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Abstract: Bathymetric surveying to gather information about depths and underwater terrain is
increasingly important to the sciences of hydrology and geomorphology. Submerged terrain
change detection, water level, and reservoir storage monitoring demand extensive bathymetric
data. Despite often being scarce or unavailable, this information is fundamental to hydrodynamic
modeling for imposing boundary conditions and building computational domains. In this manuscript,
a novel, low-cost, rapid, and accurate method is developed to measure submerged topography,
as an alternative to conventional approaches that require significant economic investments and
human power. The method integrates two types of Unmanned Aerial Systems (UAS) sampling
techniques. The first couples a small UAS (sUAS) to an echosounder attached to a miniaturized boat
for surveying submerged topography in deeper water within the range of accuracy. The second uses
Structure from Motion (SfM) photogrammetry to cover shallower water areas no detected by the
echosounder where the bed is visible from the sUAS. The refraction of light passing through air–water
interface is considered for improving the bathymetric results. A zonal adaptive sampling algorithm
is developed and applied to the echosounder data to densify measurements where the standard
deviation of clustered points is high. This method is tested at a small reservoir in the U.S. southern
plains. Ground Control Points (GCPs) and checkpoints surveyed with a total station are used for
properly georeferencing of the SfM photogrammetry and assessment of the UAS imagery accuracy.
An independent validation procedure providing a number of skill and error metrics is conducted
using ground-truth data collected with a leveling rod at co-located reservoir points. Assessment of
the results shows a strong correlation between the echosounder, SfM measurements and the field
observations. The final product is a hybrid bathymetric survey resulting from the merging of SfM
photogrammetry and echosoundings within an adaptive sampling framework.
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1. Introduction

1.1. Introduction and Overview

For decades, topographic and bathymetric surveys have been widely used to study the evolution
of landscapes and geomorphological processes. With the advent of new monitoring and modeling
systems, interest in high-resolution topographic data has rapidly increased in a broad spectrum
of sciences. In hydrologic and geomorphologic sciences, specific applications of high-resolution
topographic data include but are not limited to the study of terrain change and detection of
landslides [1–5], fluvial modeling [6,7], distributed hydrologic modeling [8–11], habitat assessment,
and river restoration [12–17]. A broad range of techniques to measure bathymetry have evolved
to meet measurement requirements, across different disciplines. Existing approaches range from
traditional total stations and leveling equipment [4,18] to novel and developing techniques such as
digital photogrammetry [19–23], terrestrial laser scanning, and aerial Light Detection And Ranging
(LiDAR) [1,24–28]. Despite the range of available methods, the production of Digital Elevation Models
(DEMs) demands significant investments of resources including expensive equipment, hardware,
software, and manpower [29–31]. Remote sensing technology utilizing Unmanned Aircraft Systems
(UAS) represents a cost-effective alternative to conventional methods that has been gaining adepts in
the earth science community during the last decade [2,32–37].

Unmanned Aerial Vehicles (UAV), also known as aerial robots or drones, are aircrafts piloted
by remote control rather than by a human pilot. When taken as a collective system of components
(UAV, ground station, telemetry, etc.), the term UAS is used. Small unmanned aircraft systems
(sUAS) are UAS that weigh less than 25 kg and have integrated autopilot technology that allows
for semi- or fully-autonomous navigation, flight control, and image acquisition capabilities [38–41].
sUAS are currently used for the acquisition of photogrammetrically-derived DEMs [33,35,37,38,42–45].
Image acquisition with off-the-shelf cameras mounted in sUAS can be performed at a spatial resolution
on the order of meters to centimeters [2,29,30,34,36,45]. The accuracy of DEMs based on aerial
imagery is found to be comparable to aerial LiDAR data [29]. While high-resolution topographic
surveying has traditionally been associated with high costs of data collection (e.g., traditional
airbone LiDAR) [24,26,29,37], sUAS imagery provides a low-cost yet accurate alternative to DEM
construction [35,36,43,46]. Recently, studies have been utilizing sUAS to collect terrain datasets
examining topics such as landslides [2], Aeolian and glacial landforms [38,47], riparian forests [33]
and fluvial geomorphology [30,48]. Nonetheless, few studies have applied sUAS imagery to quantify
submerged topography in water bodies, such as rivers, swamps, marshes, lakes and reservoirs [29,37,49].

Submerged topography is essential to understanding the hydrologic and geomorphologic
processes of lotic and lentic systems. In lentic systems, traditional techniques for examining bathymetry
include cross-section surveys along river reaches [4,18]. Nevertheless, this conventional method is
time-demanding, limited due to accessibility, and constrained to small to medium-size rivers. Indirect
methods of estimating the bathymetry of water bodies have been expanding since the development
and implementation of acoustic sensing technologies [17,50–57]. Acoustic instruments aim to replace
conventional techniques to measure submerged topography and velocity profiles. Single-beam and
multi-beam echosounders and Acoustic Doppler Current Profilers (ADCP) are currently utilized for
acquiring point cloud bathymetry [54]. While acoustic sensing technologies have been applied to the
detection of ocean and coastal bathymetric changes [17,25,51,57,58], the use of these technologies has
been limited in fluvial geomorphology [50,54–56,59–61].

1.2. Conventional and Emerging Techniques for Bathymetric Surveying

1.2.1. Total-Station Surveying

Total station theodolite (TST) or total station surveys use electronic survey equipment in conjunction
with a measuring tape, level, and rod to record the terrain by measuring distances, azimuth and
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elevation [62]. This technique is mainly applied in civil engineering, [63–66], and mining [67,68],
although it has been widely applied in earth sciences with demonstrated high accuracy in rugged
terrains [4,18,69]. The accuracy of TST surveys can reach a point spacing of +/− 0.05 m within an
area of 0.075 to 0.275 m2 [62]. Due to its accuracy, TST surveys are commonly used as ground control
points (GCP) for remote sensing mapping [3,29,37]. However, producing a DEM using TST surveying
requires significant monetary investment and human power. Additionally, this technique is limited to
channel cross section surveys that lack the ability to measure 3D maps. This makes TST an insufficient
method for providing large scale and continuous data to quantify the spatial and temporal variability of
submerged topography.

1.2.2. Terrestrial and Aerial LiDAR

LiDAR uses differences in laser return times and wavelengths to make a 3D representation
of terrain targets from a station or moving vehicle (terrestrial LiDAR) or attached to an aircraft
(airborne LiDAR) [24]. Terrestrial LiDAR is very accurate and commonly used for high resolution
topographic surveys of exposed terrain [35,70]. However, ground-based LiDAR systems are very
expensive, require significant human power to operate and maintain, and provide limited spatial
coverage [29–31].

The use of airborne LiDAR has rapidly grown over the last two decades, with numerous applications
for examining hydrologic and geomorphologic processes such as the detection of landslides [40],
estimation of vegetation cover [71–73], assessment of forest and canopy height [74–79], and urban scene
classification [80–82]. The use of LiDAR in underwater mapping applications has been limited [24] mainly
because the near-infrared energy utilized by LiDAR instruments is lost due to absorption at the water,
making it ineffective at probing underwater elevations [37,47]. Emerging techniques employ a blue-green
laser to determine the air–water interface in clear, shallow water [27,28,83–85]. This technology has been
intensively developed since the mid-1990s, providing high-density, remote data, for bathymetry up to
10 m of water depth [29,31], otherwise unreachable using TST surveyings. It has been typically applied to
near-shore coastal environments [86,87], but restrictively used in relatively flat topographic settings due
to the poor resolution for detecting abrupt changes in bathymetry, which are typically observed in beds
and banks of rivers and some mountain reservoirs.

The Experimental Advanced Airborne Research LiDAR (EAARL) system has improved the ability
to discriminate water surface reflections from bed reflections with better spatial resolution of small
topographic features [88]. The EAARL project has been designed for shallow water bathymetry and
topography, benthic habitats, hurricane damage assessment, and shoreline mapping [85,86,89–92].
Enhancements include a powerful, single green wavelength laser with a greater pulse frequency
and shorter pulse width. At present, the application of the airborne LiDAR bathymetric technology
to terrestrial systems is limited to clear water conditions and constrained due to the coarse spatial
resolution and a high cost of equipment and sensors [90].

1.2.3. Single- and Multi-Beam Bathymetric Systems

Single- and multi-beam bathymetry systems are commonly configured with a transceiver mounted
on a ship. Single-beam systems measure bathymetry directly beneath the research vessel and are
relatively easy to use, but only provide depth information along the trackline of the ship. Multibeam
echosounder systems (MBES), also known as swath, are a type of sonar typically used to map large
swaths of the ocean floor. These acoustic maps are mainly used by the oceanography community
with applications in benthic habitat mapping [17,93], seabed morphology in the coastal zone and the
continental shelf [51,57], and fish species tracking [53].

However, multi-beam echosounders have only been utilized in some fluvial and lake enviroments
for bathymetric surveying [54,94], river deltas [50,51], bedform evolution [56], and bed-load
transport [55]. Although multibeam bathymetric mapping has become highly sophisticated, the use of
this technology to retrieve high resolution bathymetry requires significant investment in technologies
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and may not be appropriate for all water body spatial scales. Therefore, single-beam surveying
remains a low-cost and effective mapping technique [52,95]. This technique has been employed to
produce profiles to identify bedform movement in large fluvial systems, such as the Jamuna [96],
Mississippi [97], the lower Sacramento, and San Joaquin Rivers [52].

1.2.4. Digital Photogrammetry

Digital photogrammetry is the science of determining geometric properties from objects based on
digital images. It is a well-established technique for acquiring a dense 3D point cloud and generating
DEMs from the overlap of stereoscopic images that has been applied in variety of fields. It is employed
for rapidly creating basin topography maps within hydrologic systems. It is also commonly used in
geomorphology for floodplain analysis [98–100], identification of erosion, and deposition patterns [101],
river channel dynamics [22,23,102], quantification of sediment transport rates [21,102,103], bank erosion
and gravel-bar surfaces [104]. Digital photogrammetry faces the same hurdles as LiDAR mapping when
applied to bathymetry in reservoir and river systems because the reflection and refraction of light at the
water surface requires consideration and correction to obtain accurate images. In optimal conditions,
refraction corrections are possible if the water is clear and visible from the photographs [22,23,37,49].

1.2.5. Structure from Motion (SfM) Photogrammetry

SfM is a photogrammetry technique used to reconstruct DEMs by overlapping multiple 2D
image sequences acquired from different viewpoints. During the last several years, UAS-based image
acquisition has been shown to be suitable for environmental remote sensing [32,38,105–109]. This is
particularly useful for topographic surveys in areas where access is limited, making the combination of
UAS and SfM-photogrammetry algorithm an efficient, low cost technique that can provide high-quality
DEMs in challenging areas [32]. The UAS imagery is usually geolocated, but lacks on scale and
orientation. A traditional approach to correct for this is based on the transformation to an absolute
coordinate system, or georeferencing, that can be achieved based on small number of Ground Control
Points (GCPs) with known coordinates [109]. After the image acquisition, 3D scene reconstruction and
DEM generation is conducted. Point cloud reconstruction is comprised of linking specific key points
from at least three overlapped images. Thus, the 3D point cloud generated using SfM depends heavily
on the quality of the image set. 3D scene reconstruction and terrain modeling represents a considerable
computational task [34], which is also a common challenge in other remote sensing methods, such as
LiDAR, or digital photogrammetry. The use of Post Processing Kinematic (PPK) Global Positioning
Systems (GPS) significantly improved the internal photogrammetric model orientations and it is also
recognized for improving the accuracy of the full-scale surveys. Commercially available software
packages, such as AgiSoft Photoscan R©, DroneDeploy R© and Pix4DMapper Pro R© have integrated UAS
mapping and photogrammetry algorithms to achieve an accurate triangulation and geolocation of
every point of the 3D point cloud.

The SfM-photogrammetry technique has been extensively applied in the fields of computer vision
and visual perception over the last decade, but its application for landform topography mapping has
only emerged over the last few years. For this reason, it remains limited for determining submerged
topography. Woodget et al. [37] and Fonstad et al. [29] developed the only known published examples
of bathymetric surveys based on UAS imagery coupled with SfM-photogrammetry. Woodget et al. [37]
provided a quantitative assessment of the use of UAS-SfM to generate hyper-spatial resolution (<0.1 m)
fluvial topography of two shallow-water, small-scale river transects. The maximum water depth of both
rivers ranged between 0.5 m and 0.7 m. Within the exposed areas, results showed a similar degree of
accuracy and hyper-spatial resolution compared with terrestrial LiDAR. A simple refraction correction
was employed in submerged areas, ameliorating the DEM accuracy. Thus, the technique showed
capabilities to estimate topographic data from shallow and clear water with adequate illumination [37].
Fonstad et al. [29] reconstructed a high-resolution DEM of a bedrock-controlled river setting using
a UAS-SfM technique. Image acquisition and processing were analyzed in a free and open source
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environment. Results were found to be of comparable accuracy and precision to LiDAR measurements
with a mean difference between SfM and LiDAR of 0.60 m (+/− 1.08 m), but with significant reductions
in time and labor costs [29].

To our knowledge, no published work has assessed the use of an integrated system combining
sUAS imagery and echo soundings for bathymetric surveying. In this article, we will present the
development of a novel, economic, flexible and accurate technique to measure submerged topography.
This method combines echosounder data with SfM-photogrammetry. An adaptive sampling routine
is developed to optimize acoustic soundings aiming to reduce redundant data, and minimize the
bathymetric variability created by under-sampling. Field campaigns were completed to validate and
assess the final merged results. The limitations, takeaway, novelty, and future directions of this work
will also be described.

2. Study Area

The study was conducted at a small reservoir, 27,790 m2, located at the Kessler Atmospheric and
Ecological Field Station (KAEFS) near Purcell, Oklahoma, USA (Figure 1). KAEFS is an educational
facility, owned by the University of Oklahoma (OU), located approximately 28 km southwest of OU
main campus that hosts short- and long-term meteorological, biological, and environmental studies.
The facility’s land cover is characterized by mixed and tall grass prairie, woodlands, a creek, and a
reservoir within a 1.5 km2 area. The Finn Creek site 21 reservoir serves as flood retention structure and
water storage for ecosystem conservation. A small area on the northeast side of the reservoir that is
beyond KAEFS boundaries was not sampled with the echosounder as permissions were not obtained
to fly UAS over private property. As the accuracy of SfM in submerged topography is affected by the
water surface and wave action, the surveying of a reservoir like this represents ideal conditions to
examine UAS-SfM as it will be devoid of waves or surface rippling. The reservoir also provides a
diverse bathymetry profile in a small area with water depths up to 5 m and shallow areas with clear
water and visible bed. These factors, combined with its easy access, made it an adequate location to
examine the capabilities of the proposed bathymetric measurement system.

Figure 1. The location of the Finn Creek Site 21 Reservoir within KAEFS boundaries in McCain County,
Central Oklahoma, USA.
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3. Data and Methods

The combination of two methods allowed the surveying of both deep and shallow waters. The first
method consisted of coupling an sUAS, positioned at low-altitude of 2 m above water level, to an
echosounder for surveying the bathymetry of deep waters. The second method consisted of an
sUAS that flew at a high-altitude of 120 m Above Ground Level (AGL) to record the bathymetry
of shallow waters by collecting UAS-imagery and applying the SfM-photogrammetry technique.
Both methods were tested during a field campaign during August 2017. The U.S. Federal Aviation
Administration (FAA) requires a Pilot In Command (PIC) licensed under Part 107 to supervise all
operations. These regulations also stipulate that the sUAS should weigh less than 25 kg, fly below
120 m altitude AGL, and operate between the hours of civil sunrise and sunset, while maintaining
visual line of sight with the PIC, to mitigate risk of collision with manned aircrafts. All field operations
described in this manuscript are conducted under these guidelines as well as recommendations set
forth by OU’s Risk Management division. All aircrafts are assigned tail numbers (also known as
N-numbers), registered with the FAA, and insured through OU as required by FAA Part 107.

3.1. sUAS-Echosounder System

3.1.1. Equipment

For the low-altitude (2 m above water level) system, a low-cost, single-beam echosounder was
attached to a lightweight miniaturized boat towed by a DJI Phantom 3 Pro (DJI, Shenzhen, China),
as illustrated in Figure 2A. The Phantom 3 Pro is a small, commercially available platform selected for
its light weight (1280 g), and vertical and horizontal hover accuracy of 0.1 m and 0.3 m, respectively.
Its GPS planimetric accuracy is 1.5 m and its vertical accuracy is 3 m. The tethered echosounder
was a Deeper Smart Sonar PRO+ (Deeper company headquartered in Lithuania) capable of 15 scans
per second over a range of depths from 0.7 to 80 m with integrated GPS and WiFi connection to
enable data transmission. The echosounder measured 6.5 cm in diameter and weighted 100 g with
a rechargeable battery that guaranteed up to 5.5 h of work. Echosounds were transmitted to a small
Samsung Android tablet (company headquartered in Seoul, South Korea) with the Deeper Smart Sonar
application installed. The boat was built by The Center for Autonomous Sensing and Sampling (CASS)
at OU with the purpose of properly setting the echosounder to assure vertical contact with the water
surface at all times (Figure 2A,B). This integrated boat and echosounder equipment was designed to
be economic, flexible and easy to transport to other testing sites.

A B

Figure 2. small UAS-echosounder system. (A) DJI Phanton 3 Pro quadcopter propelling a mini-boat
carrying the single-beam echosounder across the Finn Creek Site 21 Reservoir; (B) DJI Phantom 3
Professional unmanned aerial system, Deeper Smart Sonar Pro+ wireless sonar, boat (top showing tablet
attached in waterproof case and bottom showing attachment of sonar), and Samsung Android tablet.
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3.1.2. Preliminary and Zonal Adaptive Sampling

Multiple flights were conducted at the study reservoir following a spiral pattern from the outside
in, to minimize sharp turns and follow the natural water body geometry. Each flight duration
ranged between 8 to 15 min depending on the battery life, covered area and wind conditions.
The preliminary sampling allowed to store a (x, y, d) dataset in the surveying tablet where x and
y denoted the Universal Transverse Mercator (UTM) coordinates, and d is the depth of the reservoir.
This first irregularly-sampled database served to assess the spatial variability of depth and recognize
sub-areas that needed a second survey, aiming to efficiently capture the abrupt changes in the
reservoir bathymetry. A cluster analysis algorithm, developed in R R©, was applied to determine
the sub-regions where densified sampling had to be conducted. Overall, a cluster analysis is a method
for identifying homogeneous groups of objects called clusters [110,111]. Observations in a specific
cluster share many characteristics, but are dissimilar to objects not belonging to that cluster. In this
case, spatially-distributed (i.e., x, y, d) sampled points were clustered by horizontal Euclidean distance
to a center pivot, with each element serving as pivot. A total of n-closest sampling points were used
to calculate the sampling variability around each cluster mean. n = 30 was selected so that the mean
and standard deviation could be estimated with confidence. A dispersion metric was employed to
understand how dissimilar were the clusters from each other, under the premise that elements close
to each other share similar characteristics (i.e., d). The standard deviation of an estimate was used
as evaluation parameter to decide on fair or poor sampling of each cluster with respect to the entire
sampled population (Equation (1)):

σu =

√
1

n− 1

n

∑
i=1

(di,u − du)2, (1)

where σu is the n-point standard deviation of measured depths (di) within the cluster (u) whose mean
depth value is du. Thus, the use of Equation (1) allowed for determining the clusters with the highest
sampling heterogeneities. These clusters became candidates for subsequent, adaptive (i.e., zonal),
single-beam sampling within maximum Euclidean distances to each pivot for the n-closest points.
Thus, zonal adaptive sampling was conducted after this cluster analysis, to improve the representation
of the bathymetric variability of the reservoir, aiming to minimize the standard deviation.

3.1.3. Independent Validation

A point-to-point comparison was conducted to assess the sUAS-echosounder measurements.
Ground truth data (henceforth field measurements) were gathered with a surveying leveling rod
at 100 co-located points, using a regular fishing boat during an independent and subsequent field
campaign. Thus, simultaneous measurements of depth taken at the same coordinate pair (i.e., x, y) were
assessed through the use of scatterplots, probability density functions, statistical skill and error metrics.
Such skill metrics included the Pearson correlation coefficient (R), the Root Mean Square Error (RMSE),
the Mean Absolute Error (MAE), the Mean Forecasting Error (MFE), and the Mean Average Percent
Error (MAPE) (skill metric equations are shown in Appendix A). These six skill and error metrics are
commonly applied in geophysical science, (e.g., Gupta and Kling [112]) and can evaluate different
characteristics of the accuracy and data distribution of the single-beam echosounder measurements.
An evaluation using one or a couple of those metrics simply does not provide a complete overview for
a rigorous validation process. For example, the MAE equally weights the differences between field
and single-beam measurements, amplifying the error in the higher values. Thus, MAE needs to be
compared with a relative error metric (e.g., MAPE), which normalizes the differences by the actual
value. In turn, MAPE alone presents some drawbacks since small actual values (in the denominator)
lead to amplified MAPE values. Moreover, the MFE is very good at assessing underestimation or
overestimation of values, but it does not evaluate the spatial distribution of measurements. The R
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and RMSE evaluate the degree of point correspondence and their general bias. By combining these
methods, a complete assessment of the accuracy of the single-beam measurements can be obtained.

3.2. sUAS-SfM System

3.2.1. Equipment and Sampling

For the high-altitude (120 m AGL) airborne surveys, the same DJI Phantom 3 Pro was used,
this time carrying a compact Red, Green, Blue (RGB) digital camera with 12.4-megapixel resolution
and 1/1.3” Complementary Metal-Oxide Semiconductor (CMOS) sensor. The sUAS-SfM survey, taken
in August 2017, was conducted at 120 m AGL to collect aerial photographs and obtain the reservoir
surrounding DEM and water elevation level. The sampling pattern followed an auto waypoint feature
to design the grid pattern over the area of interest. By inserting parameters, such as the desired altitude
and air speed, photo overlap, camera model, and lens specifications, the optimal flight pattern was
automatically created. The camera shutter was triggered at a fixed separation distance by the autopilot
and the recorded images were stored in the Secure Digital (SD) card of the camera. A Trimble M3
total station (Trimble company headquartered in Sunnyvale, CA, USA) was employed for collecting
five GCPs needed for georeferencing of the SfM processing. This device has a distance measurement
ranging from 1.5 m to 300 m with an accuracy of±(2 + 2 ppm× D) mm, a measuring frequency of 1.6 s,
and an angular accuracy of 2”/0.5 mgon. Two Benchmark Monument (BM) points from the National
Geodetic Survey (NGS) were used to conduct the surveys at precision. The BMs are refereed in the
NGS as AC9183 and AC9182 with coordinates N34◦59.138 W097◦31.376 and N34◦58.932 W097◦31.294,
respectively. The GCPs are sparsely distributed and correspond to visually prominent and permanent
features, not subject to erosion and easily identifiable in the UAS imagery and terrain, such as rocks,
small bushes and road intersections. These GCPs are then input to the SfM to correctly locate, scale and
orient the DEM.

3.2.2. SfM Post-Processing

The SfM-photogrammetry data were processed in Pix4DMapper Pro R© (developed by EPFL,
Lausanne, Switzerland), which is a professional drone mapping and photogrammetry software.
Pix4DMapper Pro R© uses photogrammetry and computer vision algorithms to process RGB and
multispectral images to generate 3D outputs such as ortho-photos, point clouds and DEMs.
The software required careful consideration of the distance between the sensor and the zone of interest,
in order to maintain the required resolution. The 3D outputs can be exported in LAS or ASCII format
files, allowing further analysis or use in other software. For specific details of mathematical algorithms
applied in SfM-photogrammetry software, the readers can refer to Lowe [113], Snavely et al. [114,115],
Szeliski [116], Triggs et al. [117].

The presence of air and water constitutes a two-media problem because the light beams are
refracted when passing through the air–water interface [23]. In this study, the apparent increase
in bed elevation, relative to the Mean Sea Level (MSL), caused by the refraction of light was
considered for improving the accuracy of submerged topography retrievals. To address this issue,
a refraction correction method was applied to the DEM derived from the orthophoto, as stated in the
Snell–Descartes Law, Equation (2):

sin(r)
sin(i)

=
n2

n1
, (2)

where i and r are the angles of incidence and refraction for light passing from air into water. n1 is the
index of the refraction of air, equal to 1. In addition, n2 is the index of refraction of water, varying between
1.34415 and 1.34062 for a wavelength of 404.41 nm and temperatures in the range of 0 to 40 ◦C [118].
The adopted value of refraction of water, n2 is 1.34 as proposed by Westaway et al. [23], Woodget et al. [37].
Under some assumptions, the Snell–Descartes law can be aproximated as h = n2ha (see Appendix B). h is
the actual water depth, and ha is the apparent water depth extracted from the SfM-photogrammetry data.
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Therefore, this simple refraction correction can ameliorate the bathymetric retrievals from the SfM-derived
DEM [23,37]. The final product of the SfM post-processing is the quantification of the water depth, based
on the MSL elevation difference between the refraction-corrected DEM and the water elevation. The water
elevation was obtained directly from the ortho-photo as a horizontal plane.

3.2.3. DEM Accuracy Assessment

The DEM derived from the SfM was assessed using 60 ground checkpoints distributed across
the study area spanning across a variety of elevations and taken with the Trimble M3 total
station. These ground checkpoints are compared to the georeferenced UAS imagery of August
2017. The accuracy of the DEM was quantified using a point-to-point scatterplot and R, MAE and
RMSE skill and error metrics.

3.3. Merging Echosounder and SfM

Merging of the products from the echosounder and SfM systems is conducted after independent
validation and proper georeferencing through fusing the databases within a GIS platform using
ArcGIS R© software (version 10.6.1, developed by Esri headquatered in Redlands, CA, USA). The final
product is an interpolated raster whose spatial resolution depends on the point spacing from the
sampling process. For achieving a smooth transition between SfM and echo sounding measurements,
each bathymetric raster was classified by their corresponding range of high precision scanning depths.

4. Results

4.1. sUAS-Echosounder Measurements

The sUAS-echosounder dataset consisted of 2115 measurements, with 1212 of these collected from
the initial set and 903 taken during the zonal-adaptive phase. Both initial (blue) and zonally-densified
(red) points are displayed in Figure 3A. The single-beam echosounder estimated the depth to bed
within the range of accuracy of the instrument (0.7 m ≤ d < 80 m) with respect to the water elevation
at the time of the measurements. Figure 3B shows a bathymetric map interpolated by employing a
nearest neighbor technique, covering an area of 27,790 m2 with a cell size of 1.26 m. The cell size was
selected based on the mean distance between the echosounder measurements. The total estimated
water volume is found to be 108,820 m3. The areas of the reservoir not detected by the echosounder
(d < 0.7 m) are interpolated between 0 (shore) and 0.7 m, displayed in a uniform light-green color.
The measured depths (d ≥ 0.7 m) are shown in a green to blue gradient. Smooth transitions of water
depths ranging from 2 m to 5.1 m are observed in the interpolated bathymetric map as a result of the
dense preliminary and adaptive point sampling (Figure 3B), while depths between 0.7 m to 2 m are
found to have larger depth variability. The lack of data on the shallower regions of the southwest
caused abrupt transitions that the interpolation technique was unable to resolve (see Figure 3B).

4.2. Zonal Adaptive Sampling

The spatial distribution of the clustered standard deviations from the preliminary and zonal
adaptive samplings are shown in Figure 4A,B, respectively. In Figure 4A, the largest values of the
standard deviation (i.e., 0.766 m to 1.21 m) are observed in the outside and inner bends of the northwest
reservoir areas, as well as in a small region located in the southeast of the outer bend. The lowest values
ranged between 0.06 and 0.18 m and were found within the deepest zones areas of the reservoir along
the north and the southwest shores, which suggests a more homogeneous topography. The moderate
standard deviation values (0.535 m to 0.641 m) are mostly found along the inner bend of the northern
section of the reservoir (see Figure 4A). Before the adaptive sampling (Figure 4A), the number of
high-standard deviation clusters (e.g., between 0.766 m and 1.21 m) appears to be larger than after the
adaptive sampling (Figure 4B). This suggests that the homogeneity of the standard deviations values
increased as a result of the adaptive strategy. A quantitative analysis reveals that, for the same pivots
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of the preliminary sampling, a re-calculation of the standard deviation results in reductions across all
values, with up to 11.4 % reduction in its mean value with the largest improvements (18.1%) on the first
quartile of the distribution. Table 1 summarizes the quartiles of the standard deviation for each stage of
the sampling and its percent reduction for each quartile of the distribution. A small zone in the north of
the reservoir was observed to remain constant in both sampling regimes. This is likely attributable to
the inaccessibility to sample in private, neighboring lands where permissions to fly were not granted.
The cluster analysis showed utility for the design of the zonal adaptive sampling and the newly added
points improved the overall quality of the sampling procedure to capture bathymetric variability.

0 30 60 Meters

Single-beam Measurements

Initial sampling

Zonal adaptive sampling

Experimental Study Area
´

A B

Figure 3. Echosounding sampling and bathymetry of Finn Creek 21 Reservoir in August of 2017.
(A) initial (blue) and zonal adaptive (red) point sampling; (B) interpolated bathymetry using a
nearest neighbor technique. Both figures overlay an orthophoto created from the Structure from
Motion-photogrammetry.
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Figure 4. Spatial distribution of the clustered standard deviation (SD in m) (A) after the initial sampling
and (B) after the zonal adaptive sampling.

Table 1. Statistical quartiles of the clustered standard deviation and its percent change calculated at the
inital 1212 pivots for the preliminary and zonal adaptive samplings.

Metrics Min 1st Quartile Median Mean 3rd Quartile Max

Preliminary Sampling (m) 0.062 0.326 0.488 0.489 0.633 1.096

Zonal Adaptive Sampling (m) 0.060 0.267 0.426 0.433 0.573 1.035

Relative Change (%) −3.2 −18.1 −12.7 −11.4 −9.5 −5.6
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4.3. Echosounder Independent Validation

4.3.1. Scatterplot and Probability Density Functions

A scatterplot comparison between independent field observations (x-axis) and echosounder
measurements (y-axis) is shown in Figure 5A with a green line depicting a perfect correlation between
the field observations and the sonar-recorded measurements. A strong linear correlation between
the field and echosounder measurements is made evident by the RMSE and R equal to 0.0147 m and
0.987. The majority of the single-beam measurements followed the green line, which shows a high
accuracy. Some of the discrepancies between field and single-beam measurements may have been
introduced by the manual rod observations due to the presence of unconsolidated, fine sediment at
the bed or boat drift. A relatively good fit between the two probability density functions (field vs.
echosounder) is observed (Figure 5B) and supported by the statistical similarities in distributional
moments shown in Table 2. The mean of the field and single-beam measurements are equal to 2.7 m and
2.68 m, respectively; the variance is reported as 0.32 m (field measurements) and 0.47 m (single-beam
measurements). Additionally, the probability density functions are both negatively skewed. Although
the skewness indicates the largest difference between field observations with −0.26 and single-beam
measurements −0.67, this skewness is hardly observed in Figure 5B.

A B C
m

Figure 5. Skill and error metrics between the 100 co-located echosounder and field measurements.
(A) water depth scatterplot with green line representing a perfect correspondence; (B) probability
density functions of field measurements (red), and echosounder (blue); (C) box and whisker plots
display the minimum, first quartile, median, third quartile and maximum value of the absolute error
(AE in m), forecasting error (FE in m) and percent error (PE in %).

Table 2. Summary of the statistics used for the echosounder independent validation.

Metrics Min 1st Quartile Median Mean 3rd Quartile Max

Measurements 1.04 2.21 2.7 2.61 2.95 3.71
Single-beam measurements 1.04 2.25 2.68 2.59 2.93 3.72

Absolute Error (m) 0.0001 0.006 0.01 0.03 0.02 0.73
Percent Error (%) 0.005 0.21 0.43 1.39 1.16 23.5

Forecasting error (m) −0.32 −0.007 0.005 0.02 0.015 0.73

4.3.2. Skill and Error Metrics

Echosounder measurements exhibited a good fit with field measurements as indicated by the
statistical skill metrics shown in Figure 5 and Table 2. The correlation coefficient (R) was found to be
equal to 0.987, indicating a high degree of data correspondence. Moreover, error metrics such as the
RMSE (0.0147 m), MAE (0.03 m), MFE (0.02 m) and MAPE (1.39%) resulted in relatively small values
(see Table 2). A positively skewed pattern was made evident in the box and whiskers distribution of
the Absolute Error (AE), with values ranging from minimum 0 to maximum 0.73 m, and 75% of the



Remote Sens. 2018, 10, 1362 12 of 24

data (3rd quartile) below 0.02% (see Figure 5C and Table 1). The median of the Forecasting Error (FE)
distribution is found to be centered around the zero value (0.005 m) meaning that the single-beam
measurements did not significantly under-estimate or over-estimate the values obtained by the field
measurements (see Figure 5C and Table 2). Furthermore, the distribution of the percent error (PE)
values ranged from 0.0005 to 23.5%, with 75% of the data (3rd quartile) less than 1.16% (see Figure 5C).
This distribution was positively skewed with a heavy tail containing two outliers of 23.5% (see Table 2).
These two outliers are located in shallow waters, below the range of accuracy of the single-beam
(d < 0.7 m) (red points in Figure 6). Overall, the echosounder instrument showed good validation
scores based on statistical skills and error metrics.

The spatial distribution of both AE and PE is shown in Figure 6A,B. AE has the lowest values,
(blue points, Figure 6A) lying within the deepest zones of the reservoir on the northeast and southwest
regions (see Figures 3B and 6A), while larger values are observed in the south and southeast regions.
There are two maximum values where AE equal to 0.73 m (red points in Figure 6A) that are located at
places with depths of 1.5 and 3.5 m, as shown by Figure 5A. A similar pattern is shown from the spatial
distribution of the PE (Figure 6B), where 75% of the values are below 1.16% and the two outliers of
23% match the location of the maximum AE (see Figure 6A,B and Table 2).

A B
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Absolute Error (m)

0.00014 - 0.022

0.022 - 0.069

0.069 - 0.135

0.135 - 0.259

0.259 - 0.725

Experimental Study Area

´

0 30 60 Meters

Percent Error (%)

0.005 - 0.8

0.8 - 2.0

2.0 - 3.3

3.3 - 6.6

6.6 - 23.3

Experimental Study Area

´

Figure 6. Spatial variability of (A) AE (m) and (B) PE (%), between the field and echosounder
measurements at 100 collocated points within the reservoir area.

In general, the single-beam echosounder measurements showed centimeter-level accuracy when
compared with the field measurements. Significant improvements are expected when UAS-SfM
is merged with these echosounder measurements for a better representation of shallower areas
(see Section 4.5). Merging of the two products should then be able to account for both deep and
shallow water topography.

4.4. sUAS-SfM Accuracy

The location of the 60 ground checkpoints collected with a total station to assess the SfM accuracy
is shown in Figure 7A. The distribution of the assessed elevations spans a broad range of topographic
relief within the study area. This DEM has minimum and maximum elevations of 326 m and 358 m
MSL, respectively (Figure 7B). A one-to-one scatterplot comparison between field and SfM data is
shown in Figure 8, along with error and skill metrics. The correlation coefficient (R) value is equal
to 0.993 and the RMSE and MAE values are equal to 0.37 m and 0.31 m correspondingly. Overall,
the scatterplot and the skill and error metric results show a strong correlation between the ground
checkpoints and the georeferenced DEM, which provide confidence in the accuracy of the applied
sUAS-SfM technique.
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Figure 7. (A) location of checkpoint and Ground Control Points (GCPs) collected with a total station
survey. The figure overlays the georeferenced orthophoto (B) derived Digital Elevation Model (DEM)
with the Pix4DMapper Pro R© software.
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Figure 8. Ground checkpoints vs. Structure from Motion DEM elevations at 60 co-located points within
the study area. The locations are illustrated in blue in Figure 7A. The green line represents a perfect
correlation between the checkpoints and DEM.

4.5. sUAS-SfM Measurements

A high-resolution bathymetric map was constructed by subtracting a water elevation raster
from the georeferenced DEM with a pixel resolution of 0.23 m to cover a total area of 27,790 m2.
The apparent water depths were then multiplied by the refraction index. The results show that the
depth and morphology of submerged areas are detected only when the reservoir bed is visible from the
sUAS (see Figure 9). Noise created by beam reflection is introduced in some areas with a non-visible
bed, as shown in Figures 7B and 9. These results will complement the interpolated bathymetric map
obtained with the sUAS-echosounder measurements (Section 4.6). The Pix4DMapper Pro R© outputs of
the SfM photogrammetry are found in the Supplementary Materials.
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Figure 9. Bathymetry of Finn Creek 21 Reservoir using hlsmall UAS-SfM technique with a refraction
index correction. The maximum detectable depth by the SfM is delineated by the red polygon.

4.6. Merged sUAS-Echosounder and SfM Measurements

A hybrid bathymetric surveying resulted from merging the sUAS-echosounder and SfM
techniques (Figure 10). The echosounder bathymetry (see Figure 3B) was implemented into this
final interpolated raster as the main data source. The reservoir areas not surveyed by echosounder
instrument were extracted from the sUAS-SfM measurements. The final product consists of a smooth
raster covering an area 27,790 m2 and total water volume of 106,892 m3. The water depths ranged from
0 to 5.11 m with the minimum depths detected from 0 to 0.05 m (see Figure 10). The final product kept
the resolution of the coarser input raster, which corresponds to the sUAS-echosonder measurements.
In general, the sUAS-SfM data successfully complemented the sUAS-echosounder survey as shown in
Figure 10 when compared with Figure 3B.
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Figure 10. Bathymetry of Finn Creek 21 Reservoir combining sUAS-echosounder and sUAS-SfM.

5. Discussion and Future Work

In this study, the development of a novel technique consisting of utilizing sUAS imagery,
echo soundings and adaptive sampling from autonomous systems, was presented along with its
application for bathymetric surveying and estimation of reservoir storage. Mapping of submerged
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topography, by means of an sUAS, provides a low-cost, yet accurate alternative to submerged DEM
construction when compared with conventional and emerging methods. Traditional techniques,
such as, total-station surveying can only be employed in exposed terrain and shallow water systems,
usually requires high investment of human power hours, and lacks the providing of robust data with
high spatial resolution. On the other hand, multibeam echo sounding systems are considered an
emerging technique broadly applied in oceanography. However, its use has been limited in the fields
of terrestrial hydrology and geomorphology. Likewise, UAS imagery has been extensively applied to
topography reconstruction, with little application to submerged areas.

Our research presents a cost-effective alternative to retrieve submerged topography in a reservoir,
with a covered area of 27,790 m2, through a combination of echo sounding and SfM techniques within
an adaptive sampling framework. The use of sUAS significantly reduced the time of data collection
and human power hours, compared to traditional methods. For instance, the survey of this reservoir
required approximately 15 h of fieldwork to collect the measurements with a team of two, a certified
remote pilot in command and a skilled UAS operator. The zonal adaptive sampling also allowed an
efficient and fast acquisition of data. The method is based on the outputs of a preliminary sampling to
determine candidate areas for denser sampling according to the submerged terrain variability.

While the independent validation results are favorable, the quantitative assessment suggests
that uncertainties in the manual level rod measurements by the presence of layers of unconsolidated,
fine sediment can introduce disparities. These unconsolidated bed layers also impeded the wading
for collection of field measurements in shallow zones unreachable by boat. For assuring the accuracy
assessment on the sUAS imagery not validated with direct level rod measurements, a total station
was used to georeference 294 images for precise representation of the terrain topography. As our
capabilities advance, this georeferencing process may not be necessary in future research studies as
Real Time Kinematic (RTK) GPS systems can be directly integrated into UAS conducting surveys.
Another source of potential uncertainty was introduced by the horizontal and vertical GPS precision
of the UAS as the coordinate location of the field measurements may not perfectly match with the
echosounder data. Despite these issues, the bathymetric measurements compare favorably with the
independent field observations.

Future steps can be focused in coupling zonal adaptive sampling with autonomous systems in a
real-time self-correcting mode to learn and decide about density and speed of sampling at each step of
the process. This real-time adaptive sampling could provide efficient data collection for applications
involving very large data sets. Furthermore, our study suggests that bathymetry of water bodies
can rapidly collect large data sets. Future endeavors could lead to the comparison of the efficiency,
accuracy, spatial and temporal resolution of our method with respect to other remotely-based collection
and more expensive technology (e.g., LiDAR and multi-beam echo soundings). As the capabilities
of the centers for development of autonomous systems around the globe advance (e.g., CASS), more
technology will be applied to earth surface science applications. For instance, future projects will
aim to use adaptive sampling collected with miniaturized Real Time Kinematic (RTK) GPS units
integrated with autonomous boats coupled to multibeam systems. Finally, this research can also be
applied to fluvial systems and their modeling to construct the computational domains and validate
hydrodynamic and turbulence resolving models.

6. Conclusions

In this study, we employed sUAS for determining submerged topography in a regional reservoir.
A zonal adaptive sampling technique, adopted from the statistic and optimization fields, was implemented
to improve the information quality. Thus, bathymetric changes were correctly captured. Results also
showed that the standard deviation values within clusters of nearby points significantly decreased after
the zonal adaptive sampling. A point-to-point validation was conducted to assess the ability of the
echosounder to reproduce field measurements. The resulting scatterplot and probability density functions
showed a good fit between the observed and echosounder measurements. Similarly, error and skill
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scores (i.e., MAE, MFE, RMSE, R and MAPE) showed a strong correlation between the tested instrument
and field observations. sUAS imagery processed with SfM-photogrammetry was employed to quantify
bathymetry in areas visible from the sUAS. A refraction correction was employed to account for the
two-media problem. This sUAS-SfM technique was employed to complement the sUAS-echosounder
measurements resulting in bathymetric surveying of the entire reservoir.

Overall, this research provides a novel approach that incorporates sUAS-echosounder and
sUAS-SfM techniques to quantify bathymetry in water bodies. The submerged topography estimation
capability of this low-cost and rapid method for large data set collection elucidates the possibility to
apply it as a tool to further test a large variety of lakes and fluvial systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/9/1362/
s1. Pix4DMapper Pro R© data outputs. This supplementary material has the purpose of reporting the Pix4DMapper
Pro R© outputs of the UAS SfM-photogrammetry. The UAS-imagery data were taken in August 2018 using the DJI
Phantom 3 Pro. The outputs were processed in the professional drone mapping and photogrammetry software,
Pix4DMapper Pro R© in February 5th of 2018. The Pix4DMapper Pro R© report is shown Table S1 and the statistics
in Table S2. In summary, the Pix4DMapper Pro R© outputs resulted in the following: (1) the area spanned was
0.276 km2; (2) the dataset consisted of 294 images; (3) the mean projection error, in pixels, was equal to 0.255;
and (4) the median of keypoints per images was 45,222. The mean absolute camera uncertainty values were found
to be 0.15 m in the x and y directions and 0.374 m in the z direction.
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Appendix A. Statistical Metrics

The purpose of this appendix is to provide an interpretation and formulation of the skill and
error metrics employed the echosounder independent validation (Section 4.3). Five metrics were used
to validate the magnitude of the vector. These metrics are subdivided in two categories: absolute
error metrics and one relative error metric. The absolute error metrics are: (1) Mean Absolute Error
(MAE), (2) Mean Forecast Error (MFE), (3) Root Mean Square Error (RMSE) and (4) Pearson correlation
coefficient (R). The relative error metric is: (5) Mean Absolute Percent Error (MAPE).

In the following paragraphs, the characteristics and formulation of these six metrics are presented:

(1) Mean Absolute Error (MAE)

MAE =
100
n

n

∑
i=1

∣∣∣d̂i − di

∣∣∣ , (A1)

where: {d̂i} is the water depth value of the echosounder measurements, {di} is the field
measurement, and {n} the number of data (same variables applied to all metrics).
The MAE measures the average of the error or differences between the echosounder and field
measurements. The MAE is a linear metric where all the errors in the sample are weighted
equally.

http://www.mdpi.com/2072-4292/10/9/1362/s1
http://www.mdpi.com/2072-4292/10/9/1362/s1
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(2) Mean Forecast Error (MFE)

MFE =
1
n

n

∑
i=1

d̂i − di, (A2)

The MFE is a measured the average differences between echosounder and field measurements.
The ideal value for MFE is 0. Negative values of MFE means that the echosounder measurements
tends to over-forecast and vice versa, positive MFE values the echosounder measurements tends
to under-forecast.

(3) Root Mean Square Error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(d̂i − di)2. (A3)

The RMSE represents the standard deviation of the differences between the echosounder and
field measurements. This metric is nonlinear giving higher weight to large errors.

(4) Pearson correlation coefficient (R)

R =
∑n

i=1(d̂i − ¯̂Dl) (di − D̄i)√
∑n

i=1(d̂i − ¯̂Dl)2
√

∑n
i=1(d̂i − D̄l)2

, (A4)

where { ¯̂Dl} is the mean of the echosounder measurements and {D̄l} is the mean of the field
measurements.
The Pearson correlation coefficient (R) can range from −1 to 1. A value of 1 indicates a positive
linear correlation between the echosounder and field measurements. A value of 0 indicates no
linear correlation between echosounder and field measurements. A value of−1 indicates a negative
correlation between the variables, meaning that echosounder measurements decrease while field
measurements increase.

(5) Mean Absolute Percent Error (MAPE)

MAPE =
100
n

n

∑
i=1

∣∣∣∣∣ d̂i − di
di

∣∣∣∣∣ . (A5)

The MAPE, also known as mean absolute percentage deviation (MAPD), is a simple metric
where the difference between the echosounder and field measurements and divided by the field
measurements and divided again by the number of points. The MAPE value is 0% for a perfect fit,
but there is not upper limit restriction, and large values of MAPE are interpreted as large errors.
Nonetheless, problems occur with small or close to zero denominators causing large MAPE values.

Appendix B. Snell–Descartes Law Simplification

A schematic representation and mathematical derivation are developed in this appendix to explain
the Snell–Descartes law approximation for small angles, in terms of the actual and apparent depth of
water. The results of this approximation have been applied to the SfM Post-Processing (Section 3.2.2)
to improve the bathymetry retrievals from the sUAS-SfM technique.

Explanation of variables
i: Angle of incidence (◦),
r: Angle of refraction (◦),
x: Horizontal distance from where the light crosses the boundary between two media to where the
light reaches the bottom of the lake (m),
n1: Index of refraction of air (∼1.0),
n2: Index of refraction of water (∼1.34),
h: Actual depth of water (m),
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ha: Apparent depth of water (m).

The mathematical proof of the Snell–Descartes law aproximation based on Figure A1 is:

ha

i

i
r

x

h

A B

Figure A1. Schematic representation of the refraction of light at the interface between air and water,
in terms of the depth (A) and apparent depth (B).

tan(r) =
x
h
⇔ h =

x
tan(r)

(A6)

and:
tan(i) =

x
ha
⇔ ha =

x
tan(i)

. (A7)

Hence:
h
ha

=
tan(i)
tan(r)

. (A8)

The small-angle approximation is applied, when the angle approaches zero, which is predominantly
true for this case, since the UAS image collection was obtained at Nadir. Thus, Equation (A8) is equal to:

tan(i)
tan(r)

≈ sin(i)
sin(r)

=
n2

n1
. (A9)

Therefore,
sin(r)
sin(i)

=
n2

n1
=

h
ha

. (A10)

Since n1 is equal to 1 and n2 is equal to 1.34, the final result becomes:

h = 1.34ha. (A11)
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