuous, spatially consistent, and readily available discharge data.
River discharges are currently recorded at river gauging stations. However, the available recordings
are intermittent or nonexistent, especially in underdeveloped countries and they are under proprietary
control in developed nations [2]. These challenges limit the studies that require river discharge
data. Unlike ground observations, remote sensing provides a limitless coverage of rivers and other
water bodies. As evidenced by recent studies, remote sensing has a good spatial coverage and a
long monitoring period, both of which have contributed to a growing interest in deriving discharge
estimates from remote sensing [3–8]. An underlying factor in estimating river discharge lies in the
ability to realistically estimate spatial hydraulic variables (i.e., width, depth, and velocity) and/or to
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establish the relationships between them [9]. The ground observation method is the most accurate
measure of river discharge. However, ground river discharge is obtained by estimating the hydraulic
characteristics of stream channels including depth, width, and velocity.

Recent efforts to estimate river discharge from remote sensing data use the in situ gauge discharge
data to calibrate the river width [10–12], stage [5,13,14], both stage and width [3], and finally pixels [4].
These have been proven valid under the functional power law relationships that relate the width (w),
depth (d), and velocity (v) to discharge in accordance with Equations (1)–(3) [15].

w = aQb, (1)

d = cQ f , (2)

v = kQm, (3)

where a, b, c, f, k, and m are empirical constants.
Attempts to use remote sensing data (river width or water surface elevation) as surrogates for in

situ measurements in hydrological model calibration have also been tested [16,17]. With the discovery
of at-many-stations hydraulic geometry (AMHG) [6,7], the potential of estimating discharge based on
remote sensing data has been of interest. According to [6], AMHG holds that certain parameters of
traditional at-a-station hydraulic geometry (AHG), presented in Equations (1)–(3), are not independent
but log-linearly related along a river. Discharge estimation based solely on remote sensing data is
largely seen as the most viable solution to the current limitations in discharge estimation. Table 1 gives
a summary of river discharge estimation methods. It is clear that few studies have estimated river
discharge based solely on remote-sensing-derived data [6,7].
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Table 1. A summary of studies using remote sensing to estimate river discharge (the current paper is added for completeness). It is evident that few studies have
performed river discharge estimation exclusively from remote-sensing-derived data. In addition, not all studies have estimated river flow using satellite-derived data
and not all models can estimate depth by using an empirical relationship between the velocity, slope, and roughness coefficient. In this case, the three are flagged as
not applicable (N/A) in the key results. The aforementioned components are coded in the ‘Key Results’ column as: (1) estimate of discharge exclusively from remote
sensing data (2) estimation of river discharge flow using satellite-derived data, and (3) estimation of river depth using an empirical relationship.

Study Data Used Approach Key Results

[7] Landsat TM. Landsat TM is used to approximate at-many-stations (AMHG).
1. AMHG used to retrieve instantaneous river discharge.
2. N/A
3. N/A

[6] Landsat TM.
Advances the AMHG discharge retrieval approach via additional
parameter optimizations and validation on 34 gauged rivers spanning
a diverse range of geomorphic and climatic settings.

1. AMHG used to retrieve instantaneous river discharge.
2. N/A
3. N/A

[18] Water levels, digital elevation model (DEM).

Proposes a data assimilation framework to reduce the error of water
depth prediction in tributaries, update the streamflow prediction,
and introduce a scope for updating the initial conditions of
continental-scale hydrological models.

1. N/A
2. N/A
3. After data assimilation, the root mean square errors of the estimated depth

were reduced by 50 cm (51%). However, the error was not reduced at all
sensor locations.

[3] MODIS and multiple satellite altimetry.
River stage is incorporated with the effective river width.
A comparison is made against a stage-derived discharge
estimation equation and the empirical equation proposed by [19].

1. N/A
2. N/A
3. River stage is derived from satellite altimetry data.

[20] MODIS MOD09Q1 and in situ
discharge measurements.

A method that constructs the rating curve through the quantile
functions of measured discharge and calculated river width is used.

1. The validation results show that the error in discharge estimation (10% root
mean square error, RMSE) is at the same level as the conventional method.

2. N/A
3. N/A

[21] The Surface Water and Ocean Topography
(SWOT) measurements are modeled.

The estimated measurements are input into an algorithm to obtain
estimates of river depth and discharge.

1. Discharge estimates over the one-year evaluation period had median
normalized RMSE of 10.9%, and 86%.

2. The depth errors showed a very slight positive bias, with a mean relative
error of 4.1%. The standard deviation of the depth error was 11.2%.
There were several outliers, with maximum and minimum errors of 89%
and 56%, respectively.

3. N/A

[22] Jason-2, MODIS-derived inundation extent
and water elevation and discharge data.

A hydrodynamic model is built using remotely-sensed inputs to
augment traditional hydrological data for a series of linked reaches
along a dryland anabranching river system.

1. N/A
2. Estimated flow resistance using 500 m MODIS Open Water Likelihood

index (OWL) data.
3. N/A

[23] Topographical maps, aerial photos, synthetic
Aperture radar (SAR) images.

The hydraulic relationship is used to estimate in-bank river discharge
using remotely sensed data [19].

1. The standard error of the discharge estimates was within a factor of 1.5–2
(50–100%) of the observed data, with the mean estimate accuracy
within 10%.

2. Estimates in velocity from SAR improved the accuracy in
discharge estimation.

3. N/A
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Table 1. Cont.

Study Data Used Approach Key Results

[24]
Forcing meteorological data from publicly
available datasets and remotely sensed river
width (SAR imagery).

A method calibrating hydrological models using river width derived
from remote sensing is demonstrated.

1. A Nash–Sutcliffe efficiency of 95.7% was obtained for the simulated
streamflow at the 50% quantile.

2. N/A
3. N/A

[16] Water levels derived from satellite altimetry at a basin outlet were
used to calibrate the model.

1. The Nash–Sutcliffe efficiency of averaged simulated streamflow by the
parameter sets was 64.50%.

2. N/A
3. N/A

[25]
Along-track interferometric synthetic
aperture radar InSAR, along track
interferometric (ATI).

Surface velocity measurements from SAR were converted to
depth-integrated velocity and then empirical models were applied to
estimate discharge.

1. A simulated TerraSAR-X sampling scenario provided discharge estimates
for the Elbe estuary with accuracies in the range of 20–30%.

2. N/A
3. N/A

This study
MODIS, Landsat, satellite altimetry, Shuttle
Radar Topographic Mission Digital
Elevation Model (SRTM DEM).

Estimates river discharge exclusively using
satellite-derived parameters.

1. Discharge was estimated exclusively from remote sensing data giving NS
values greater than 0.5 at the investigated sites.

2. The estimated velocity (0.96 m/s) lies within the results of the computed
velocity i.e., 0.63–1.2 m/s (virtual station 1) and 0.81–1.35 m/s (virtual
station 2)

3. The resultant RRMSE is 17.42 (virtual station 1) and 26.35 (virtual station 2).
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In this study, a novel method for discharge estimation was developed. The method does not
require prior knowledge of existing in situ gauge discharge data. The potential of estimating
discharge through the estimation of hydraulic parameters is demonstrated as follows: (1) river
velocity by carrying out a time lag analysis using the temporal river width measurements from
Moderate Resolution Imaging Spectroradiometer MODIS (MOD09GQ) at two user-defined stream sites;
(2) roughness coefficient by substituting channel condition values referenced from published tables in
an empirical equation [26]; (3) river reach slope using the Shuttle Radar Topographic Mission Digital
Elevation Model (SRTM DEM); (4) estimated depth by using the developed empirical relationship
between the velocity, slope, and roughness coefficient; (5) time series river depth using the estimated
depth and water level changes from Envisat; and (6) time series river discharge by using all the
estimated parameters and the modified Manning’s equation.

Therefore, the main objectives of this study were as follows: (1) to estimate hydraulic parameters
(i.e., river velocity, roughness coefficient, and time series river depth); and (2) to estimate the time
series river discharge using the estimated parameters in the modified Manning’s equation.

2. Materials and Methods

The methodology was implemented on the lower course of the Yangtze River. The Yangtze is the
longest river in Asia and the third longest river in the world with a length of 6300 km and an average
discharge of 30,166 m3/s. It flows from the glaciers on the Qinghai–Tibet Plateau to the East China Sea
at Shanghai, China [27]. The in situ gauge observations of mean daily discharge, used for validation,
were acquired for the Yangtze River at the Hankou and Datong stations from the Global Runoff
Data Centre [28]. Envisat satellite altimetry data, taken of locations close to the ground observation
stations, were retrieved from an online database (http://www.legos.obs-mip.fr/en/soa/hydrologie/
hydroweb/) [29]. These satellite pass stations are referred to as virtual stations 1 and 2 (Figure 1).
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Figure 1. Locations of the ground observation stations, river width measurement stations A and B,
and virtual stations 1 and 2 along the lower course of the Yangtze River.

The Envisat satellite carries 10 complementary instruments including a radar altimeter and a
nadir-pointing radar altimeter that operates at two frequencies, the Ku-band (13.575 GHz/wavelength,
2.3 cm) and the S-band (3.2 GHz/9.3 cm) [30]. The temporal resolution of Envisat RA-2 is 35 days with an
along-track resolution of 350 m in high-frequency mode, which makes it suitable for studying water level
changes in rivers with widths greater than 350 m [31]. At each virtual station, a search for archived Landsat
ETM+ images that were taken within two days of the altimetry pass was conducted using the United States
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Geological Surveys’ (USGS’s) Earth Explorer interface (http://earthexplorer.usgs.gov/). The spatial and
temporal resolutions for Landsat ETM+ are 30 m and 16 days, respectively. Landsat 8 images were used
for the description of the channel conditions at the virtual stations. The MODIS product MOD09GQ was
downloaded from (https://lpdaac.usgs.gov). These images provided bands 1 and 2 at 250 m resolution
as a daily gridded product. MODIS high temporal capability provided daily river width plots at the
respective station so that the time lag in width variation could be determined. A 90-m digital elevation
model (DEM) was downloaded from (http://srtm.csi.cgiar.org). This DEM was used to calculate slope.
The riverbed cross-sections, in combination with the time series elevation from the GPS, were used to
compute the cross-sectional areas and heights for validation. The riverbed cross-sections and the time
series water elevations data were acquired for the Yangtze River at the Hankou and Datong stations from
the Ministry of Water Resources, Republic of China. The Ministry of Water Resources uses sounders to
determine the riverbed cross-section and GPS floaters to estimate the time series water elevation data.
To verify river velocity datasets, the in situ ground discharge was divided by the cross-sectional areas.

2.1. Estimate of River Velocity Using Temporal River Width

Time lag analysis has been used to estimate river velocity. The time and distance separation
allow the average propagation speed to be computed. However, in order to estimate river flow using
remotely sensed data, the temporal river width observations from MODIS (MOD09GQ) were made
in lieu of river discharge at a station. This is based on the previous findings on the high correlation
coefficient observed between the river flow and temporal variation in the water-to-land ratio pixel
observations [32].

2.2. Estimates of the Roughness Coefficient

The roughness coefficient of river channels depends on factors such as the vegetation type
and structure, the cross-section area, degree of meandering, and obstructions in the river [33].
Various approaches for roughness quantification exist such as visual interpretation (visually inspecting
and comparing photographs related to reaches) and assigning the appropriate roughness values
to similar tabulated reference roughness coefficients [34]. Chow [26] tabulated values that can be
substituted in Equation 4 to obtain the roughness coefficient (Table 2).

Table 2. Values for the computation of the roughness coefficient [26].

Channel Conditions Values

Material involved Earth n0 0.025
Rock cut 0.025

Fine gravel 0.024
Course gravel 0.027

Degree of irregularity Smooth n1 0.000
Minor 0.005

Moderate 0.010
Severe 0.020

Variation of channel cross-section Gradual n2 0.000
Alternating occasionally 0.005
Alternating frequently 0.010–0.015

Relative effect of obstructions Negligible n3 0.000
Minor 0.010–0.015

Appreciable 0.020–0.030
Severe 0.040–0.060

Vegetation Low n4 0.005–0.010
Medium 0.010–0.025

High 0.025–0.050
Very High 0.050–0.100

Degree of meandering Minor n5 1.000
Appreciable 1.150

Severe 1.300

http://earthexplorer.usgs.gov/
https://lpdaac.usgs.gov
http://srtm.csi.cgiar.org
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n = (n0 + n1 + n2 + n3 + n4)n5, (4)

The channel condition classification table was used to estimate the roughness coefficient values as
subsequently described.

According to Albertson and Simons [35], a river with fair conditions has a base value (n0) of
0.025, a value which is also found suitable for alluvial sand bedded channels such as the main stem
of the Amazon River [36]. The base values were adopted for the lower Yangtze River. The degree
of irregularity (n1) is considered negligible because the depth-to-width ratio is small for large rivers,
therefore the roughness caused by eroded and scalloped banks, projecting points, and exposed tree
roots along the banks are minimal. The degree of variation of the channel cross-section (n2) was
determined from Landsat 8 images (Figure 2).
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Figure 2. The site characteristics at virtual stations 1 and 2 derived from a true color Landsat 8 image
acquired on the 14 October 2014.

In uniform and gradual channel changes, the value of n is not significantly affected by relatively
large changes in the shape and size of cross-sections. Greater roughness is often associated with
alternating large and small cross-sections and sharp bends, constrictions, and side-to-side shifting of
the low-water channel. Therefore, the value of (n2) used was 0.

Figure 2 shows that there are no obstructions that could potentially disturb the flow pattern in
the channel of the Yangtze River and increase roughness. Therefore, the obstruction values (n3) were
considered negligible (Table 2).

The satellite images also showed the two sites had minimal vegetation. Thus, the combined effect
of a small depth-to-width ratio and less vegetation on the riverbed results in a lower effect of bank
vegetation, and is therefore assigned a maximum adjustment value (n4) of 0.005 (Table 2).

The degree of meandering (n5) was obtained by measuring the total length of the meandering
river reach to the virtual station to the straight length of the channel reach. The river reach used to
determine the meander was defined to be a distance of 10 km on either side of the virtual station.
The amount of meandering is considered minor for ratios of 1.0 to 1.2, appreciable for ratios of 1.2 to
1.5, and severe for ratios of 1.5 and greater. The ratios obtained at virtual stations 1 and 2 were
1.19 and 1.3, respectively. These variations in the degree of meandering were defined at each of the
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sub-basins. According to Chow [26], meanders can increase the n value by as much as 30% when flow
is confined within a stream channel. However, it should be noted that the meander adjustment should
be considered only when the flow is confined to the channel. In this study, the flow is confined within
the channel and thus the adjustments were made.

2.3. Formulation

From Manning’s equation [37], possible hydrological relationships that could potentially estimate
discharge estimates from space were deduced.

The discharge equation (Q) can be deduced from Equation (5):

Q
A

=
1
n

R
2
3 S

1
2 , (5)

where n is the roughness coefficient, A is the cross- sectional area of the river, R is the hydraulic radius
(A/Pwet, where Pwet is the wetted perimeter (total length of streambed from one bank to the opposite
bank)), and S is the slope of the riverbed.

Equation (6) was derived by substituting the hydraulic radius into Equation (5) as follows:

Q =
1
n

A
(

A
Pwet

) 2
3
S

1
2 , (6)

Three ideal river cross-sections can be considered in deriving the equations: rectangular,
trapezoidal, and arc cross-sections (Figure 3).
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The rectangular cross-section (Figure 3a) was defined as:

Q =
S

1
2

n
(W·D)

5
3

(W + 2D)
2
3

, (7)

where W is the space-derived river width, and D is the water heights.
The trapezoid cross-section (Figure 3b) was defined as:

Q =
S

1
2

n

(
W·D − D2 tan θ−1) 5

3(
W + 2D 1−cos θ

sin θ

) 2
3

, (8)

If the river is very wide, i.e., W � D, then equation 9 can be derived from Equations (7) and (8).

Q ≈ S
1
2

n
W·D

5
3 (9)
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The arc cross-section (Figure 3c) is defined as:

Q =
S

1
2

n

W·D 5
3

(
1
2 ·
(
π· α

180 − sin α· cos α
)) 5

3

sin α·
(
π· α

180
) 2

3 (1 − cos α)
5
3

(10)

For Equation (10), it is also found that Q is proportional to W·D 5
3 if two parameters are considered.

Given that r = W
2 sin α = D

1−cos α , W = 2D sin α
1−cos α is obtained. As a result, if there is only one parameter

and its D, then Equation (11) can be derived as follows:

Q = 2
S

1
2

n

D
8
3

(
1
2 ·
(
π· α

180 − sin α· cos α
)) 5

3

(
π· α

180
) 2

3 (1 − cos α)
8
3

(11)

Equation (9) could be equated to Q = wdv. Thus, D can be estimated as:

D =

(
Vn
S1/2

)3/2
(12)

2.4. Flowchart

With reference to the formula in Section 3.1, Figure 4 illustrates the steps used to estimate discharge
solely using remote sensing-derived parameters.
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Figure 4. A flowchart to extract river discharge estimates using remote sensing-derived parameters
(Equations (4), (9) and (12)).

The steps illustrated are as follows:

(1) The time series river width measurements for 2003, 2004, 2007, and 2008 taken at an upstream and
downstream locations were derived using MODIS (MOD09GQ) (Figure 5). Most of the images
for 2005 and 2006 were affected by clouds and therefore data for these years were not used.
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Figure 5. An illustration of the study area. The background image is a MODIS (MOD09GQ) band
2 overlaid by Envisat altimetry virtual stations 1 and 2 (a), insets of Figure 5a showing sections for river
width measurements at an upstream station A (b), and a downstream station B (c).

(2) The ensemble mean of individual river width measurements was determined over a reach length
of approximately 1 km at each site. The ensemble mean reduces the measurement error and
localized variability [38].

(3) A lag analysis was then carried out to estimate the time lag of the river width changes between
station A and station B. A time lag is the time interval for the peak river width measurement
observed at station A to be recorded at station B. The peak river width used in this case is the
average of the daily river width measurements.

(4) Using the time lag and the distance separation between stations A and B, the average river
velocity (assuming a uniform velocity) was estimated.

(5) The roughness coefficient (n) was then estimated using Equation (4) as described in Section 2.2.
Equation (12) was then used to estimate the river depth for each river segment.

(6) The estimated water depth was adjusted using the time series stage data derived from satellite
altimetry to obtain the time series river depth (Figure 6).
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Figure 6. Adjustment of the estimated river depth at time (T) to capture the changes in the water level
at times (T1, 2, 3, . . . n). The blue line shows an estimate of peak river depth by using Equation (12) at
time tpeak. The time-series black lines illustrate the water level from the Envisat satellite altimetry data.
Through comparing the river depth values at tpeak, the altimetry data can be adjusted accordingly.

(7) The depth estimates at the virtual stations were compared to the depths computed using the in situ
ground discharge data. The depth comparison is meant to establish whether the estimated values
are within the range of the values obtained at the ground observation stations. However, it is
not an accurate validation of the estimated depths at the virtual station. In order to compute the
river depths at the in situ ground stations, the following key steps were used: using datasets
derived from river sounding, the river cross-sections were plotted. Then the time series river
depth for the period 2003–2008 were taken using a floating GPS device. The cross-sectional areas
were computed by fitting the cross-sections by two regular figures, a triangle and a trapezium,
separated by a baseline (Figure 7).
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Figure 7. River cross-sections illustrating the riverbed, maximum and minimum water height for the
study period 2003–2008, and average water height for 2003, 2004, 2007, and 2008.

The area of the triangle has a constant value whereas the area of the trapezium changes with
height. In order to obtain the time series height, the areas were divided by the average river width.
The procedure used to obtain the time series river width was adopted because the riverbed is irregular.
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(8) Landsat images were used to measure the river width and were employed at the last stage
with other estimates for time series river depth, slope, and roughness coefficient to estimate
river discharge (Equation (9)). To obtain a reliable slope, the slope values were averaged over
a long river reach [36]. For the lower Yangtze River, the standard error of the slope average
values from the SRTM DEM (represented as σ in Equation (9) was ±1.3 m. Using a simple
relationship equation developed by LeFavour and Alsdorf [36], the appropriate reach length (RL)
was determined as follows:

RL ≈ 2σ
Smin

, (13)

where Smin is the minimum slope, for which a value of 0.5 × 105 was adopted as indicated by [39].
(9) The discharge estimates at virtual station 1 and virtual station 2 were validated using the closest

ground stations at Hankou (located approximately 43 km from the virtual station (1) and Datong
(located approximately 85 km from the virtual station (2) respectively. There are no tributaries in
these sections, therefore the discharge at the ground stations and virtual stations were assumed
to be the same.

2.5. Performance Evaluation

The accuracy of river depth estimates was determined using the root mean square error (RMSE),
relative root mean square error (RRMSE), and relative error (RE). The performance of the resultant
discharge estimates was then evaluated using the Nash–Sutcliffe (NS) equation [40], RMSE, RRMSE,
and RE as the evaluation criterion.

RMSE =

√√√√(∑(Qm − Qe)
2

n

)
, (14)

NS = 1 − (Qm − Qe)
2(

Qm − Qm
)2 , (15)

RRMSE =
RMSE

Qm
× 100%, (16)

RE =
∑n

1 Qe − ∑n
1 Qm

∑n
1 Qm

× 100%, (17)

where Qm is the measured discharge, Qe is the estimated discharge, Qm is the mean measured discharge,
and n is the number of observations. The values of NS range from −∞ to 1. When NS is equal to one,
it represents a perfect match of the estimated discharge to the measured discharge.

We further evaluated the performance of estimating discharge using the satellite-derived
parameters. The discharge error contribution from each parameter was obtained by varying the
parameters by the measurement errors associated with each.

3. Results

3.1. Estimation of Hydraulic Parameters

For the study period of 2003–2008, most of the cloud-free MODIS (MOD09GQ) images were found
in 2003, 2004, 2007, and 2008 (Figure 8). The temporal variations for the river width measurements
shown in Figure 5b (station A) and Figure 5c (station B) are represented in Figure 8. An overlay of the
river width for the two stations shows similarity in the measured river width trends. However, a time
lag of 6.7 days in 2003, 6.0 days in 2004, 5.9 days in 2007, and 6.1 days in 2008 was observed between
the two stations, which resulted in an average time lag of 6.18 days (Figure 9).
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Figure 9. Illustration of the overlap between the temporal river width at stations A and B, as illustrated in
Figure 8.

The time lag between the two stations was determined by subtracting the peak time at the two
stations, giving a time difference of 6.7 days in 2003, 6.0 days in 2004, 5.9 days in 2007, and 6.1 days
in 2008. The distance separation was 498,221 m, resulting in a velocity of 0.96 m/s. The estimated
velocity lies within the results of the computed velocity i.e., peak velocities of 0.63–1.2 m/s at virtual
station 1 and 0.81–1.35 m/s at virtual station 2 (Figure 10).
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The elevation at the lower Yangtze is gently sloping, rising from 1 m to less than 15 m over a
stretch of 15 km (Figure 11).
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Figure 11. Average slope between stations A and B, indicated by the major diagonal. The solid points
are the elevation values for the center line of river segments extracted from the DEM map. The solid
points in sections with gently sloping terrain translate into a thick horizontal line.

In Equation (13), a minimum value of approximately 516 km is required to obtain a sensible slope
value. This translates to a slope of 2.3 ± 0.2 cm/km.

The roughness coefficient values at the two stations were computed separately owing to the
variations in the site characteristics (as described in Section 2.2). The value of 0.034 ± 0.002 was
obtained at virtual station 1 and 0.030 ± 0.002 was obtained at virtual station 2.

The estimated river depth computed using the new parameters in Equation (12) gives a value of
15.90 m for virtual station 1 and 13.18 m for virtual station 2 during the 2004 peak period. The estimated
depth lies within the depth ranges of 10–20 m for the lower Yangtze River as described by Chen, Li,
Shen, and Zhanghua [39]. The adjusted temporal variation in river depth has values ranging from
7.0 to 18.6 m at virtual station 1 and from 9.0 to 15.0 m for virtual station 2 (Figure 12).
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depth using the river cross-section measurement at the ground station (black).

3.2. Estimation of the Time Series River Discharge

The time series river discharge was calculated using the estimated hydraulic parameters presented
in Section 3.1 above. The result of the estimated river discharge is presented in Figure 13 (with its
computations presented in Table 3). From the results in Table 3, its evident that the NS values obtained
at the two virtual stations are greater or equal to 0.5. However, a significant difference in the accuracy
of river discharge estimation between the virtual station 1 and virtual station 2 (Table 3). An NS value
of 0.76 is obtained at the virtual station 2; this value is 0.26 higher than the NS at the virtual station 1.



Remote Sens. 2018, 10, 1385 16 of 21
Remote Sens. 2018, 10, x FOR PEER REVIEW  16 of 21 

 

 
Figure 13. The estimated (red points) and observed (black line) discharges during 2003–2008. 

Table 3. The performance evaluation results of discharge estimation for virtual station 1 (near Hankou 
station) and virtual station 2 (near Datong station). 

 NS (±) RMSE (±m3/s) RRMSE (±%) RE (±%) R2 
Virtual station 1 0.50 7144.68 34.63 10.51 0.59 
Virtual station 2 0.76 5489.49 26.34 0.94 0.90 

4. Discussion 

4.1. Estimation of Hydraulic Parameters 

The accuracy of river discharge estimates depends on the accuracy of the remotely derived 
observations of river width, stage, slope, and estimated roughness coefficient. [19,41,42] have 
investigated remote sensing data sources and their potential use for measuring river stage, effective 
river width, velocity, and slope. A number of different techniques have made use of these remote 
sensing data sources to estimate river discharge (as outlined in Table 1). To our knowledge, this study 
is the first to use the time lag derived from different river sections to estimate river velocity. The time 
series river widths at each cross-section for the two sections vary depending on the local conditions 
but conform to the general trend (Figure 8). Ideally, the choice of data for the velocity estimate should 
include the following features: a high temporal resolution to capture the daily variations, a high 
spatial resolution that matches the river width, and clear images. However, the estimated velocity 
was an average value for 2003, 2004, 2007, and 2008. This is a potential source of error as it does not 
capture the temporal variations in river width measurements during this period. According to [43], 
temporal and spatial down-scaling of remotely sensed products improves the accuracy of the 
resultant estimates. The choice of MODIS (MOD09GQ) was informed by its high temporal resolution. 
However, MODIS has the following limitations: cloud penetration problems, which hinder visibility, 
and mixing of water and non-water surfaces during resampling resulting in noisy readings. The mean 
velocity derived from the river surface velocity using SAR has been previously investigated [23]; 
however, estimating surface velocity is limited to channels where the effects of wind speed and 
direction can be adequately corrected [23,25,44]. An additional limitation is that surface velocity data 

Figure 13. The estimated (red points) and observed (black line) discharges during 2003–2008.

Table 3. The performance evaluation results of discharge estimation for virtual station 1 (near Hankou
station) and virtual station 2 (near Datong station).

NS (±) RMSE (±m3/s) RRMSE (±%) RE (±%) R2

Virtual station 1 0.50 7144.68 34.63 10.51 0.59
Virtual station 2 0.76 5489.49 26.34 0.94 0.90

4. Discussion

4.1. Estimation of Hydraulic Parameters

The accuracy of river discharge estimates depends on the accuracy of the remotely derived
observations of river width, stage, slope, and estimated roughness coefficient. [19,41,42] have
investigated remote sensing data sources and their potential use for measuring river stage, effective
river width, velocity, and slope. A number of different techniques have made use of these remote
sensing data sources to estimate river discharge (as outlined in Table 1). To our knowledge, this study
is the first to use the time lag derived from different river sections to estimate river velocity. The time
series river widths at each cross-section for the two sections vary depending on the local conditions
but conform to the general trend (Figure 8). Ideally, the choice of data for the velocity estimate should
include the following features: a high temporal resolution to capture the daily variations, a high spatial
resolution that matches the river width, and clear images. However, the estimated velocity was an
average value for 2003, 2004, 2007, and 2008. This is a potential source of error as it does not capture
the temporal variations in river width measurements during this period. According to [43], temporal
and spatial down-scaling of remotely sensed products improves the accuracy of the resultant estimates.
The choice of MODIS (MOD09GQ) was informed by its high temporal resolution. However, MODIS
has the following limitations: cloud penetration problems, which hinder visibility, and mixing of
water and non-water surfaces during resampling resulting in noisy readings. The mean velocity
derived from the river surface velocity using SAR has been previously investigated [23]; however,
estimating surface velocity is limited to channels where the effects of wind speed and direction can
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be adequately corrected [23,25,44]. An additional limitation is that surface velocity data may only be
available on an occasional basis depending on the satellite orbits and the sensor. With this in mind,
our velocity estimation method is advantageous over SAR-derived velocity as it does not suffer the
aforementioned limitations.

The process of estimating the roughness coefficient is subjective, and its accuracy is largely
dependent on the careful consideration of the parameters to be evaluated. Our estimation of the values
is totally based on river channel characteristics derived from space. Using the criteria put forward
by Chow [26], most of the characteristics are derived from space. This works for the larger rivers
because most of the roughness factors in Table 2, caused by the interaction of the river bank with the
water, are negligible. However, the roughness factor may not be overlooked for smaller rivers. A study
carried out by [45] showed that low complexity models perform well in simple landscape due to their
inherent capabilities and limitations. This agrees with the current study because the channel under
investigation is a large river channel with less meander and confluences. A sensitivity analysis carried
out by varying the roughness coefficient values by the error shows that error changes of ±0.002 in the
roughness coefficient can result in a RE of up to 6.91%, as in the case of virtual station 1 in Table 4.
Despite the simplified landscape, the errors in Table 4 are possible.

Table 4. Estimated resultant errors associated with the roughness coefficient, slope and width
parameters using Equation (4) at virtual station 1.

NS (±) RMSE (±m3/s) RRMSE (±%) RE (±%)

Roughness coefficient 0.11 744.63 3.76 6.91
Slope 0.07 503.3 2.45 4.71
Width 0.02 163.24 0.79 1.65

Additional errors emanate from the river width measurement. However, in the current study,
we used Landsat, which has a spatial resolution of 30 m. This translates to a RE of 1.65 and 3.85 at
virtual stations 1 and 2, respectively (Tables 4 and 5).

Table 5. Estimated resultant errors associated with the roughness coefficient, slope and width
parameters using Equation (4) at virtual station 2.

NS (±) RMSE (±m3/s) RRMSE (±%) RE (±%)

Roughness coefficient 0.04 952.36 1.99 4.40
Slope 0.03 788.51 1.27 2.58
Width 0.04 885.30 1.70 3.85

Slope estimates are another potential source of error; in the current study, the measurement error
in slope is ±1.3 m which contributes to a RE of up to 4.71%.

This study is also the first to estimate river depth using an empirical relationship with the velocity,
roughness coefficient and slope. The estimated river depth lies within the range of the computed
river depth at the in situ ground stations. Additionally, the river depth estimates obtained also
agrees with the depths within the lower Yangtze River basin as investigated in other studies [39].
However, the river depth estimate by this method is limited to:

(1) The accuracy with which the river velocity is estimated. In our methodology, we assume a
uniform river flow, which simplifies the variations in river velocity at each point along the river.

(2) The criteria and accuracy with which the roughness coefficient values are assigned or computed.
(3) Finally, the slope of the river affects the accuracy of the height estimate. In a typical natural

course, the slope varies from one point to another which limits the potential of estimating the
slope from space. Nevertheless, average river slope can be estimated with the assumption of a
uniform slope for a chosen river reach.
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The success of adjusting the estimated river depth during the peak to capture the temporal
variation as obtained in Figure 12 depends on the availability of the altimeter reading at the peak time.
Otherwise, we interpolated the value from the closest altimeter reading as our best estimate.

4.2. Estimation of the Time Series River Discharge

The accuracy of the discharge estimates presented in Table 3 indicates that this method holds
promise. In this study, two sites were used for the method development i.e., virtual station 1 and
virtual station 2. A performance evaluation indicated a significant difference in the accuracies, with
virtual station 2 having higher accuracies than virtual station 1. For instance, the NS value for virtual
station 2 was 0.26 more than that of virtual station 1. This could be attributed to the assumption made
when reducing the discharge estimation equation for the three ideal river cross-sections to Equation
(9). Equation (9) holds for river channels whose width (w) is greater than the river depth (d). Using the
cross-section at virtual station 1 (Figure 7), the ratio W

D gives a value of 46.42, whereas the cross-section
at virtual station 2 gives a value of 48.3. This means that at virtual station 2, the river width was greater
than the depth at virtual station 1. The difference in accuracies obtained at the two virtual stations is an
indication that the method proposed in this paper should be tested on rivers spanning a diverse range
of geomorphic and climatic settings. Testing the proposed method on other rivers will reveal other
potential causes of the variation in performance at the different virtual stations besides the ratio W

D .

5. Conclusions

In this study, a method that estimates river discharge exclusively from remote-sensing-derived
parameters was proposed. Specifically, this paper uses remote-sensing-derived data to estimate
hydraulic parameters (i.e., river velocity, roughness coefficient, and time series river depth); the time
series river discharge is thereafter estimated using the hydraulic parameters in a modified Manning’s
equation. River flow velocity at the peak was estimated to be 096 m/s. The estimated velocity lies
within the results of the computed velocity i.e., peak velocities of 0.63–1.2 m/s at virtual station 1 and
0.81–1.35 m/s at virtual station 2. From the estimated parameters of velocity and slope and careful
assigning of the roughness coefficient, its shown that river depth could potentially be estimated by
developing an empirical relationship between the parameters. The resultant discharge estimates
provide good results, indicating a potential good discharge estimate method, i.e., NS values of 0.50 and
0.76 at virtual stations 1 and 2, respectively.

The uniqueness of this study lies in its ability to estimate river discharge without the use of any
in situ ground observed datasets whatsoever. This performance is quite encouraging for possible
discharge estimates in ungauged river sites and therefore the methodology can be applied in large
river channels without ground observation measuring stations. Currently, this methodology is limited
to few overlapping datasets during the years 2003 to 2008; however, the forthcoming National Space
Agency/Centre National d’Etudes Spatiales Surface Water and Ocean Topography (NASA/CNES
SWOT) satellite which provides simultaneous measurements of width and stage will provide adequate
and regular datasets for discharge estimation using this method. The current method development has
been tested on two sites of River Yangtze. For future research, it is highly recommended that the current
method development be tested in other rivers in different physiographic and climatologic settings.
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