
remote sensing  

Article

A Prediction Smooth Method for Blending Landsat
and Moderate Resolution Imagine
Spectroradiometer Images

Detang Zhong * and Fuqun Zhou
Canada Center for Remote Sensing, Canada Centre for Mapping and Earth Observation,
Natural Resources Canada, 6th floor, 560 Rochester Street, Ottawa, ON K1S 5K2, Canada;
fuqun.zhou@canada.ca
* Correspondence: detang.zhong@canada.ca; Tel.: +1-613-759-6192

Received: 26 July 2018; Accepted: 24 August 2018; Published: 29 August 2018
����������
�������

Abstract: Landsat images have been widely used in support of responsible development of
natural resources, disaster risk management (e.g., forest fire, flooding etc.), agricultural production
monitoring, as well as environmental change studies due to its medium spatial resolution and rich
spectral information. However, its availability and usability are largely constrained by its low revisit
frequency. On the other hand, MODIS (Moderate Resolution Imaging Spectroradiometer) images for
land studies have much more frequent coverage but with a lower spatial resolution of 250–500 m.
To take advantages of the two sensors and expand their availability and usability, during the last
decade, a number of image fusion methods have been developed for generating Landsat-like images
from MODIS observations to supplement clear-sky Landsat imagery. However, available methods
are typically effective or applicable for certain applications. For a better result, a new Prediction
Smooth Reflectance Fusion Model (PSRFM) for blending Landsat and MODIS images is proposed.
PSRFM consists of a dynamic prediction model and a smoothing filter. The dynamic prediction model
generates synthetic Landsat images from a pair of Landsat and MODIS images and another MODIS
image, either forward or backward in time. The smoothing filter combines the forward and backward
predictions by weighted average based on elapsed time or on the estimated prediction uncertainty.
Optionally, the smooth filtering can be applied with constraints based on Normalized Difference
Snow Index (NDSI) or Normalized Difference Vegetation Index (NDVI). In comparison to some
published reflectance fusion methods, PSRFM shows the following desirable characteristics: (1) it can
deal with one pair or two pairs of Landsat and MODIS images; (2) it can incorporate input image
uncertainty during prediction and estimate prediction uncertainty; (3) it can track gradual vegetation
phenological changes and deal with abrupt land-cover type changes; and (4) for predictions using
two pairs of input images, the results can be further improved through the constrained smoothing
filter based on NDSI or NDVI for certain applications. We tested PSRFM to generate a Landsat-like
image time series by using Landsat 8 OLI and MODIS (MOD09GA) images and compared it to
two reflectance fusion algorithms: STARFM (Spatial and Temporal Adaptive Reflectance Fusion
Model) and ESTARFM (Enhanced version of STARFM). The results show that the proposed PSRFM
is effective and outperforms STARFM and ESTARFM both visually and quantitatively.

Keywords: remote sensing; Landsat; MODIS; image blending; image fusion; reflectance fusion;
spatiotemporal data fusion

1. Introduction

Regional land-cover mapping and environmental change detection and monitoring often
depend on remote sensing data with both high spatial resolution and acquisition frequency.
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However, currently no single remote sensing instrument can meet these requirements. A more
practical solution is to “blend” the radiometry from lower resolution sensors with more frequent global
observations, for example, Moderate Resolution Imaging Spectroradiometers (MODIS), with data from
high/medium-resolution sensors but less frequent coverage, for example, Landsat images. In the last
decade, a number of image fusion methods have been developed to predict synthetic Landsat-like
images from frequent MODIS images and a limited set of Landsat images. Examples include the
Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) [1], the Enhanced version of
STARFM (ESTARFM) [2], the Spatial Temporal Adaptive Algorithm for Mapping Reflectance Change
(STAARCH) [3], the Unmixing-based Spatial-Temporal Reflectance Fusion Model (U-STFM) [4,5],
the Flexible Spatiotemporal Data Fusion (FSDAF) model [6], the Spatiotemporal image-fusion model
(STI-FM) for enhancing the temporal resolution [7], the Hybrid Color Mapping (HCM) Approach [8]
and the Rigorously-Weighted Spatiotemporal Data Fusion Model (RWSTFM) [9] and so forth. However,
studies have demonstrated that all of the above reflectance fusion methods have their advantages and
disadvantages. Some of them are only effective or applicable for certain applications [1–9]. Interested
readers can find concise reviews for these methods in [6,7]. For example, STARFM assumes no
land-cover type changes between input and prediction date [1,2]. As a result, they can successfully
predict pixels with gradual changes in attributes like vegetation phenology or soil moisture, as these
changes are consistent within a spatial partition of the available imagery. However, it is not applicable
over heterogeneous land-cover types [2,6]. Song and Huang [10] applied STARFM in an urbanized
area and found that it failed to recover pixels with land-cover type changes. ESTARFM and STAARCH
were developed to improve the fusion performance over heterogeneous land-cover types but they
require two pairs of Landsat and MODIS images as input and are computationally expensive.
Emelyanova et al. [11] conducted a comprehensive study to investigate the performance of STARFM
and ESTARFM in two landscapes with contrasting spatial and temporal dynamics. Their results
demonstrate that the performance of the data fusion methods is strongly associated with land-cover
spatial and temporal variance. ESTARFM is better than STARFM in heterogeneous landscapes but it is
even worse than STARFM for predicting abrupt changes in land-cover types. The unmixing based
fusion methods, such as U-STFM, also require that no land-cover type change occurs between the
input and prediction dates. They are computationally efficient but still face the same challenges or
bear shortcomings in regions with abrupt land-cover type changes. The most recently developed
methods FSDAF, STI-FM and HCM focus on forward prediction by using one pair of Landsat and
MODIS images as input data and simplify algorithms for better computation efficiency but they did
not explore benefit of combining forward and backward predictions from two pairs of Landsat and
MODIS images through a proper smoothing filter. RWSTFM uses a Kriging estimator to blend Landsat
and MODIS images. One of its main advantages is that it is able to present a variance estimation for
the blended image as a quality indicator of the Kriging estimator, which is not available from all of
other methods mentioned above. However, its computation efficiency is low. This limits its practical
applications for fusion exercise of time series of images over a large coverage.

In order to better model both gradual vegetation phenological dynamics and abrupt land-cover
type changes, we propose a new Prediction Smooth Reflectance Fusion Model (PSRFM) that
takes advantages of the unmixing based fusion methods in computation efficiency and overcomes
shortcomings in poor performance over regions with abrupt land-cover type changes and lack of
uncertainty estimation through a model extension and optimization and introduction of uncertainty
estimation based on the Least-Squares adjustment [12,13]. PSRFM combines a dynamic prediction
model based on the linear spectral mixing algorithm [4–6] and a smoothing filter based on a weighted
average using estimated uncertainties together with constraints on the Normalized Difference Snow
Index (NDSI) [14,15] or Normalized Difference Vegetation Index (NDVI) [16,17]. Following the
introduction, in Section 2, we describe PSRFM methodologies. In Section 3, we explain the experiment
to test the model by generating a Landsat-like image time series with Landsat-8 OLI and MODIS
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(MOD09GA) images. In Section 4, we present the experiment results and discuss our findings. At the
end, in Section 5, we present the conclusions of the study.

2. Methodology

2.1. Problem Description

Assume available co-incident clear-sky Landsat and MODIS surface reflectance data on a start
date t0, followed by no clear-sky Landsat data for a period due to obscured land surface conditions
such as cloud contamination or the limitation of the Landsat system revisiting capability [18] but
some MODIS clear-sky observations. The first question to be addressed is how well we can predict
Landsat-like surface reflectance at a later date t1 based on the pair of Landsat and MODIS images at
date t0 and an additional MODIS observation at date t1. The second question of the problem is how
the prediction can be improved once a second pair of clear-sky Landsat and MODIS surface reflectance
data become available on a later date t2.

2.2. Modelling of Gradual Vegetation Phenological Changes

As mentioned in the introduction, a good fusion model should cover both gradual vegetation
phenological dynamics and abrupt land-cover type changes. To model both of them for predicting
Landsat-like image from MODIS observations, we can take the Landsat reflectance image R0 at the
start date t0 as an initial estimate with a variance (i.e., its observation uncertainty) and then add two
additional terms that represent gradual vegetation phenological change ∆R01 and abrupt land-cover
type change ∆01 from the start date t0 to a prediction date t1, respectively. That is, we can predict
a Landsat-like image R1 at t1 as

R1 = R0 + ∆R01 + ∆01, (1)

where the gradual vegetation phenological changes ∆R01 and the abrupt land-cover type change ∆01

are to be determined from MODIS observations at t0 and t1.
Gradual vegetation phenological changes are modelled as a linear surface reflectance change

velocity. Abrupt land-cover type changes are modelled as a correction based on the analysis of spatial
residual analysis and spatial interpolation as in [6]. A challenge here is that we cannot measure the
reflectance change velocity for each Landsat pixel because the only new measurements about them are
limited to MODIS observations at a much lower resolution. To address this issue, we assume that the
reflectance change rate is the same for a classified region or cluster of Landsat pixels. If there are no
land-cover type changes within the cluster, we assume the reflectance change velocity of the cluster
will reflect reasonably well the phenological changes with time.

Assuming that the land-cover type change such as snowmelt, flooded and forest fire area at
a Landsat-like image pixel is δ and the reflectance change velocity for a cluster c is

.
r, then we can

predict reflectance r of band b at the pixel (x, y) belonging to cluster c at time t1 as follows:

r1(x, y, c, b) = r0(x, y, c, b) + (t1 − t0)
.
r(x, y, c, b) + δ(x, y, c, b). (2)

where r0(x, y, c, b) is Landsat surface reflectance observation of band b at the pixel (x, y) belonging to
cluster c at time t0.

To simplify the mathematical expression, we omit the pixel’s location (x, y) and the band number
b and sort Landsat and Landsat-like surface reflectance into k clusters for band b as
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where rc is an nc × 1 vector that includes all Landsat pixel values belonging to a cluster c (c = 1, 2, . . . ,
k). The total number of Landsat pixels of the processed image is n = ∑k

1 nc.
.
rc and δc are reflectance

change velocity and land-cover change correction for cluster c, respectively. ∆t = t1 − t0 is the time
interval between the start and prediction dates.

Since we have MODIS observations on both dates t0 and t1, we can calculate the reflectance
change velocity and its uncertainty for each of the MODIS reflectance pixels as follows

.
M = (M1 −M0)/(t1 − t0), σ2.

M
=

2σ2
M

∆t2 (4)

where M0 and M1 are MODIS observations on date t0 and t1, respectively. σ2.
M

is the uncertainty

of the velocity estimate calculated from the MODIS observation uncertainty σ2
M through the error

propagation law.
According to spectral linear mixing theory, the reflectance change of a MODIS pixel is weighted

sum of the Landsat reflectance change ∆Rc(xi, yi) of all clusters within the MODIS pixel:

∆M(xi, yi) = ∑k
c=1 fc(xi, yi)× ∆Rc(xi, yi) (5)

where fc(xi, yi) is the portion of the Landsat pixels belonging to cluster c within a MODIS pixel. It can
be determined by Equation (6):

fc(xi, yi,) = Nc(xi, yi)/pi (6)

where Nc(xi, yi) is the number of the Landsat pixels belonging to cluster c within the MODIS pixel at
(xi, yi). pi is the total number of Landsat pixels within the MODIS pixel i.

If we divide the two sides of Equation (5) by the time difference, it becomes the equation for
determining the reflectance change velocity; that is

.
m(xi, yi,) = ∑k

c=1 fc(xi, yi)×
.
rc (7)

where
.

m(xi, yi) is a velocity estimation at MODIS pixel i. Assuming that the reflectance change of the
same cluster among all MODIS pixels is the same, we can apply all p (p > k) MODIS pixels to compose
a system of linear mixture equations:
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From Equation (8), we can obtain an estimation of the reflectance change velocity
.
r and its

covariance matrix C .
r

.
r through a typical Least-Squares adjustment [12,13] as follows
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P = C−1
ll and Cll = σ2.

M
I is the variance matrix of the velocity measurements l. σ̂2.

r is the unit variance
estimation from the residuals v of the observation Equation (8):

σ̂2.
r =

vT Pv
p− k

(11)

where
v = l − A

.̂
r. (12)

Equations (3), (4), (9) and (10) are formulas required to predict gradual vegetation phenological
change ∆R01. According to the error propagation law, we can also estimate their corresponding
uncertainties for each pixel belonging to cluster c as follows

σ̂2
∆rc

= (t1 − t0)
2σ̂2.

r Q .
rc

.
rc

(13)

where Q .
rc

.
rc

is the covariance factor corresponding to the estimated surface reflectance change

velocity
.̂
rc.

If Landsat observation uncertainty is σ2
R, then the uncertainty of the predicted Landsat-like image

pixels of cluster c with only gradual vegetation phenological changes can be calculated as

σ̂2
rc = σ2

R + σ̂2
∆rc

= σ2
R + (t1 − t0)

2σ̂2.
r Q .

rc
.
rc

(14)

2.3. Modelling of Land-Cover Type Changes

The modelling of gradual vegetation phenological changes in Section 2.3 is based on the spectral
linear mixing theory. Its accuracy depends on the classification of the Landsat image at t0. This means
that it is most effective when no land-cover type change occurs between the start date t0 and the
prediction date t1. In reality, this may not be true. For example, a sudden flooding or forest fire may
take place during a short period. Snowmelt may also play an important role on land surface dynamics
in cold northern regions during the transition period from winter to spring season. To consider such
land-cover changes, we need to further model the land-cover change item δ in Equation (2).

Since land-cover type changes will affect the estimation of the velocity parameter vector
.̂
r and the

residual v in Equation (11) directly, we can model land-cover type changes based on analysis of the
residuals. If we assume that land-cover type change happens in a relatively small portion of the image,
then the residuals would be outliers at those MODIS pixels that contain land-cover type changes.
If there is no land-cover change at all, the residuals should follow a normal distribution N(0, Cvv) and
a correction for it is not necessary.
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For individual MODIS pixel, the residual can be calculated from [6]

δM(xi, yi, b) = ∆M(xi, yi, b)− 1
pi

[
pi

∑
j=1

r̂t1
(
xij, yij, b

)
−

pi

∑
j=1

rt0
(
xij, yij, b

)]
(15)

where δM(xi, yi, b) is the residual pixel value of band b at pixel (xi, yi), ∆M(xi, yi, b) is the MODIS
observation differences between dates t0 and t1; r̂t1

(
xij, yij, b

)
is the predicted Landsat-like pixel value

on the prediction date t1, rt0
(

xij, yij, b
)

is the Landsat pixel value at the start date t0 and pi is the
number of Landsat pixels within a MODIS pixel i.

Equation (15) indicates that the residual of a MODIS pixel represents a bias of the estimated
MODIS reflectance difference based on the predicted Landsat-like image in comparison to the observed
MODIS reflectance at pixel (xi, yi). If the predicted temporal change reflects the gradual vegetation
phenological change of a cluster of Landsat pixels well, the corresponding residuals should follow
a zero mean normal distribution. Otherwise, land-cover type changes may have taken place at some
of the MODIS pixels within the same cluster. Based on this fact, we may use one of the following
strategies to deal with land-cover changes with the aim of improving the prediction result:

1. Use the residuals to identify spatial pattern changes within a cluster, then reclassify the pixels
within the cluster based on the residual pattern for a new prediction. For instance, if some of the
pixels are spatially located together within a cluster have different residuals from others, we may
split the pixels of this cluster into two new clusters based on the residual values. One is for the
pixels without land-cover change and another is for the pixels with land-cover change, or

2. Distribute the residuals to Landsat pixels within the MODIS pixel through an adjustment of the
residuals similar to the TPS interpolation used by FSDAF.

PSRFM treats this residual adjustment as a model correction for land-cover type change as the
residuals mainly come from land-cover type change and within-cluster variability [6]. As mentioned
above, a residual adjustment is necessary only when significant land-cover changes are detected.

Further, to make the clusters more accurately reflect land-cover changes between t0 and t1, we may
also perform clustering on MODIS images at t0 and t1 and thereafter overlay the two cluster maps to
check the agreement between the two cluster areas. For the agreement regions, it is not necessary to
add a correction while for the areas that do not agree some kind of corrections may be necessary for
abrupt land-cover changes.

2.4. Optimization of Models

From the formulation of the prediction model in Sections 2.2 and 2.3, we can see that there are two
issues that may affect the accuracy of the prediction model significantly. One is the number of clusters
of the Landsat image used for predicting gradual vegetation phenological changes. Another is the
residual adjustment method for land-cover type changes that depends on the number of clusters used
for prediction. Therefore, optimization of the models, for example, determining the clusters optimally,
becomes a key step of the prediction. This issue exists with all image fusion models based on the linear
spectral mixing theory, for example U-STFM and FSDAF.

To determine the clusters optimally, we suggest a rule of Maximizing Correlation but Smaller
Residuals (MCSR). The basic idea of this rule is to select a cluster number from a set of pre-defined
cluster numbers that will maximize the correlation between the differences (∆R = R̂1 − R0) of the
Landsat images and the differences (∆M = M1 −M0) of the MODIS images but will not increase the
sum of the residual squares

(
sum = ∑ δ2

M
)

of the predicted Landsat-like image significantly. We select
the differences for the comparison because they may cancel same systematic biases of the sensors at
different observation times. Assuming that we have already a well-developed unsupervised automatic
classification method available, for example, the ISODATA classification method implemented in
Geomatica 2016 [http://www.pcigeomatics.com/], we can optimize our models in two steps:

http://www.pcigeomatics.com/
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1. Conduct predictions for a predetermined cluster number range from kmin to kmax and calculate
their corresponding correlation coefficients between the differences of the Landsat image at t0

and the predicted Landsat-like image at t1 and the differences of the MODIS images at t0 and t1

and sums of the residual squares for all predicted Landsat-like images, respectively;
2. Compare the correlation coefficients and the sums of residual squares and select the prediction

that meets the MCSR rule as the optimized prediction.

2.5. Smoothing of Forward and Backward Predictions

The prediction based on our model formulation can be performed both forward and backward
if another pair of Landsat and MODIS surface reflectance data at time t2 (t2 > t1 > t0) are available.
In such a case, we can combine the forward and the backward predictions for the final Landsat-like
predictions on date t1.

One combination method is to smooth the forward and backward predictions through a weighted
average based on their estimated uncertainties. Another option is to average the forward and backward
predictions by weights derived from the elapsed time between the observation dates of the input
images and the predicted date. As phenology change is a function of time, in general, the closer the
dates of reflectance images, the more similar they are. Therefore, we may use the elapsed time for
calculation of weights for smoothing. A risk with weighting by elapsed time is that quality of the
predicted image with the shorter elapsed time may be much worse than quality of the predicted image
with longer elapsed time. Therefore, if we can estimate the uncertainties properly, weighting by the
uncertainties is favorable over weighting by the elapsed time.

Both weighting methods considered cannot cover situations when significant land-cover type
changes occurred between the start date t0 and the end date t2. For instance, snow onset, snowmelt
and flooding may happen at any time during the period between t0 and t2. To consider such land-cover
changes, we recommend applying Normalized Difference Snow Index (NDSI) [14,15] or Normalized
Difference Vegetation Index (NDVI) [16,17] as a constraint for the combination of the forward and
backward predictions for certain situations. Recommendation of applying NDSI for the smoothing
process is based on the observations that the two pairs of Landsat images used for blending are
acquired at least 16 days apart (t2 − t0 ≥ 16). In a transition period from snow cover to snow free,
the two images may have the same or different snow cover conditions than those of the MODIS image
at date t1. It can be expected that the predicted image (either forward or backward) would have
a higher accuracy if the images used for the blending have the same snow cover status and vice versa.
NDVI represents the general conditions of vegetation coverage. For a region with only one vegetation
growing season (e.g., over natural areas in temperate, boreal and arctic zones), yearly time-series of
NDVI of vegetation without disturbance has a bell shape with one maximum [19]. When a forest fire or
flooding on vegetated land occurs, the affected area would have a much lower NDVI. In the situation
of flooding, negative NDVI value can be observed. Similar to NDSI, using NDVI as a constraint to the
smoother would help identify some types of land-cover changes such as forest fire or flooding and
improve the accuracy of the smoothed images.

This process consists of the following steps:

1. Calculate indices (NDSI for snow onset and snowmelt season or NDVI for vegetation growing
season) of the input Landsat images at t0 and t2 and the MODIS observation at t1, namely I f wd,
Ibwd and Imod for forward prediction, backward prediction and the MODIS, respectively. NDSI
and NDVI are used separately. When there is snow cover present on at least one image, NDSI is
used. NDVI is used for those images in vegetation growing season.

2. Check if there are any invalid pixel values in the forward and backward predictions. If one of
them is invalid, select the valid pixel as the final pixel;

3. Set up an index boundary I0. For example, the boundary I0 is set to 0.4 for snow cover (≥0.4) and
snow free (<0.4) situation as it is the commonly used threshold. And then compare the boundary
value to the index value I f wd, Ibwd and Imod to determine the final pixel as follows:
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a. If I f wd ≥ I0 and Imod ≥ I0 but Ibwd < I0, select the forward prediction;

b. If I f wd ≤ I0 and Imod ≤ I0 but Ibwd > I0, select the forward prediction;

c. If I f wd < I0 but Imod ≥ I0 and Ibwd ≥ I0, select the backward prediction;

d. If I f wd > I0 but Imod ≤ I0 and Ibwd ≤ I0, select the backward prediction;

e. For all other cases, apply weighted average based on the estimated uncertainties or their
time intervals between the observation dates and the prediction date.

In this study, we choose a study period from winter to spring and have incorporated NDSI in
the modeling exercise to demonstrate its effectiveness in dealing with situation when land surface is
transition from snow cover to snow free. However, the use of NDSI or NDVI may not be applicable to
some applications. For instance, in urban areas, it may be less effective to apply NDSI or NDVI for
change detection. In such cases, the methods described in Section 2.3 for change detection are more
general and effective.

2.6. Implementation

Based on the formulation above, we implemented the PSRFM algorithm to predict Landsat-like
image on date t1 forward and backward from the input data (Figure 1).
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Before we apply PSRFM, both the Landsat and MODIS images are required to be calibrated
and co-registered to the same physical quantity, such as top-of atmosphere reflectance or surface
reflectance. The co-registration process can be done in the following steps: re-projecting coordinates
of coarse-resolution image to that of the fine-resolution image if they are different, resampling
coarse resolution image to fine resolution by bilinear or nearest neighbor interpolation algorithm,
geo-referencing one image to another by selecting control points or maximizing correlation between
the two images and then cropping them to cover the same area [20,21]. To further reduce the difference
between coarse and fine-resolution data caused by sensor configuration and processing chains,
a radiometric normalization can be applied by assuming a linear relationship between both data
sets [21,22]. After we preprocessed both the Landsat and MODIS images to the same physical quantity,
we can process the data by PSRFM in the following steps:

1. Perform forward predictions for predetermined cluster number range from 4 to 16 and determine
the optimized forward prediction. This process includes:

a. classify the Landsat image at t0 for a specified cluster number;
b. calculate the MODIS reflectance change velocity using the MODIS observations at t0 and t1;
c. estimate the reflectance change velocity;
d. predict Landsat-like image at t1 using the reflectance change velocity of all clusters

estimated in step c;
e. calculate the correlation coefficient between the differences of the predicted Landsat-like

image and Landsat image at t0 and the MODIS image differences;
f. calculate residuals of the predicted Landsat-like image and their sum of squares;
g. adjust residuals by interpolating them to each Landsat-like image pixels to obtain a new

Landsat-like image prediction;
h. calculate the correlation coefficient between the differences of the newly predicted

Landsat-like image and Landsat image at t0 and the MODIS image differences;
i. compare the two correlation coefficients and check the change of the sum of residual

squares and select the prediction with bigger correlation coefficient and the sum change of
residual squares less than 5% if it increases.

j. repeat steps from a to i for all cluster numbers in the range from 4 to 16;
k. compare all predictions and choose the prediction with the maximal correlation coefficient

as the final optimal prediction.

2. Perform the same processing as step 1 for backward prediction.
3. Compute NDSI or NDVI of Landsat images acquired on dates t1 and t2 and of MODIS image

observed on prediction date t1, then combine the optimized forward and backward predictions
as the final prediction of the Landsat-like image.

3. Validations and Experiments

To verify effectiveness of the proposed PSRFM method and compare it to some published methods
such as STARFM and ESTARFM, validation experiments were carried out to generate a Landsat-like
image time series between start date t0 and end date t2 of two pairs of Landsat and MODIS images
and a time series of MODIS images within the two dates. The predicted Landsat-like image time series
are evaluated against their observed Landsat images (as reference) and compared to images predicted
by STARFM and ESTARFM both visually and quantitatively. Additional to the visual and quantitative
evaluations, the estimated uncertainties of the Landsat-like images by proposed PSRFM and their
variations with different priori uncertainties used for the Landsat and MODIS input images are also
analyzed and discussed.
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3.1. Quality Indices for Validation and Comparison

To quantify the closeness of the predicted Landsat-like images to the actual Landsat images,
five commonly used quality indices are used for the validation.

Let x be the predicted Landsat-like image, y be the observed Landsat image as reference with n
pixels, x and y be their mean values, σ2

x , σ2
y and σxy be their variances and covariance, then we can

evaluate the quality of x against y by using the following 5 commonly-used quality indices [23,24]:

1. Average absolute difference (AAD)

AAD =
1
n

n

∑
i=1

(|xi − yi|) (16)

2. The root mean squared error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(xi − yi)
2 (17)

3. Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS)

ERGAS = 100
h
l

√√√√ 1
n

N

∑
k=1

RMSE(Bk)
2

x2
k

(18)

4. Correlation coefficient (CC)

CC =
σxy

σxσy
(19)

5. The quality index (QI) [25]

QI =
4σxyxy(

σ2
x + σ2

y

)(
x2 + y2) (20)

Among the quality indices, the AAD is used to measure the prediction bias. The RMSE is
a measure of total uncertainty (bias plus precision errors) between the predicted and reference images.
The ERGAS evaluates the quality of a fused image in terms of normalized error compared to the
reference image. A higher value of ERGAS indicates a bigger distortion in the predicted image and
a lower value indicates that the predicted image is similar to the reference image [26]. The CC reflects
the degree of correlation (i.e., similarity) between the predicted and reference images. The quality
index QI is used to assess the similarity of the structures between the predicted and reference images.
A value closer to one indicates more structural similarity and vice versa.

3.2. Study Area and Dataset

The study area is shown in Figure 2. It is located around 45◦ N and 76◦ W (Ontario, Canada) and
within the Landsat-8 OLI scene of 16/28 (path/row). The area is dominated by agricultural and forest
land-covers. A portion of the Landsat scene (800 by 800 pixels) is used for the model evaluation. In this
study, five pairs of clear-sky Landsat-8 OLI and MODIS (MOD09GA) surface reflectance images are
acquired from 19 March 2016 to 22 May 2016 (Table 1) with a time interval of Landsat revisiting cycle
of 16 days. One of the reasons to choose this period is that beside two pairs of images are used for
modelling, there are still three clear-sky Landsat images available for model evaluation as shown in
Table 1.
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Figure 2. Red-NIR-SWIR1 (R-G-B) false color composites of the two pairs of Landsat-8 OLI surface
reflectance (lower row) and MODIS surface reflectance bands 1-2-6 false color composites (upper row)
used for a prediction of Landsat-like image time series between 19 March 2016 and 22 May 2016. The
yellow and reddish colors on the images of the left show snow and ice coverage.

Table 1. Images, acquisition dates and their function.

Image Acquisition Date Landsat-8 OLI MODIS (MOD09GA)

19 March 2016 Model input (start date) Model input (start date)
4 April 2016 For model validation Model input (for prediction)
20 April 2016 For model validation Model input (for prediction)
6 May 2016 For model validation Model input (for prediction)

22 May 2016 Model input (end date) Model input (end date)

The first (19 March 2016) and the last (22 May 2016) pairs of Landsat and MODIS images were
used for the start date (t0) and the end date (t2) of the model, respectively. The time interval between
the two dates was 63 days. For the demonstration and evaluation, a time series of Landsat-like images
were predicted only at three dates (4 April, 20 April and 6 May 2016) within the period at when actual
clear-sky Landsat images are available; therefore, the predicted images could be evaluated against
the observed Landsat images. As these images were temporally distributed every 16 days within
the study period, the predictions and their evaluation against the true Landsat images can reveal the
model’s performance using an evenly temporal sampling. Another reason to choose these images is
that the study period covers the transition from the winter to spring, when snowmelt is one of the
main causes of land surface changes. Significant snow and ice coverage is visible on the images of
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19 March 2016 while it is not present on 22 May 2016 imagery (Figure 2). Hence, the PSRFM algorithms
can be fully evaluated.

The MODIS Reprojection Tool (https://lpdaac.usgs.gov/tools/modis_reprojection_tool) is used
for reprojection and resample of MODIS images to the map projection and resolution of the Landsat
images. Three bands of 4 (Red), 5 (NIR—Near Infrared) and 6 (SWIR 1—Shortwave Infrared 1) of
Landsat 8 OLI images, whose corresponding bands of MODIS bands are 1, 2 and 6, are used in the
modeling exercise

4. Results and Discussion

We evaluated the performance of the proposed PSRFM against the Landsat images in the test
dataset and subsequently compared our results, visually and quantitatively using the five (5) quality
indices listed in Section 3.1, to two published and well-studied methods: STARFM [1] and ESTARFM [2].
We chose these two methods for comparison to our model mainly due to their wide acceptance
within the remote sensing community and especially the availability of their processing software.
For the comparison results, we applied STARFM with a max search distance of 25 pixels and other
default values set by the program (available from https://www.ars.usda.gov/research/software/
download/?softwareid=432#downloadForm) and ESTARFM with a half-window size of 25 pixels and
other default values set by the program (available from https://xiaolinzhu.weebly.com/open-source-
code.html). With PSRFM, we used unsupervised ISODATA classification method and its default
parameters implemented in Geomatica 2016 except that the cluster number was determined by the
model optimization algorithm (Section 2.4). The priori uncertainty used for all PSRFM processing
was σR = 40 for Landsat images and σM = 10 for MODIS images (with reflectance scaled by 10,000),
respectively, as suggested in Section 4.3. For combination of the forward and backward prediction, the
NDSI constraint with an index boundary I0 = 0.4 was applied.

4.1. Visual Comparison of Predicted Landsat-Like Image Time Series against True Landsat Images

As stated earlier, we predicted Landsat-like images at three dates (4 April, 20 April and
6 May 2016) when a true Landsat image is available by PSRFM, ESTARFM and ESTARFM for PSRFM
model validation and comparison among these three models. In reality, clear-sky Landsat images are
available on consecutive 5 revisiting days is rare. Figure 3 compares the observed Landsat images and
the predicted Landsat-like image time series by the three different methods.

From visual comparison of the images predicted by the three methods we can see that all of the
methods are able to capture the general land-cover changes in the test area during this observation
period. However, compared to the observed Landsat images, the variations from model to model
are clearly visible, for instance, in the top-left area (see their enlarged image comparison of the first
200 × 200 pixels in Figure 4). In contrast to STARFM and ESTARFM, PSRFM retains more details and
clear boundaries for small objects like water bodies. Therefore, the images predicted by PSRFM have
a higher fidelity to the true Landsat-8 OLI images than those predicted by STARFM and ESTARFM,
especially for the prediction dates after snow is gone due to NDSI involvement by PSRFM.

To further confirm the performance of PSRFM, we compared the surface reflectance of the
predicted Landsat-like image time series against that of the true Landsat images for the prediction
date 6 May 2016 using scatter plots (Figure 5). The scatter plots indicate that PSRFM results in better
agreement with true Landsat reflectance than STARFM or ESTARFM.

https://lpdaac.usgs.gov/tools/modis_reprojection_tool
https://www.ars.usda.gov/research/software/download/?softwareid=432#downloadForm
https://www.ars.usda.gov/research/software/download/?softwareid=432#downloadForm
https://xiaolinzhu.weebly.com/open-source-code.html
https://xiaolinzhu.weebly.com/open-source-code.html
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Figure 2. Visual comparison of Landsat-like image series predicted by STARFM, ESTARFM and the 
proposed PSRFM methods. From the left to the right, Red-NIR-SWIR1 (R-G-B) composites of (a) true 
Landssat-8 OLI images; (b) predicted images from STARFM; (c) predicted images from ESTARFM; 
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Figure 3. Visual comparison of Landsat-like image series predicted by STARFM, ESTARFM and the
proposed PSRFM methods. From the left to the right, Red-NIR-SWIR1 (R-G-B) composites of (a) true
Landssat-8 OLI images; (b) predicted images from STARFM; (c) predicted images from ESTARFM;
and (d) predicted images from PSRFM. From the top to the bottom, the dates of the image time series
are 4 April 2016, 20 April 2016 and 6 May 2016.
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Figure 4. Enlarged visual comparison of the first 200 × 200 pixels of the Landsat-like image series
predicted by STARFM, ESTARFM and the proposed PSRFM method. From the left to the right,
Red-NIR-SWIR1 (R-G-B) composites of (a) the true Landssat-8 OLI images; (b) the predicted images
from STARFM; (c) the predicted images from ESTARFM; and (d) the predicted images from PSRFM.
From the top to the bottom, image time series for dates 4 April, 20 April and 6 May 2016.
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(b) ESTARFM and (c) PSRFM for prediction date 6 May 2016.

4.2. Quantitative Comparison of the Quality Indices

For quantitative comparisons of the predicted Landsat-like image time series, we calculated the
five quality indices (Equations (16)–(20)) for all predicted Landsat-like images dated as 4 April 2016
(day of year 95), 20 April 2016 (day of year 111) and 6 May 2016 (day of year 127) against the
corresponding observed Landsat images, respectively. Table 2 shows three error estimates (AAD,
REMS and ERGAS) of the predicted Landsat-like image time series by the three models (STARFM,
ESTARFM and PSRFM). Table 3 gives their corresponding correlation coefficients (CC) and the quality
index (QI). Figure 6 compares all of the five quality indices band by band graphically.
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Table 2. Quality indices AAD, REMS and ERGAS of the predicted Landsat-like image time series by
the three models STARFM, ESTARFM and PSRFM.

Band Method AAD RMSE ERGAS

Date (Day of Year) 95 111 127 95 111 127 95 111 127

RED
STARFM 0.040 0.023 0.017 0.060 0.031 0.026 3.397 2.688 2.529
ESTARFM 0.039 0.023 0.014 0.062 0.035 0.021 3.162 2.656 1.824
PSRFM 0.037 0.019 0.015 0.059 0.025 0.020 3.361 2.077 1.792

NIR
STARFM 0.034 0.031 0.032 0.046 0.041 0.045 1.286 1.286 1.277
ESTARFM 0.043 0.047 0.041 0.062 0.065 0.057 1.705 2.049 1.622
PSRFM 0.034 0.023 0.021 0.049 0.031 0.028 1.339 0.906 0.743

SWIR1
STARFM 0.055 0.047 0.039 0.070 0.062 0.055 2.557 2.051 1.805
ESTARFM 0.057 0.050 0.032 0.074 0.069 0.046 2.406 1.922 1.257
PSRFM 0.049 0.031 0.027 0.064 0.043 0.035 2.095 1.320 1.081

AVERAGE
STARFM 0.043 0.033 0.029 0.059 0.045 0.042 2.413 2.008 1.870
ESTARFM 0.046 0.040 0.029 0.066 0.056 0.042 2.425 2.209 1.568
PSRFM 0.040 0.024 0.021 0.057 0.033 0.027 2.265 1.434 1.205

Table 3. Quality indices CC and QI of the predicted Landsat-like image time series by the three models
STARFM, ESTARFM and PSRFM.

Band Method CC QI

Date (Day of Year) 95 111 127 95 111 127

RED
STARFM 0.478 0.746 0.846 0.453 0.722 0.805

ESTARFM 0.697 0.735 0.883 0.669 0.729 0.882
PSRFM 0.487 0.850 0.917 0.456 0.847 0.911

NIR
STARFM 0.767 0.804 0.832 0.767 0.801 0.823

ESTARFM 0.700 0.633 0.766 0.680 0.623 0.764
PSRFM 0.738 0.830 0.911 0.736 0.830 0.910

SWIR1
STARFM 0.755 0.802 0.855 0.717 0.762 0.826

ESTARFM 0.769 0.772 0.870 0.749 0.768 0.869
PSRFM 0.844 0.909 0.938 0.829 0.899 0.934

AVERAGE
STARFM 0.667 0.784 0.844 0.646 0.761 0.818

ESTARFM 0.722 0.713 0.840 0.699 0.706 0.838
PSRFM 0.690 0.863 0.922 0.674 0.859 0.918

Tables 2 and 3 indicate that out of the total 45 quality index values (5 indices × 3 bands × 3 dates),
PSRFM outperforms other two methods for 37 data values, which counts for about 82.2% of the total
quality index data values; the other 8 better quality values (18.2%) are equally shared by STARFM and
ESTARFM. Overall, PSRFM outperforms STARFM and ESTARFM in predicting Landsat-like image
time series. This can be seen clearly from graphical comparison of the five quality indices in Figure 6.

In addition, computation speed of the proposed PSRFM is more efficient than STARFM and
ESTARFM too. Based on the current implementation of PSRFM in Matlab on a desktop PC with
an Intel i5 3.2-GHz processor, 8 GB RAM and 1 TB hard disk, for a predetermined cluster number,
the processing times for the test case with an image size of 800 × 800 pixels was 25 s, 2 min and 11 min
for PSRFM, STARFM and ESTARFM, respectively. Even for a model optimization with a predetermined
cluster number range of 4 to 16, the total processing time of PSRFM is still less than 6 min.

From the visual and quantitative comparisons of the predicted Landsat-like image time series
against the true Landsat images above and the performance comparisons among the three methods
PSRFM, STARFM and ESTARFM, we can conclude that the proposed PSRFM is effective and
outperforms STARFM and ESTARFM.



Remote Sens. 2018, 10, 1371 16 of 22

Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 22 

 

Table 3. Quality indices CC and QI of the predicted Landsat-like image time series by the three 
models STARFM, ESTARFM and PSRFM. 

Band Method CC QI 
Date (Day of Year) 95 111 127 95 111 127 

RED 
STARFM 0.478 0.746 0.846 0.453 0.722 0.805 

ESTARFM 0.697 0.735 0.883 0.669 0.729 0.882 
PSRFM 0.487 0.850 0.917 0.456 0.847 0.911 

NIR 
STARFM 0.767 0.804 0.832 0.767 0.801 0.823 

ESTARFM 0.700 0.633 0.766 0.680 0.623 0.764 
PSRFM 0.738 0.830 0.911 0.736 0.830 0.910 

SWIR1 
STARFM 0.755 0.802 0.855 0.717 0.762 0.826 

ESTARFM 0.769 0.772 0.870 0.749 0.768 0.869 
PSRFM 0.844 0.909 0.938 0.829 0.899 0.934 

AVERAGE 
STARFM 0.667 0.784 0.844 0.646 0.761 0.818 

ESTARFM 0.722 0.713 0.840 0.699 0.706 0.838 
PSRFM 0.690 0.863 0.922 0.674 0.859 0.918 

 
Figure 5. Quality indices comparison of the predicted Landsat-like image time series by the three 
models STARFM, ESTARFM and PSRFM. Three columns present the three bands RED, NIR and 
SWIR1, respectively. (The smaller of AAD, REMS and ERGAS, the better quality of the predicted 
image; and the bigger of CC and QI, the better quality of the image). 

Figure 6. Quality indices comparison of the predicted Landsat-like image time series by the three
models STARFM, ESTARFM and PSRFM. Three columns present the three bands RED, NIR and SWIR1,
respectively. (The smaller of AAD, REMS and ERGAS, the better quality of the predicted image; and the
bigger of CC and QI, the better quality of the image).

4.3. Uncertainties of the Predicted Landsat-Like Images

Another advantage of PSRFM is that it can incorporate uncertainties of the input Landsat and
MODIS images and quantify uncertainty information for its predicted synthetic Landsat-like images.
The uncertainty is propagated from the uncertainties of the input Landsat and MODIS images via the
blending process in the form of standard deviation of each and every pixel. The system can produce
uncertainty data for both forward and backward predictions as the smoother could reduce uncertainty
of the smoothed image by uncertainty-weighted average. In a general sense, a smaller uncertainty
value of a pixel represents a more precise prediction of the pixel value.

The uncertainty of a predicted image is from two sources: one is the PSRFM blending process
and the other is from the priori uncertainty of the input images for the blending. Since actual
priori uncertainty of the Landsat and MODIS images is unavailable, to demonstrate how the priori
uncertainties influence the uncertainty estimation of the output images and find out the significance
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of the uncertainty to the predicted images, we predicted a number of synthetic Landsat-like images
using the same input Landsat and MODIS images but with different priori uncertainties for the
input images. This is to simulate different accuracy of input images due to various reasons such
as cloud/haze residual and so forth. Table 4 gives the average of the pixel prediction uncertainties
(standard deviations) estimated by the forward, backward and smoothed predictions of PSRFM
with an empirically fixed priori pixel uncertainty σR = 40 for the input Landsat images and various
priori pixel uncertainties σM ranged from 1 to 50 for the input MODIS images. The date of the
prediction Landsat-like image is 20 April 2016 and of the input pairs of Landsat and MODIS images
are 19 March 2016 (t0) and 22 May 2016 (t2), respectively.

Table 4. Mean of prediction uncertainties (standard deviations, pixel value scaled by 10,000) estimated
by PSRFM with an empirically fixed priori pixel uncertainty of σR = 40 for input Landsat images and
various priori pixel uncertainties σM ranged from 1 to 50 for input MODIS images.

σM Band Forward Backward Smoothed Variations with Various σM

1

RED 40.3839 40.0100 31.7790
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From Table 4, we can see that the priori uncertainties of the input Landsat and MODIS images will
influence the uncertainty estimations of the output images significantly and as expected, the larger the
priori uncertainty of the input images, the larger the estimated uncertainty of the predicted images and
vice versa. Depending on qualities of the input MODIS images and the priori uncertainty values used
for them, the estimated uncertainties of the forward and backward predictions may be considerably
different. Such different uncertainties of the forward and backward images would affect the quality of
the smoothed image. To limit such difference or better balance their effects on the smoothed image,
a smaller priori uncertainty value should be assigned to the MODIS input images. This can be seen
clearly from the uncertainty variations of the forward, backward and smoothed predictions in Table 4.

To explore the quality of the predicted images with different priori uncertainties of the input
images, we computed the five quality indices of those predictions against the observed image.
The quality indices comparison in Table 5 and Figure 7 shows that the impacts of different priori
uncertainty sets on the final prediction are not very significant although some minor differences of
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those index values exist. This means that PSRFM prediction system is stable and not affected much
by the priori uncertainty of the input image even if the uncertainties of the predicted images vary.
From the variations of the quality indices with the different priori uncertainties sets, we can see that
a small priori uncertainty less than 10 for the input MODIS images is not recommended because it will
decrease the quality of the predicted images. However, overall, a priori uncertainty between 10 and
20 for the input MODIS images and a priori uncertainty above 30 for the input Landsat images are
helpful in improving quality of the smoothed image from the forward and backward predictions.

Table 5. Quality indices of predicted Landsat-like images by PSRFM with an empirically fixed priori
pixel uncertainty of σR = 40 for the input Landsat images and different priori pixel uncertainties σM

ranged from 1 to 50 for the input MODIS images for prediction dated 20 April 2016.

Band σM AAD RMSE ERGAS CC QI

RED

1 0.0195 0.0263 2.1600 0.8404 0.8370
10 0.0187 0.0254 2.0772 0.8497 0.8467
20 0.0184 0.0254 2.0763 0.8468 0.8444
30 0.0183 0.0257 2.0914 0.8408 0.8388
40 0.0183 0.0259 2.1022 0.8348 0.8332
50 0.0184 0.0262 2.1113 0.8302 0.8288

NIR

1 0.0232 0.0308 0.9109 0.8280 0.8279
10 0.0230 0.0308 0.9055 0.8296 0.8296
20 0.0231 0.0311 0.9125 0.8267 0.8266
30 0.0232 0.0314 0.9191 0.8239 0.8238
40 0.0233 0.0315 0.9238 0.8220 0.8219
50 0.0234 0.0317 0.9270 0.8208 0.8207

SWIR1

1 0.0313 0.0429 1.3326 0.9071 0.8976
10 0.0310 0.0425 1.3201 0.9092 0.8991
20 0.0309 0.0425 1.3215 0.9094 0.8986
30 0.0309 0.0426 1.3267 0.9089 0.8979
40 0.0309 0.0427 1.3313 0.9084 0.8974
50 0.0309 0.0428 1.3349 0.9080 0.8971

AVERAGE

1 0.0247 0.0333 1.4679 0.8585 0.8542
10 0.0242 0.0329 1.4343 0.8628 0.8585
20 0.0241 0.0330 1.4368 0.8610 0.8565
30 0.0242 0.0332 1.4458 0.8579 0.8535
40 0.0242 0.0334 1.4524 0.8551 0.8508
50 0.0243 0.0335 1.4578 0.8530 0.8488

To further explore the meaning of the uncertainty to the predicted images, relationships between
the estimated uncertainties and the quality of predicted images are studied. Figure 8 shows the
correlations between the uncertainty values (averaged standard deviation) and the five quality indices
listed in Tables 2 and 3, that is, calculated by using priori uncertainty σM = 10 for input MODIS
images and σR = 40 for input Landsat images. From these graphs, it can be seen that, statistically,
the uncertainty does reflect the quality of the predicted images—a smaller uncertainty indicates
a smaller ADD, RMSE, ERGAS and a larger CC and QI and vice versa. Therefore, in general, with priori
uncertainties of the input images specified, a smaller uncertainty gives us indication of higher quality
of the prediction and a larger uncertainty implies poorer quality of the prediction.
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In summary, although the estimated uncertainty of the predicted Landsat-like images by PSRFM
varies with different priori uncertainties of the input images, its quality, compared to its counterpart
observed image, is not significantly affected. Hence, with an input set of priori uncertainty of the input
images, the estimated uncertainty will give us an overall quality estimation of the forward, backward
and the smoothed predictions relatively. That is, a smaller uncertainty means a higher quality of
the predicted pixels. To balance the effects between the forward and backward predictions on the
smoothed image, from Figure 7, we can see that a smaller priori uncertainty from 10 to 20 for the
MODIS images but a bigger priori uncertainty from 30 to 50 for the Landsat images are recommended.
However, whether these recommendations are valid for applications in other locations and landscapes
(e.g., an urban area) or different seasons is still worth to be verified by more and different test cases.

5. Conclusions

This paper proposed a new Prediction Smooth Reflectance Fusion Model (PSRFM) to improve
current Landsat and MODIS reflectance fusion models for both gradual vegetation phenological
and abrupt land-cover type changes. PSRFM combines a dynamic prediction model based on the
linear spectral mixing algorithm with a smoothing filter based on weighted average of uncertainties
of the predicted images with an option of under constraints of Normalized Difference Snow Index
(NDSI) or Normalized Difference Vegetation Index (NDVI). PSRFM can predict synthetic Landsat-like
images from one pair or two pairs of Landsat and MODIS images, and, at the same time, generate the
uncertainty information of the predicted images. Further, to optimize the modelling of both gradual
vegetation phenological change and land-cover changes, a model optimization method based on
Maximizing Correlation but Smaller Residuals (MCSR) is introduced.

The proposed PSRFM possesses following desirable characteristics: (1) it works with one pair
or two pairs of Landsat and MODIS images; (2) it can incorporate input image uncertainty during
prediction and estimate prediction uncertainty; (3) it can track gradual vegetation phenological changes
through the dynamic prediction model and deal with abrupt land-cover type changes through a model
correction based on residuals of the predicted images; and (4) for predictions using two pairs of
input images, the results can be further improved through the constrained smoothing filter based on
weighted average of uncertainties and on NDSI or NDVI for certain applications.

The proposed model PSRFM was tested to produce a Landsat-like image time series from
an observed satellite imagery dataset. Comparisons of the predicted versus actual Landsat images
show that the proposed PSRFM is effective and outperforms STARFM (Spatial and Temporal Adaptive
Reflectance Fusion Model) and ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance
Fusion Model) in terms of visual and quantitative evaluations.

Notwithstanding the improvement that PSRFM represents over current methods, there is room
for improvement. First, modelling abrupt land-cover changes based on advanced analysis of the
prediction residuals including applying proper interpolations of the residuals is still a challenge task.
Second, the prediction model for gradual vegetation phenological changes is based on the spectral
linear mixing theory and depends on the classification of Landsat images. The clustering optimization
implemented in this study is a time-consuming process and ignores the land-cover change information
from MODIS observations. It would be beneficial to test and integrate newly developed clustering
approaches (e.g., [7,8]). Third, complete clear-sky Landsat images for input to PSRFM are difficult to
find for an entire scene. For practical applications, an improved algorithm that can deal with Landsat
images with cloud-contaminated pixels and with additional data such as quality assessment (QA)
band is also required.
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