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Abstract: Optical methods require model inversion to infer plant area index (PAI) and woody
area index (WAI) of leaf-on and leaf-off forest canopy from gap fraction or radiation attenuation
measurements. Several inversion models have been developed previously, however, a thorough
comparison of those inversion models in obtaining the PAI and WAI of leaf-on and leaf-off forest
canopy has not been conducted so far. In the present study, an explicit 3D forest scene series with
different PAI, WAI, phenological periods, stand density, tree species composition, plant functional
types, canopy element clumping index, and woody component clumping index was generated
using 50 detailed 3D tree models. The explicit 3D forest scene series was then used to assess the
performance of seven commonly used inversion models to estimate the PAI and WAI of the leaf-on
and leaf-off forest canopy. The PAI and WAI estimated from the seven inversion models and simulated
digital hemispherical photography images were compared with the true PAI and WAI of leaf-on
and leaf-off forest scenes. Factors that contributed to the differences between the estimates of the
seven inversion models were analyzed. Results show that both the factors of inversion model,
canopy element and woody component projection functions, canopy element and woody component
estimation algorithms, and segment size are contributed to the differences between the PAI and WAI
estimated from the seven inversion models. There is no universally valid combination of inversion
model, needle-to-shoot area ratio, canopy element and woody component clumping index estimation
algorithm, and segment size that can accurately measure the PAI and WAI of all leaf-on and leaf-off
forest canopies. The performance of the combinations of inversion model, needle-to-shoot area ratio,
canopy element and woody component clumping index estimation algorithm, and segment size
to estimate the PAI and WAI of leaf-on and leaf-off forest canopies is the function of the inversion
model as well as the canopy element and woody component clumping index estimation algorithm,
segment size, PAI, WAI, tree species composition, and plant functional types. The impact of canopy
element and woody component projection function measurements on the PAI and WAI estimation of
the leaf-on and leaf-off forest canopy can be reduced to a low level (<4%) by adopting appropriate
inversion models.
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1. Introduction

Understanding the energy and gas exchanges between forest ecosystems and the atmosphere is
crucial in modelingmodeling terrestrial carbon cycle and global environmental change [1–4]. Leaf area
index (LAI), which is defined as half of the total green leaf area per unit of flat ground area [5,6],
is typically used to quantify the exchange between forest ecosystems and the atmosphere. LAI is
a key parameter in biophysical and physiological processes, including photosynthesis, respiration,
transpiration, carbon cycling, net primary productivity, and energy exchange. The LAI measurements
of forest canopy are extensively used in many scientific areas, such as remote sensing, forestry, ecology,
and global change [2,7,8].

Indirect methods are more frequently used than direct methods in estimating the LAI of
leaf-on forest canopy because of their high efficiency, low cost, and nondestructive character [2,8,9].
Optical methods are amongst the most commonly used indirect methods, including LAI-2000/LAI-2200
(Li-Cor, Lincoln, NE, USA), digital hemispherical photography (DHP) [2,9], Tracing Radiation and
Architecture of Canopies (TRAC) (3rd Wave Engineering, Winnipeg, Manitoba, Canada), DEMON (CSIRO,
Canberra, Australia), and SunScan (Delta-T Devices, Cambridge, UK). Estimates obtained from optical
methods rely upon the gap fraction measurements and inversion models. As most optical methods are
unable to distinguish between leaves or shoots and woody components (e.g., stems, branches, flowers,
and fruits), the estimates obtained from optical methods are often referred to as plant area index (PAI).
PAI is the sum of LAI and woody area index (WAI).

Various inversion models have been proposed and applied to estimate the PAI and LAI of leaf-on
forest canopy from optical methods, such as the Beer law or Poisson model [10–15], Miller theory [15–19],
Look-Up Table (LUT) [15,20], and iterative optimization technique [21]. Amongst these inversion models,
Miller theory and Beer law are the most widely used. Miller theory estimates the PAI and LAI of the
leaf-on forest canopy by integrating the gap fraction measurements over the upper hemisphere or a
specific zenith angle range. The iterative and optimization method estimates the PAI and LAI of the leaf-on
forest canopy by searching the designed gap fraction values that closely match the measured gap fraction
values, and the estimates calculated based on the target designed gap fraction are the PAI and LAI of
the leaf-on forest canopy [21]. The LUT method estimates the PAI and LAI of the leaf-on forest canopy
using the principle similar to the iterative and optimization method, but it simplifies the optimization
process of the iterative and optimization method using a table with limited combinations of PAI,
LAI, and gap fraction [15,20]. Different zenith angle ranges have been used by the aforementioned
inversion models to estimate the LAI or PAI of leaf-on forest canopy from optical methods, such as
0–45◦ [22,23], 10–65◦ [18], 0–74◦ (five annulus, LAI-2000, or LAI-2200), 0~80◦ [16,17,22,24], 20–70◦ [25],
30–60◦ [22,26], and 57.3◦ [18,24,27,28]. For optical methods, such as LAI-2000 or LAI-2200 and DHP,
various inversion models and zenith angle ranges were also employed to estimate the PAI or LAI of
leaf-on forest canopy [10,17,18,22–26,29,30]. In addition to the PAI or LAI estimation, some studies
attempted to obtain the effective woody area index (WAIe) during leaf-off season to represent the WAI
of the leaf-on forest canopy using optical methods, such as LAI-2000 [9,31,32] and DHP [22].

Previous studies showed that the PAI and LAI estimation of the leaf-on forest canopy from optical
methods were largely affected by the applied inversion models and zenith angle ranges [15,16,18,22,23].
Significant differences were observed between the PAI and LAI which were estimated from different
inversion models with the same zenith angle range [16,33], and from the same inversion model with
different zenith angle ranges [18,22,24]. For example, Ryu et al. [33] pointed out large variations in
the proportion between the effective plant area index (PAIe) estimated from two inversion models
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covered with the same zenith angle range at 41 forest sites with a range of 1–40%. Liu et al. [22] found
that the variations in proportion between the PAIe which were estimated from the four zenith angle
ranges and Poisson model in a mixed broadleaved Korean pine forest canopy with a range of 0–37%.
Therefore, the inversion model and zenith angle range play key roles in the PAI and LAI estimation
of leaf-on forest canopy from optical methods. To date, no studies attempted to evaluate the impact
of inversion models and zenith angle ranges on the estimation of WAI of the leaf-off forest canopy
from optical methods. Considering the nonrandom distribution of the woody component of leaf-off
forest canopy in space, which is similar to the spatial distribution of canopy element of leaf-on forest
canopy, the inversion models and zenith angle ranges would be also the key factors that affect the WAI
estimation of leaf-off forest canopy from optical methods.

Besides the inversion models and zenith angle ranges, the canopy element (Ge) and woody
component (Gw) projection functions, needle-to-shoot area ratio (γe), and the canopy element (Ωe) and
woody component (Ωw) clumping indices are also key issues in estimating the PAI and WAI of leaf-on
and leaf-off forest canopy from the optical methods. The clumping effect of canopy element and woody
component can be quantified by Ωe and Ωw, respectively. Moreover, they are often used to describe
the degree of deviation from the random distribution of canopy element and woody component in
space assumed by the inversion models [7,8,14]. If Ωe and Ωw are equal to unity this implies that
the random distribution of the canopy element and woody component; if the distributions of the
canopy element and woody component are clumped, then Ωe and Ωw are smaller than unity; and if
the canopy element and woody component are regularly distributed, then Ωe and Ωw are larger than
unity [7,8,14]. For coniferous forest canopy, the clumping effect of the canopy element is typically
described in two scales: within and beyond-shoot clumping (Ωe). The within-shoot clumping of
coniferous forest canopy is quantified using the needle-to-shoot area ratio (γe), which is equal to unity
for broadleaf forest canopy and larger than unity for coniferous forest canopy [34]. For coniferous
forest canopy, γe can be estimated by taking the ratio of half the total needle area in a shoot to half the
total shoot area [35]. The estimates obtained from optical methods are PAIe and WAIe, respectively,
if the estimation does not consider γe, Ωe and Ωw. Previous studies reported that the PAIe are usually
50–80% of PAI of leaf-on forest canopy [34]. Similarly, the spatial distribution of the woody component
of stems and branches deviate from random distribution, therefore, Ωw would be also the key factors
affect the WAI estimation of leaf-off forest canopy from optical methods. Therefore, validating the
aforementioned inversion models to estimate the PAI and WAI of leaf-on and leaf-off forest canopy
should consider γe, Ωe and Ωw to achieve reliable and accurate conclusions. Ge(θ) and Gw(θ) are
defined as the mean projection of unit surface area of the canopy element and woody component on the
plane perpendicular to the view direction θ, and they can be estimated based on the canopy element
and woody component angle distribution functions ( f (θe) and f (θw), θe and θw are the canopy element
and woody component inclination angles, respectively) [7,36,37]. The Ge and Gw of leaf-on and leaf-off
forest canopy are site, species, and period specific [36,38,39]. The Ge(θ) and Gw(θ) usually vary with
zenith angles ranging from 0◦ to 90◦ for real forest canopy, and approaching 0.5 at the zenith angle
near 57.3◦ [7,36–38]. In previous studies, the Ge(θ) and Gw(θ) are often assumed to be 0.5 at all zenith
angles ranging from 0◦ to 90◦, even if the PAI and LAI estimation were not applied at this specific
zenith angle of 57.3◦ due to difficulty in measuring the Ge and Gw of real forest canopy [22,24,25,35,40].
Woodgate et al. [37] reported that the LAI estimation errors introduced by ignoring Gw (based on the
assumption that Gw(0) equals 0.5) would be up to 25% at the leaf-on eucalypt canopy if the LAI was
estimated at the zenith angle of 0◦. Pisek et al. [36] reported that the assumption of spherical leaf angle
distribution of the canopy element would result in LAI estimation errors of 28% to 47% at nadir for
the leaf-on broad-leaved deciduous forest canopy. Therefore, Ge and Gw should not be ignored when
evaluating the performance of inversion models to estimate the PAI and WAI of leaf-on and leaf-off
forest canopy.

However, evaluating the impact of the factors of inversion model, zenith angle range, Ge, Gw, γe,
Ωe and Ωw on the estimation of PAI and WAI of leaf-on and leaf-off forest canopy from optical methods
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using direct methods is challenging and has rarely been conducted due to the disadvantages of the
time-consuming, labor-intensive, and destructive character of direct methods. Recently, some studies
attempted to assess the performance of optical methods to estimate the Ωe, Ωw, LAI and PAI of leaf-on
and leaf-off forest canopy based on the 2D and 3D forest scenes and simulation method [18,20,26,41–45].
Compared with direct methods, the simulation method is affordable, nondestructive to forest canopy,
and highly efficient. This method can generate forest scenes with contrasting canopy structure
characteristics, which can extend beyond the limited sampling of field plots for direct methods.
The measurements of optical methods can be generated within the forest scenes using the ray tracing
algorithm [18,41]. The generated measurements would be beneficial to avoid major error sources in
estimating the PAIe and PAI of forest canopy from optical methods, such as classification of DHP
images, determination of optimal exposure for imaging DHP images, lens distortion, and nonuniform
sky conditions. Further, the true PAI and WAI, reference Ωe and Ωw, Ge(θ) and Gw(θ) can be accurately
calculated based on the generated forest scenes. Therefore, it is an ideal tool for evaluating the reliability
and performance of the inversion models, adopted by frequently used optical methods, to estimate
the PAI and WAI of leaf-on and leaf-off forest canopy with consideration of Ge, Gw, γe, Ωe and Ωw.
Several types of forest scenes, including the 2D (turbid media) [20,26,46] and quasi-3D forest scenes
(geometric-optical models) [18], have been generated to validate the performance of inversion models
in estimating the LAI and PAI of leaf-on and leaf-off forest canopy.

To date, few studies have attempted to assess the performance of inversion models for estimating
the PAI of leaf-on forest canopy with consideration of Ge, Gw, γe, Ωe and Ωw based on the direct
measurements of LAI from limited samples of field plots [16,22,24] and generated forest scenes [18,20,46].
The following three aspects have yet to be investigated or need further investigation:

• Two key components of leaf-on forest canopy, such as the needles of shoots and woody component,
were not modeled by the forest scenes generated in previous studies [18,20,46]. However,
these two components significantly affected the gap fraction measurements, thereby influencing
the PAI and LAI estimation via optical methods [8,9,15,47]. Compared with the forest scenes in
previous studies [20,26,46], the explicit 3D forest scenes in the present study provide a detailed
description of all components of forest canopy, such as stems, branches, needles, shoots, leaves,
flowers, and fruits, using a large number of small primitive shapes (e.g., triangles, cylinders,
spheres, and ellipsoids) [48,49]. The explicit 3D tree models which were used to generate the
explicit 3D forest scenes were constructed based on the field measurements of structural attributes
(e.g., height, diameter at breast height [DBH], crown width, leaf length, leaf width, first branch
height, and number of branch levels) of the tree canopy and available single-tree modeling
methods (e.g., parametric and L-system-based modeling) [49,50]. Therefore, the explicit 3D
forest scenes can provide leaf-on and leaf-off forest scenes with detailed description of canopy
structure similar to the real leaf-on and leaf-off field plots as the optical methods undertaking [18].
The investigation and conclusions drawn based on the explicit 3D forest scene series would be
more reliable and applicable.

• Although some studies attempted to assess the effect of inversion models on the PAI estimation
of the leaf-on forest canopy, few commonly used inversion models were assessed by these studies,
and the number of field plots covered were limited [16,18,22–24]. Moreover, the zenith angle
dependent of Ωe and Ge were not considered by some studies in evaluating the performance
of inversion models to estimate the PAI of leaf-on forest canopy [20,22,24]. However, previous
studies showed that the PAI and WAI estimation of the leaf-on and leaf-off forest canopy from
optical methods was significantly affected by the Ωe, Ωw, Ge and Gw [15,18,34,36,45]; therefore,
they should be considered in evaluating the performance of the inversion models to estimate the
PAI and WAI estimation of the leaf-on and leaf-off forest canopy.

• The WAI estimation of the leaf-off forest canopy from optical methods is essential to derive the
accurate LAI of the leaf-on forest canopy, as the latter is usually estimated by subtracting WAI
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from PAI. So far, no study has attempted to evaluate the effect of inversion models on the WAI
estimation of the leaf-off forest canopy through optical methods with consideration of Ωw and Gw.

In this study, an explicit 3D forest scene series, which covered wide canopy structure characteristics
with different PAI, WAI, Ωe, Ωw, phenological periods, stand density, tree species composition,
and plant functional types, was generated to assess the performance of seven inversion models
in estimating the PAI and WAI of leaf-on and leaf-off forest canopy, respectively. Considering the
rare application of LUT and iterative optimization methods for estimating the PAI and WAI of leaf-on
and leaf-off forest canopy in the field, we excluded these two methods from this study. Factors that
contributed to the differences between the PAI or estimates of the seven inversion models were
analyzed. The key factors that affect the performance of the seven inversion models in estimating the
PAI and WAI of the leaf-on and leaf-off forest canopy were concluded. Finally, we attempted to identify
the best combination of the inversion models, γe, Ωe and Ωw estimation algorithm, and segment size
for estimating the PAI and WAI of leaf-on and leaf-off forest canopy.

2. Theory

The PAI of leaf-on forest canopy can be estimated based on the gap fraction and radiation attenuation
measurements by inverting the Beer’s law as described by Nilson [14] and Leblanc et al. [34]:

pe(θ) = exp(
−PAIΩe(θ)Ge(θ)

cos(θ)γe
) (1)

where pe(θ) is the measured canopy element gap fraction at θ, and Ωe(θ) is the canopy element
clumping index at θ. The PAI cannot be inverted from Equation (1) if the pe(θ) is equal to zero.
In this study, the maximum value of PAI or PAIe estimated at these zenith angles with gap fraction
measurements equal to zero is assumed to be 10. Ge(θ) equals 0.5 at all zenith angles ranging from
0–90◦ if the canopy element angle distribution is assumed to be a spherical distribution. If f (θe) is
known, then the Ge(θ) of the forest canopy can be calculated as follows:

Ge(θ) =
∫ π

2

0
A(θ, θe) f (θe)dθe (2a)

A(θ, θe) =

{
cos θ cos θe, |cot θ cot θe|> 1
cos θ cos θe[1 + (2/π)(tan ψ− ψ)], otherwise

(2b)

where A(θ, θe) is the projection coefficient at the canopy element inclination angle of θe and the view
zenith angle of θ and ψ = cos−1(cot θ cot θe) [7].

To avoid the zenith angle dependence of PAI estimation on Ge(θ), Miller [19] proposed a theorem
for the PAI estimation that does not require a prior knowledge of Ge(θ) (Miller_0-90) [18]:

PAI = −2
∫ 90

0

ln[pe(θ)]γe

Ωe(θ)
cos(θ) sin(θ)dθ (3)

In addition to Miller_0-90, many studies suggested to estimate the PAI of the leaf-on forest
canopy by inverting the Beer’s law (Equation (1)) at a single zenith angle or narrow zenith angle
range [16,18,24]:

PAI = − ln(pe(θ′)) cos(θ′)γe

Ge(θ′)Ωe(θ′)
(4)

where θ′ is the single zenith angle (or centered at an angle for a range of angles) for the PAI estimation.
The Ge(θ) measurement of forest canopy using the direct methods, such as the manual clinometer
and photography methods, is usually inapplicable in the field because of the limited qualified direct
methods available for tall canopies and significant efforts required for the measurements [39]. However,
previous studies reported that the Ge(θ) of the forest canopy is usually converged near the specific
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zenith angle 57.3◦ and Ge(57.3) equals ~0.5 [15,39,45]. If the θ′ in Equation (4) is equal to or near 57.3◦,
then the PAI and WAI of forest canopy can be estimated by assuming the Ge(57.3) in Equation (4) to be
equal to 0.5 even if the Ge(57.3) of the forest canopy is unknown (57.3) [15,39,45].

To avoid the sampling and optical errors at the zenith angles close to the zenith and horizon for
the DHP method [17,26], many previous studies attempted to estimate the PAIe and PAI of leaf-on
forest canopy from the gap fraction measurements obtained at narrow zenith angle ranges by adopting
the Miller theorem [17,18,22–26]. The sampling areas covered by the annulus of DHP images with
center zenith angles near 0◦ are much smaller than those with center zenith angles near 90◦. Therefore,
the incomplete sampling of forest canopy for the annulus with center zenith angles near 0◦ would
further result in estimation uncertainties in the PAIe, PAI, and Ωe estimation [40]. In addition, the image
pixels of annuli with center zenith angles near 0◦ are prone to overexposure compared with those close
to 90◦. More light can penetrate through the canopy from above to the sensor for the annuli with center
zenith angles near 0◦ compared with 90◦ due to the larger gaps viewed by and the shorter extinct path
length for those annuli. The zenith angles close to 90◦ were also usually discarded for the PAIe and PAI
estimation of the leaf-on forest canopy due to the presence of mixed pixels, absence of gaps, significant
contribution of woody components, and interference of ground. The annulus with center zenith angles
close to 90◦ tended to have a high proportion of mixed pixels due to the coarse image resolution and
light scattering [41]. The high proportion of mixed pixels would reduce the classification accuracy of
DHP images and further make the PAIe and PAI estimates unreliable. Moreover, the DHP method
tended to produce null gap fraction measurements at the annuli with center zenith angles close to 90◦ in
dense forest canopy [25]. This situation would produce estimation errors in the PAI estimation because
it requires a definition of the logarithm of zero, pe(θ), which is not defined [51]. The ground would
be visible in the annuli with center zenith angles close to 90◦ if the ground slope of the plot is larger
than zero [52]. The annuli with visible ground are usually discarded to remove the interference of
ground to the PAIe and PAI estimation [52]. For the aforementioned reasons, Leblanc and Fournier [18]
attempted to estimate the PAI of the leaf-on forest canopy based on the Miller theorem and the gap
fraction measurements obtained at the zenith angle range of 10–65◦ (Miller_10-65):

PAI = −2
∫ 65

10

ln[pe(θ)]γe

Ge(θ)Ωe(θ)
cos(θ) sin(θ)dθ (5)

Similarly, the PAI of the leaf-on forest canopy can be estimated based on the Miller theorem and
the gap fraction measurements obtained at another zenith angle range which enlarges the zenith angle
range of 10–65◦ to 0–80◦, and the zenith angles close to horizon are discarded for the abovementioned
reasons (Miller_0-80) [24]:

PAI = −2
∫ 80

0

ln[pe(θ)]γe

Ge(θ)Ωe(θ)
cos(θ) sin(θ)dθ (6)

The LAI-2000 or LAI-2200 instrument estimates the PAI of the leaf-on forest canopy based on the
Miller theorem and the gap fraction measurements obtained from five annuli, and the gap fraction
measurements of the fifth annulus is used to complete the zenith angle up to 90◦ (LAI-2200) [29,30]:

PAI = −
5

∑
i=1

ln[pe_i(θi)] cos(θi)γeWi
Ge_iΩe_i

(7)

where θi is the center zenith angle of the ith annulus, pe_i(θi) is the canopy element gap fraction of the
ith annulus, Ωe_i and Ge_i are the Ωe and Ge estimates of the ith annulus and Wi is the weight factor
of the ith annulus. The five zenith angle ranges used in Equation (7) are the same as the zenith angle
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ranges covered by the five concentric annuli of the LAI-2000 or LAI-2200 instrument; these zenith
angle ranges are 0–13◦, 16–28◦, 32–43◦, 47–58◦, and 61–74◦. The equation for Wi is as follows:

Wi = sin(θi)dθi (8)

when normalized to 1.0, the values of Wi in Equation (7) are 0.041, 0.131, 0.201, 0.29, and 0.337,
which correspond to the five annuli with the center zenith angles of 7◦, 23◦, 38◦, 53◦ and 68◦,
respectively [29,30].

Moreover, the PAI of the leaf-on forest canopy can be estimated based on DHP images using the
calculation method similar to the LAI-2200 instrument by evenly dividing the zenith angle ranges
from 0◦ to 81◦ and from 0◦ to 90◦ into 9 and 10 annuli (DHP_0-81 and DHP_0-90) [8]:

PAI = −
9

∑
i=1

ln[pe_i(θi)] cos(θi)γeWi
Ge_iΩe_i

(9)

PAI = −
10

∑
i=1

ln[pe_i(θi)] cos(θi)γeWi
Ge_iΩe_i

(10)

The calculation method of Wi used in Equations (9)–(10) is the same as the method of LAI-2200
(Equation (8)). The normalized Wi values of the nine zenith angle ranges in Equation (9) are 0.0124,
0.0367, 0.0602, 0.0823, 0.1023, 0.1198, 0.1343, 0.1455, and 0.3064, respectively. The normalized Wi values
of the 10 zenith angle ranges in Equation (10) are 0.0123, 0.0366, 0.0601, 0.0820, 0.1019, 0.1193, 0.1338,
0.1450, 0.1526, and 0.1564, respectively.

If the PAI of the leaf-on forest canopy is known, then the reference Ωe of the leaf-on forest canopy
can be estimated as follows:

Ωe =
PAIe

PAI
(11)

In this study, the estimates derived from the seven inversion models of Miller_0-90, 57.3,
Miller_10-65, Miller_0-80, LAI-2200, DHP_0-81, and DHP_0-90 (Equations (3)–(7) and (9)–(10)) are PAIe,
namely, PAIe_Miller_0−90, PAIe_57.3, PAIe_Miller_10−65, PAIe_Miller_0−80, PAIe_LAI−2200, PAIe_DHP_0−81,
and PAIe_DHP_0−90, respectively, if γe or Ωe(θ) is assumed to be equal to 1 in the PAI estimation of
leaf-on forest canopy. Similarly, the estimates derived from the seven inversion models of Miller_0-90,
57.3, Miller_10-65, Miller_0-80, LAI-2200, DHP_0-81, and DHP_0-90 (Equations (3)–(7) and (9)–(10))
are WAIe, namely, WAIe_Miller_0−90, WAIe_57.3, WAIe_Miller_10−65, WAIe_Miller_0−80, WAIe_LAI−2200,
WAIe_DHP_0−81, and WAIe_DHP_0−90, respectively, if Ωw(θ) is assumed to be equal to 1 in the
WAI estimation of leaf-off forest canopy. The equations used for estimating the WAI and
reference Ωw of the leaf-off forest canopy are the same as those for PAI and reference Ωe

(Equations (3)–(7) and (9)–(11)), respectively.

3. Materials and Methods

3.1. Generation of Explicit 3D Forest Scenes and DHP Images

In this study, the explicit 3D forest scenes were generated based on a series of 50 detailed 3D tree
models selected from all the 46 detailed 3D tree models in the four forest scenes, namely, Järvselja pine
stand (summer) (JPSS), Ofenpass pine stand (winter) (OPSW), Järvselja birch stand (summer) (JBSS),
and Järvselja birch stand (winter) (JBSW), in the fourth radiation transfer model intercomparison
(RAMI) project (http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/RAMI-IV.php) except
the Norway spruce (Picea abies) tree model in JBSS and the birch (Betula pendula) tree model in JPSS.
Another six Scots pine (Pinus sylvestris) models, which were used by Disney et al. [53], were also used
in generating the forest scenes in the present study. These detailed 3D tree models provide a detailed
description of the canopy elements of tree canopy, including leaves or shoots, branches, and stems.

http://rami-benchmark.jrc.ec.europa.eu/HTML/RAMI-IV/RAMI-IV.php
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An in-house software product called In situ LAI Measurements Simulation and Validation
Platform (ILMSVP, version 2016) (Appendix B) was developed using the C++ programming language.
This software was used to generate the explicit 3D forest scene series and simulated DHP images.
The generated leaf-on forest scenes comprise the leaf-on broadleaved deciduous and evergreen
coniferous forest scenes, and the leaf-off forest scenes are the leaf-off broadleaved deciduous forest
scenes. The leaf-on deciduous forest scenes were generated using ILMSVP based on all the broadleaf
3D tree models from JBSS. To avoid the true LAI values of the generated leaf-on deciduous forest
scenes are far larger than the maximum LAI of 4.76 for the birch plot, as reported by Sumida et al. [54],
those scenes with LAI > 5.0 were discarded and excluded from this study. In addition, all the leaves
were removed from the tree models in the sub-series deciduous scenes of JBSS to represent the
leaf-off period of the sub-series deciduous scenes of JBSS (JBSW). Amongst the six broadleaf tree
species of maple (Acer Platenoides), birch (Betula Pendula), alder (Almus Glutinosa), linden (Tilio Cordata),
poplar (Populus Tremuloides), and ash (Fraxinus Exelsior) in JBSS, the birch tree species is the dominant
species. Therefore, the leaf-on and leaf-off broadleaved deciduous forest scenes can be treated as
the birch forest scenes. The leaf-on coniferous forest scenes were generated using ILMSVP based on
all needleleaf 3D tree models from JPSS, OPSW, and six Scots pine models, respectively. Therefore,
three sub-series of leaf-on coniferous scenes were generated, namely JPSS, OPSW, and Scots pine
scenes (SPS). Similar to the leaf-on deciduous scenes, all the PAI of the generated two sub-series
coniferous scenes of SPS and OPSW were below the maximum PAI of 7.8 and 1.9 of the Scots pine
and Mountain pine forest sites, respectively, as reported by Walter [55] and Thimonier et al. [23],
respectively. The two 3D tree models of the Norway spruce and birch were not used in generating the
two sub-series coniferous scenes of JBSS and JPSS, respectively, for the purpose of generating pure
deciduous and coniferous forest scenes. Because the proportions of the number of Norway spruce
and birch trees to the total number of trees in JBSS and JPSS are as small as 3% and 0.5%, respectively.
Therefore, the removal of the two 3D tree models of Norway spruce and birch in the generation of
the two sub-series coniferous scenes of JBSS and JPSS would not make the main canopy structural
characteristics of the two sub-series coniferous scenes of JBSS and JPSS deviate obviously from those
of the two scenes of JBSS and JPSS in RAMI project, respectively. In this study, a total of 156 forest
scenes were constructed based on the 50 detailed 3D tree models described. The four scenes of JPSS,
OPSW, JBSS, and JBSW in the RAMI project were also used in this study. These forest scenes are
reclassified into two types: leaf-on and leaf-off. The number of leaf-on and leaf-off forest scenes were
106 and 54, respectively. Table 1 provides the main characteristics of the simulated 3D forest scene
series. The frequency distributions of the true PAI and WAI (a), and the reference Ωe and Ωw (b) of
the simulated leaf-on and leaf-off forest scenes are shown in Figure 1. Figure 2 shows two simulated
binary DHP images generated at the same sampling point at leaf-on and leaf-off periods of a deciduous
forest scene.
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Figure 1. Frequency distributions of true PAI and WAI (a), and reference Ωe and Ωw (b) of leaf-on and
leaf-off forest scenes, respectively.
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Figure 2. Two simulated binary DHP images generated at the same sampling point at leaf-on (a) and
leaf-off (b) periods of a deciduous forest scene.

Table 1. Main characteristics of simulated explicit 3D forest scene series (JBSS: Järvselja birch stand
[summer], JBSW: Järvselja birch stand [winter], JPSS: Järvselja pine stand [summer], OPSW: Ofenpass
pine stand [winter], SPS: Scots pine scenes, WAI: woody area index, LAI: leaf area index,
Ωe: canopy element clumping index, and γe: needle-to-shoot area ratio).

Plant Function Types Broadleaved Deciduous Scenes Evergreen Coniferous Scenes

Sub-series scenes JBSS JBSW JPSS OPSW SPS
Phenological period Leaf-on Leaf-off Leaf-on

Dominant species Betula pendula Pinus sylvestris Pinus montana Pinus sylvestris
WAI 0.10–3.53 0.46–1.63 0.06–0.76 0.31–3.16
PAI 0.51–8.0 0.10–3.53 * 1.52–5.86 0.59–2.64 2.06–7.26

Reference Ωe 0.39–0.92 0.55–1.30 ** 0.55–0.96 0.20–1.03 0.48–1.35
γe 1 1.32 1.48 2.12

Mean tree height (m) 8.91–23.0 12.32–15.55 3.53–9.92 4.78–10.26
Tree species composition 6 1 1 1

Number of scenes 54 54 21 19 12
Stand density (stems ha−1) 250–3000 250–3000 550–2800 500–2150 550–4000

Stem distribution mode Random, Regular, Clumped, Natural

* For leaf-off JBSW scenes, the PAI equals WAI. ** For leaf-off JBSW scenes, the reference Ωe equals reference Ωw.

3.2. Data Processing

The true LAI or WAI of each generated leaf-on and leaf-off forest scene were calculated by taking
the ratio between half of the total surface areas of triangles, cylinders, and ellipsoids of the leaves and
needles or the stems and branches in the scenes and the flat ground area of the forest scene. The true
PAI of the scenes is the sum of the LAI and WAI values. For leaf-off forest scenes, the PAI is equal to
the WAI. The f (θe) of each leaf-on forest scene was calculated by dividing the total surface area of
leaves or shoots, stems, and branches in the scene by the sum of the surface area of leaves or shoots,
stems, and branches with inclination angles ranging from θe − 0.5◦ to θe + 0.5◦, except at the two zenith
angles of 0◦ and 90◦. The two zenith angle ranges of 0◦ to 0.5◦ and 89.5◦ to 90◦ were used to estimate
the f (0) and f (90) of leaf-on forest scenes, respectively. Thereafter, the Ge(θ) of each leaf-on forest
scene was calculated at the zenith angle range of 0–90◦ with an interval of 1◦ by substituting the f (θe)

into Equation (2). The calculation method of the f (θw) and Gw(θ) of each leaf-off forest scene is the
same to the f (θe) and Ge(θ) of each leaf-on forest scene. For the three inversion models of LAI-2200,
DHP_0-81 and DHP_0-90, the Ge_i and Gw_i were calculated by averaging the Ge(θ) and Gw(θ) at the
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zenith angle ranges covered by the ith annulus. The γe of each leaf-on coniferous forest scene was
calculated by taking the ratio between half of the total needle area in a shoot to half of the shoot surface
area. The shoot surface area was estimated using the projection method described by Chen [35].

For each scene, the pe(θ) was calculated by dividing the total number of black and white pixels
by the total number of white pixels with zenith angles ranging from θ − 0.5◦ to θ + 0.5◦, except at
the two zenith angles of 0◦ and 90◦. The zenith angle ranges, which were used to calculate the
pe(0) and pe(90), are the same as the two zenith angle ranges used to estimate the f (θe) and f (θw)

of the leaf-on and leaf-off forest scenes, respectively. For the three inversion models of LAI-2200,
DHP_0-81, and DHP_0-90, the calculation procedures of pe_i(θi) in each scene are similar to those
of pe(θ). The only difference is that pe_i(θi) was calculated based on the total number of black and
white pixels with zenith angles covered by the ith annulus. In this study, the pe(θ′) of the 57.3◦

inversion model was calculated based on the total number of black and white pixels with zenith angles
ranging from 52–62◦. The calculation procedures of pw(θ), pw_i(θi), and pw(θ′) are the same as the
pe(θ), pe_i(θi), and pe(θ′) estimation. The only difference is that the pw(θ), pw_i(θi), and pw(θ′) were
estimated using the simulated binary DHP images of leaf-off deciduous forest scenes.

All the simulated binary DHP images were processed using the Measurement Tools of Vegetation
Structural Parameters software (MTVSP, version 2015) [56] to calculate the Ωe and Ωw of the leaf-on
and leaf-off forest scenes, respectively. Several previous studies attempted to evaluate the performance
of various algorithms to estimate the Ωe and Ωw of leaf-on and leaf-off forest canopy based on DHP
images, respectively. However, these studies only focused on estimating the Ωe(θ) and Ωw(θ) at
the single zenith angle near 57.3◦ [18] or narrow zenith angle range of 30–60◦ [41] and the impact of
different Ωe estimation algorithms on the estimation of PAI was not analyzed [45]. As the performance
of inversion models to estimate the PAI and WAI of leaf-on and leaf-off forest canopy is inexorably
linked to the performance of the Ωe and Ωw estimation algorithm used and the zenith angle dependence
of Ωe(θ) and Ωw(θ). Therefore, the Ωe and Ωw estimation algorithms and parameters suggested by
these studies were not used directly in the present study. In this study, four commonly used Ωe and Ωw

estimation algorithms, including gap fraction and gap-size based algorithms (logarithmic averaging
(LX) [57], gap size distribution (CC) [58,59], combination of gap size and logarithmic averaging
(CLX) [17]), and Pielou’s coefficient of spatial segregation (PCS) [43] were used to estimate the Ωe

and Ωw of the leaf-on and leaf-off forest scenes, respectively. For simplicity, the modified gap size
distribution (CMN) [60] and modified logarithmic averaging (LXW) [41] algorithms were not assessed
in this study due to the high similarity between CC and CMN, and between LX and LXW. For CLX,
three segment sizes of 15◦, 30◦, and 45◦ were used in this study. These three segment sizes covered the
two segment sizes of 15◦ and 45◦, as suggested by Woodgate [45] and Leblanc et al. [18], respectively.
No segment sizes larger than 45◦ were used in this study as CLX tended to produce worse Ωe and Ωw

estimates with large segment sizes [45]. For LX, three segment sizes of 5◦, 15◦, and 30◦ were used in
this study. The three segment sizes covered the segment size of 5◦ suggested by Gonsamo et al. [26]
to estimate Ωe from DHP images using LX. We did not use segment sizes larger than 30◦ for LX to
estimate the Ωe and Ωw of the leaf-on and leaf-off scenes as canopy element and woody component
usually tended to be nonrandomly distributed at the scale of segment with large segment sizes.

Eight Ωe(θ) and Ωw(θ) estimates were calculated based on the four algorithms (one estimate
each for the CC and PCS algorithms, and three estimates each for the LX and CLX algorithms) at
each zenith angle with zenith angles ranging from 10–90◦ with interval of 1◦. The Ωe(θ) and Ωw(θ)

with zenith angles ranging from 0–9◦ were not calculated based on the DHP images directly due to
reasons mentioned above and the limited and insufficient gap size measurements collected at these
small zenith angles. Woodgate [45] reported that the reference Ωe(θ) of the leaf-on eucalypt forest
scenes at zenith angles ranging from 7–75◦ were almost constant, and the Ωe(θ) estimated using CLX
(segment sizes of 15◦, 45◦, and 90◦) at zenith angles near 10◦ are very close to the reference Ωe of
the scenes. In this study, to obtain the 91 Ωe(θ) and Ωw(θ) estimates that match the pe(θ) and pw(θ)

measurements at the same zenith angle range of 0–90◦ with an interval of 1◦, we treated the Ωe(θ) and
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Ωw(θ) at the 10 zenith angles in the range of 0–9◦ with the interval of 1◦ as equal to the Ωe(θ) and
Ωw(θ) at the 10◦ zenith angle, respectively. For the three inversion models of LAI-2200, DHP_0-81,
and DHP_0-90, the Ωe_i and Ωw_i were calculated by averaging the Ωe(θ) and Ωw(θ) estimates with
the zenith angles covered by the ith annulus with an interval of 1◦, respectively. Similarly, the Ωe(θ′)

and Ωw(θ′) of the 57.3 inversion model were calculated by averaging the Ωe(θ) and Ωw(θ) with zenith
angles ranging from 52–62◦ with an interval of 1◦.

After the calculation of pe(θ), pw(θ), pe_i(θi), pw_i(θi), pe(θ′), pw(θ′), γe, Ge(θ), Gw(θ), Ge_i, Gw_i,
Ωe(θ), Ωw(θ), Ωe_i, and Ωw_i for each scene, the PAIe, PAI, WAIe, and WAI estimates of each leaf-on
and leaf-off scene were calculated from the seven inversion models using Equations (3)–(7), (9) and (10),
respectively. The reference Ωe and Ωw of leaf-on and leaf-off scenes were calculated using Equation
(11) based on the true PAI and WAI of leaf-on and leaf-off scenes, and the PAIe_57.3 and WAIe_57.3

which were derived using the 57.3 inversion model without consideration of Ge, Gw, γe, Ωe, and Ωw,
respectively. Hereinafter, if the Ge and Gw, γe, and Ωe and Ωw were stated not considered in the PAIe,
PAI, WAIe, and WAI estimation, then the statement means that the assumption of spherical projection
function was made for Ge and Gw, and the γe, Ωe(θ), and Ωw(θ) are assumed to be equal to 1.

In this study, for convenience, we classified the factors that contributed to the differences between
the PAIe, PAI, WAIe, and WAI estimates of the seven inversion models as the inversion model, Ge and Gw,
γe, Ωe and Ωw estimation algorithm, and segment size. Hereinafter, the Equations of (3)–(7), (9) and (10)
were treated as the factor of the inversion model that contributed to the differences between the estimates
derived from the seven inversion models, excluding the part of Ge(θ), Ge(θ′), Ge_i, γe, Ωe(θ), Ωe(θ′),
and Ωe_i.

4. Results

4.1. Factors Contributing to Differences between PAIe or WAIe, Which Were Derived from Seven
Inversion Models

4.1.1. Inversion Model

Figure 3 shows that the mean pe(θ) of the leaf-on scenes and the mean pw(θ) of the leaf-off scenes
tended to decrease obviously with the increase of zenith angles at the zenith angle range of 0–90◦

and they approach zero at zenith angles larger than 85◦. Table 2 shows the mean PAIe of all the
leaf-on coniferous and deciduous scenes, and the mean WAIe of all the leaf-off deciduous scenes,
which were derived from the seven inversion models with the assumption of the spherical projection
function of Ge and Gw. The mean PAIe_Millerr_10−65 and WAIe_Miller_10−65 were smaller than those
mean PAIe and WAIe estimates calculated from other six inversion models, respectively (Table 2).
By contrast, the mean PAIe_Millerr_0−90 and WAIe_Miller_0−90 were larger than those mean PAIe and
WAIe estimates calculated from the other six inversion models except 57.3, respectively (Table 2).
The mean PAIe_Millerr_0−90 and WAIe_Miller_0−90 were approximately two times PAIe_Millerr_10−65
and WAIe_Miller_10−65, respectively (Table 2). Large differences were also observed between the
mean PAIe_Millerr_0−80 and PAIe_Millerr_0−90 or WAIe_Miller_0−80 and WAIe_Miller_0−90. For example,
the mean PAIe_Millerr_0−90 were 42% and 33% larger than PAIe_Millerr_0−80 in the leaf-on coniferous and
deciduous scenes, respectively (Table 2). Similarly, the mean WAIe_Miller_0−90 were 24% larger than
WAIe_Miller_0−80 in the leaf-off deciduous scenes (Table 2). Compared with Miller_0-80 and Miller_0-90,
no large differences were observed between the mean PAIe or WAIe estimates of DHP_0-81 and
DHP_0-90 at the leaf-on and leaf-off forest scenes, even when the same zenith angle ranges were
covered by the two groups of inversion models (Table 2). The variations in proportion between
the mean PAIe_DHP_0−81 and PAIe_DHP_0−90 or WAIe_DHP_0−81 and WAIe_DHP_0−90 estimates are
below 6%. The variations in proportion between the mean PAIe_Millerr_0−90 and PAIe_DHP_0−90 or
WAIe_Millerr_0−90 and WAIe_DHP_0−90 estimates are 22%, 18%, and 9% in the leaf-on coniferous, leaf-on
deciduous, and leaf-off deciduous scenes, respectively (Table 2).
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Table 2. Mean PAIe of leaf-on coniferous and deciduous scenes and mean WAIe of leaf-off deciduous
scenes derived from seven inversion models using Equations (3)–(7), (9) and (10) by assuming Ge(θ) and
Gw(θ) to be equal to 0.5 (γe, Ωe(θ), Ωw(θ), Ωe(θ′), Ωw(θ′), Ωe_i, and Ωw_i are assumed to be equal to 1).

Inversion Model Miller_10-65 Miller_0-80 Miller_0-90 LAI_2200 DHP_0-81 DHP_0-90 57.3

PAIe_Miller_10−65 PAIe_Miller_0−80 PAIe_Miller_0−90 PAIe_LAI−2200 PAIe_DHP_0−81 PAIe_DHP_0−90 PAIe_57.3

leaf-on
coniferous scenes 0.92 1.39 1.97 1.64 1.64 1.54 1.75

leaf-on
deciduous scenes 1.25 1.84 2.45 2.18 2.14 2.02 2.39

WAIe_Miller_10−65 WAIe_Miller_0−80 WAIe_Miller_0−90 WAIe_LAI−2200 WAIe_DHP_0−81 WAIe_DHP_0−90 WAIe_57.3

leaf-off
deciduous scenes 0.46 0.70 0.87 0.83 0.83 0.79 0.93

For Miller_0-90, Figure 4 illustrates that the proportions of the number of scenes with null gap
measurements to the total number of leaf-on deciduous and coniferous scenes at zenith angles in the
0–90◦ range are equal to zero if the zenith angles are <80◦, and then they increased obviously at the
zenith angles >80◦ and approach the maximum of 0.58 at the zenith angle of 88◦. Compared with
leaf-on forest scenes, the proportions of scenes with null gap measurements to the total number of
leaf-off scenes at zenith angles in the 0–90◦ range are small; they are equal to zero if the zenith angle is
<86◦ and approach the maximum of 0.09 at 87◦ (Figure 4). By contrast, for DHP_0-90, the proportions
of the number of scenes with null gap measurements to the total number of leaf-on and leaf-off forest
scenes at each annulus are always equal to zero.
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4.1.2. Ge and Gw

The Ge(θ) of leaf-on coniferous scenes presents a trend similar to the planophile projection
function, and they are decreased with zenith angles in the range of 0–90◦ (Figure 5). The Ge(θ) of leaf-on
coniferous scenes is intersected with the line of Ge(θ) = 0.5 at the zenith angle near 57.3◦ (Figure 5).
In contrast, the Gw(θ) of leaf-off deciduous scenes exhibits a similar trend to the erectophile projection
function, and they are increased with zenith angles in the range of 0–90◦ (Figure 5). The Gw(θ) of
leaf-off deciduous scenes is intersected with the line of Gw(θ) = 0.5 at the zenith angle near 52◦

(Figure 5). The Ge(θ) of leaf-on deciduous scenes exhibits a trend similar to spherical projection
function, and the Ge(θ) is close to 0.5 at all the zenith angles ranging from 0◦ to 90◦ (Figure 5).

No significant differences were found between the mean PAIe or WAIe estimates of the seven
inversion models (except Miller_10-65), which were estimated with or without consideration of Ge and
Gw at all scenes, and the variations in proportion and differences are below 4% and 0.06, respectively
(Tables 2 and 3). The variations in proportion and differences between the mean PAIe_Millerr_10−65
or WAIe_Miller_10−65 estimated with or without consideration of Ge and Gw at all leaf-on and leaf-off
scenes, are relatively large, ranging from 0–8% and 0–0.07, respectively (Tables 2 and 3). The variations
in proportion and differences between the mean PAIe_57.3 of leaf-on deciduous and coniferous scenes,
which were derived with or without consideration of Ge, are 0% and 0.0, and 1% and 0.01, respectively;
the variations in proportion and differences between the WAIe_57.3 of leaf-off deciduous scenes, which were
derived with or without consideration of Gw, are 3% and 0.03, respectively (Tables 2 and 3). The variations
in proportion between the mean PAIe_57.3 or WAIe_57.3, which were derived with or without consideration
of Ge and Gw at the leaf-on coniferous scenes and leaf-off deciduous scenes are not equal to zero due to
the reason of the Ge(θ) of leaf-on coniferous scenes and the Gw(θ) of leaf-off deciduous scenes are not
intersected with the lines of Ge(θ) = 0.5 and Gw(θ) = 0.5 at the zenith angle 57.3◦ (Figure 5).
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Figure 5. Mean Ge(θ) of all leaf-on coniferous and deciduous scenes and mean Gw(θ) of all leaf-off
deciduous scenes.

Table 3. Mean PAIe of leaf-on coniferous and deciduous scenes, and mean WAIe of leaf-off
deciduous scenes, which were estimated from the seven inversion models except Miller_0-90 using
Equations (3)–(7), (9) and (10) considering Ge and Gw (γe, Ωe(θ), Ωw(θ), Ωe(θ′), Ωw(θ′), Ωe_i, and Ωw_i

are assumed to be equal to 1).

Inversion Model Miller_10-65 Miller_0-80 LAI_2200 DHP_0-81 DHP_0-90 57.3

PAIe_Miller_10−65 PAIe_Miller_0−80 PAIe_LAI−2200 PAIe_DHP_0−81 PAIe_DHP_0−90 PAIe_57.3

leaf-on
coniferous scenes 0.85 1.39 1.59 1.70 1.59 1.74

leaf-on
deciduous scenes 1.25 1.84 2.18 2.14 2.02 2.38

WAIe_Miller_10−65 WAIe_Miller_0−80 WAIe_LAI−2200 WAIe_DHP_0−81 WAIe_DHP_0−90 WAIe_57.3

leaf-off
deciduous scenes 0.49 0.71 0.86 0.83 0.80 0.90
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4.1.3. γe, Ωe, and Ωw

This section focuses on the differences between the PAIe or WAIe, which were derived from the
seven inversion models considering γe, Ωe, or Ωw, respectively. Evaluating the impact of different Ωe

and Ωw estimation algorithms and segment sizes on the performance of the seven inversion models
to estimate the PAI and WAI of leaf-on and leaf-off forest scenes is the target of the next section.
For simplicity, only one segment size was analyzed in this section for LX and CLX.

Figure 6 shows that the mean Ωe(θ) and Ωw(θ) of all leaf-on and leaf-off scenes, which were
derived from the four algorithms (CC, CLX, LX, and PCS), tended to increase and vary largely with
zenith angles in the range of 10–90◦, except the mean Ωw(θ) estimates derived from CLX_15 (hereafter,
the 15 represent the segment size of 15◦ to derive Ωe and Ωw). Large differences were found between
the four mean Ωe(θ) and Ωw(θ) estimates, which were estimated from the four Ωe and Ωw estimation
algorithms at each zenith angle ranging from 10–90◦ at all leaf-on and leaf-off scenes (Figure 6).
For example, for leaf-on deciduous scenes, the mean Ωe(θ), which were derived from CC at the four
zenith angles of 10◦, 30◦, 60◦, and 90◦ are 1.31, 1.46, 1.34, and 1.0 times the mean Ωe(θ) of CLX_15; 1.09,
1.05, 1.08, and 1.03 times the mean Ωe(θ) of LX_30; and 3.51, 3.73, 2.29, and 1.04 times the mean Ωe(θ)

of PCS, respectively (Figure 6b).
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Figure 6. Mean Ωe(θ) and Ωw(θ) derived using CC, CLX_15, LX_30, and PCS at leaf-on coniferous
scenes, (a) leaf-on deciduous scenes (b) and leaf-off deciduous scenes (c), respectively.

Compared with the differences between the mean PAIe or WAIe estimates of the seven inversion
models, which were derived without consideration of γe, Ωe, and Ωw (Table 2), the differences between
the PAIe or WAIe estimates of the seven inversion models, which were derived with consideration
of γe, Ωe, or Ωw at the leaf-on and leaf-off scenes, tended to become larger (Table 4). The reason
for the increase in the differences is that the PAIe and WAIe, which were derived considering γe,
Ωe, or Ωw, were calculated by multiplying the PAIe and WAIe, which were estimated previously
without consideration of γe, Ωe, and Ωw by the γe, 1

Ωe(θ)
, or 1

Ωw(θ)
, respectively. The values of γe, 1

Ωe(θ)
,

and 1
Ωw(θ)

are usually equal to or larger than unity for all leaf-on and leaf-off scenes (Figure 6 and
Table 1). For example, for the leaf-on coniferous scenes, the difference between the PAIe_Miller_10−65
and PAIe_Miller_0−90 estimates, which was derived without consideration of γe and Ωe is 1.05 (Table 1).
This difference increased to 1.63 if γe was considered in the PAIe estimation; similarly, the differences
between the PAIe_Miller_10−65 and PAIe_Miller_0−90 estimates which were derived with consideration of
Ωe that were estimated using CC, CLX_15, LX_30, and PCS are increased to 1.08, 1.22, 1.12, and 1.79,
respectively (Tables 2 and 4).
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Table 4. Mean PAIe of leaf-on coniferous and deciduous scenes and mean WAIe of leaf-off deciduous scenes, which were derived from the seven inversion models
using Equations (3)–(7), (9) and (10) considering γe, Ωe, or Ωw, respectively (Ge(θ) and Gw(θ) are assumed to be equal to 0.5). γe is assumed to be equal to 1.0 if Ωe or
Ωw was considered in the PAIe or WAIe estimation. Ωe(θ), Ωe(θ′), and Ωe_i or Ωw(θ), Ωw(θ′), and Ωw_i are assumed to be equal to 1.0 if γe was considered in the
PAIe or WAIe estimation.

Plant Function Types Inversion Model Miller_10-65 Miller_0-80 Miller_0-90 LAI_2200 DHP_0-81 DHP_0-90 57.3

PAIe_Miller_10−65 PAIe_Miller_0−80 PAIe_Miller_0−90 PAIe_LAI−2200 PAIe_DHP_0−81 PAIe_DHP_0−90 PAIe_57.3

Leaf-on coniferous scenes

Considering γe 1.42 2.14 3.05 2.52 2.52 2.37 2.68
Considering Ωe (CC) 1.04 1.53 2.12 1.83 1.78 1.68 1.82

Considering Ωe (CLX_15) 1.54 2.16 2.76 2.62 2.46 2.30 2.67
Considering Ωe (LX_30) 1.16 1.69 2.28 2.02 1.97 1.84 2.03
Considering Ωe (PCS) 3.77 4.90 5.56 6.11 5.34 5.0 6.29

Leaf-on deciduous scenes

Considering Ωe (CC) 1.36 1.95 2.57 2.33 2.25 2.13 2.41
Considering Ωe (CLX_15) 1.88 2.58 3.22 3.15 2.91 2.76 3.18
Considering Ωe (LX_30) 1.50 2.15 2.74 2.54 2.44 2.34 2.62
Considering Ωe (PCS) 3.94 4.92 5.55 6.17 5.27 5.03 5.65

WAIe_Miller_10−65 WAIe_Miller_0−80 WAIe_Miller_0−90 WAIe_LAI−2200 WAIe_DHP_0−81 WAIe_DHP_0−90 WAIe_57.3

Leaf-off deciduous scenes

Considering Ωw (CC) 0.48 0.71 0.89 0.85 0.85 0.81 0.93
Considering Ωw (CLX_15) 0.72 1.0 1.18 1.21 1.14 1.09 1.32
Considering Ωw (LX_30) 0.49 0.74 0.91 0.88 0.87 0.83 0.97
Considering Ωw (PCS) 0.97 1.35 1.54 1.65 1.53 1.44 1.80
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Based on Tables 2 and 4, the changes between the variations in proportion between the PAIe or
WAIe, which were derived from any two inversion models among the seven inversion models without
consideration of Ωe and Ωw, and the variations in proportion between the PAIe or WAIe derived from
the same two inversion models with consideration of Ωe and Ωw, are correlated to the Ωe and Ωw

estimation algorithms. Minor or no changes were observed in the differences of proportion between
the PAIe or WAIe, which were derived from any two inversion models among the seven inversion
models without consideration of Ωe and Ωw, and the differences in proportion between the PAIe or
WAIe, which were derived from the same two inversion models considering Ωe and Ωw, which were
estimated using CC and LX_30 (<6%, <7%, and <2% at the leaf-on deciduous, leaf-on coniferous,
and leaf-off deciduous scenes, respectively). The differences in proportion between the PAIe or WAIe

derived from any two inversion models among the seven inversion models considering Ωe and Ωw,
which were estimated using CLX_15 and PCS, are smaller about 1–22%, 0–29%, and 0–11% than
those between the PAIe or WAIe, which were derived from the same two inversion models without
consideration of Ωe and Ωw at the leaf-on deciduous, leaf-on coniferous, and leaf-on deciduous scenes,
respectively. No changes were observed in the variations in proportion between the PAIe derived
from any two inversion models among the seven inversion models without consideration of γe at
leaf-on coniferous scenes, and the variations in proportion between the PAIe derived from the same
two inversion models with consideration of γe.

4.2. Estimation of the PAIe, PAI, PAIe and WAI of Leaf-on and Leaf-off Forest Scenes from the Seven
Inversion Models

4.2.1. Leaf-on Forest Scenes

All the seven inversion models except Miller_0-90 tended to underestimate the PAI of leaf-on
scenes if γe and Ωe were not considered in the PAI estimation (Figure 7). The PAIe estimates derived
from the seven inversion models without consideration of γe and Ωe were 5–103% of the true PAI
of the leaf-on forest scenes (Figure 7). Most of the PAIe estimates derived from Miller_0-90 and 57.3
were 35–75% of the true PAI of leaf-on forest scenes (Figure 7c,g). From the root mean square error
(RMSE), mean absolute error (MAE), and the regression slope, Miller_0-90 performed the best with
the smallest RMSE and MAE as compared with the other inversion models for estimating the PAIe of
leaf-on forest scenes, followed by 57.3 and DHP_0-81 (Figure 7e,g). The worst results were obtained
with Miller_10-65 with the largest RMSE and MAE (Figure 7a).
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Figure 7. Comparison of true PAI of leaf-on coniferous and deciduous scenes with PAIe estimates
derived from the seven inversion models without consideration of γe and Ωe: (a) Miller_10-65
(PAIe_Miller_10−65), (b) Miller_0-80 (PAIe_Miller_0−80), (c) Miller_0-90 (PAIe_Miller_0−90), (d) LAI-2200
(PAIe_LAI−2200), (e) DHP_0-81 (PAIe_DHP_0−81), (f) DHP_0-90 (PAIe_DHP_0−90), and (g) 57.3 (PAIe_57.3).
The PAIe estimates were derived from the seven inversion models using Equations (3)–(7), (9) and (10)
with consideration of Ge (γe, Ωe(θ), Ωe(θ′), and Ωe_i are assumed to be equal to 1). Statistics are
given at 95% confidence level from two-tailed Student’s t-test. Olive square: SPS, red square: JPSS,
green square: OPSW.

The performance of the seven inversion models in estimating the PAI of leaf-on coniferous and
deciduous scenes was largely improved if the γe and Ωe were considered in the PAI estimation,
except the combinations of the inversion models, γe, Ωe estimation algorithm, and segment size with
PCS (Figures 7–9). For leaf-on coniferous and deciduous scenes, the PAI, which was estimated from
the seven inversion models considering γe and Ωe, was closer to the one-to-one line compared with
the PAIe estimated from the same inversion model without consideration of γe and Ωe, except the
combination of inversion model, γe, Ωe estimation algorithm, and segment size with PCS (Figures 7–9).
For example, for leaf-on deciduous scenes, clear evidence of the improvement in the PAI estimation
was provided by the fact that the RMSE, MAE, and regression slope of the PAIe estimates, which were
estimated from Miller_0-90 without consideration of γe and Ωe, were 1.61, 1.43, and 0.67; they decreased
to 0.83, 0.54, and 0.82 when γe and LX_5 were considered in the PAI estimation (Figure 7 and Table A1).

The best performance of the combination of inversion model, γe, Ωe estimation algorithm,
and segment size to estimate the PAI of leaf-on coniferous and deciduous scenes is the function
of plant functional types (Figures 8 and 9, Table A1). Furthermore, the best combination of inversion
model, γe, Ωe estimation algorithm, and segment size to estimate the PAI of the leaf-on coniferous
scenes is also different at the two sub-series coniferous scenes of JPSS and OPSW and SPS (Figure 8 and
Table A1). Based on the RMSE, MAE, and regression slope, the combination of Miller_0-90 and LX_5
performed the best to estimate the PAI of leaf-on deciduous scenes, followed by the combinations of
57.3 and LX_5, LAI-2200 and LX_5, and Miller_0-90 and CLX_15, respectively (Figure 9 and Table A1).
Amongst the combinations of inversion model, γe, Ωe estimation algorithm, and segment size tested,
DHP_0-90 and LX_5 performed the best, followed by DHP_0-81 and CLX_45, DHP_0-81, and CLX_30,
and LAI-2200 and CLX_45 for estimating the PAI of sub-series coniferous scenes of JPSS and OPSW
(Figure 8 and Table A1). The combination of inversion model, γe, Ωe estimation algorithm, and segment
size with Miller_0-80 and CC exhibited the best performance in estimating the PAI of SPS coniferous
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scenes, followed by Miller_0-80 and LX_30, Miller_0-80 and CLX_45, and LAI-2200 and CC (Figure 8
and Table A1).
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and PCS) were used to estimate the Ωe of leaf-on deciduous scenes.

4.2.2. Leaf-off Forest Scenes

All the seven inversion models tended to underestimate the WAI at the majority of leaf-off scenes
if Ωw was not considered in the WAI estimation (Figure 10). The WAIe estimates derived from the seven
inversion models are 28–126% of the true WAI of leaf-off deciduous scenes (Figure 10). Most of the
WAIe estimates derived from Miller_0-90 and 57.3 were 63–90% of the true WAI of leaf-off deciduous
forest scenes (Figure 10c,g). Based on RMSE, MAE, and regression slope, the 57.3 inversion model
performed the best amongst the seven inversion models to estimate the WAIe of leaf-off deciduous
forest scenes with the smallest RMSE and MAE, followed by Miller_0-90 and LAI-2200 (Figure 10d,g).
The worst results were obtained with Miller_10-65 with the largest RMSE and MAE compared with
other inversion models (Figure 10a).

The underestimation of the seven inversion models to estimate the WAI of leaf-off deciduous
scenes without consideration of Ωw was significantly reduced if Ωw was considered in the WAI
estimation, except the combinations of inversion model, Ωw estimation algorithm and segment size
with PCS (Figures 10 and 11, Table A2). For example, the RMSE, MAE, and regression slope of
the WAI estimated from 57.3 without consideration of Ωw were 0.30, 0.18, and 0.76, respectively,
which decreased to 0.16, 0.06, and 0.89 for the WAI estimated from 57.3 with consideration of LX_5
(Figures 10 and 11, Table A2). Based on the RMSE, MAE, and regression slope, the combination of
inversion model, Ωw estimation algorithm, and segment size of LAI-2200 and LX_5 performed the best
in estimating the WAI of leaf-off deciduous scenes, followed by the combinations of 57.3 and LX_5,
DHP_0-81 and LX_5, and Miller_0-90 and LX_5 (Table A2).
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Figure 10. Comparison of true WAI of leaf-off deciduous forest scenes with WAIe estimates
derived from seven inversion models without considering Ωw: (a) Miller_10-65 (WAIe_Miller_10−65),
(b) Miller_0-80 (WAIe_Miller_0−80), (c) Miller_0-90 (WAIe_Miller_0−90), (d) LAI-2200 (WAIe_LAI−2200),
(e) DHP_0-81 (WAIe_DHP_0−81), (f) DHP_0-90 (WAIe_DHP_0−90), and (g) 57.3 (WAIe_57.3). The WAIe

estimates were estimated using Equations (3)–(7), (9) and (10) with consideration of Gw (γe, Ωw(θ),
Ωw(θ′), and Ωw_i are assumed to be equal to 1). Statistics are given at 95% confidence level from
two-tailed Student’s t-test.
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Figure 11. (a–g) Comparison of true WAI of leaf-off deciduous forest scenes with WAI calculated from
the seven inversion models with consideration of Gw and Ωw. Four Ωw estimation algorithms (CC, LX,
CLX, and PCS) were used to estimate the Ωw of leaf-off deciduous scenes.

5. Discussion

The main finding of our study is that no universally valid combination of inversion model, γe,
Ωe and Ωw estimation algorithm, and segment size is available to obtain accurate estimates of PAI
and WAI for all leaf-on and leaf-off forest canopies. Both the factors of inversion model, Ge, Gw, γe,
Ωe, Ωw, and segment size are contributed to the differences between the PAI and WAI estimated from
the seven inversion models. The performance of the combination of inversion model, γe, Ωe and Ωw,
estimation algorithm, and segment size to estimate the PAI and WAI of leaf-on and leaf-off forest
scenes is the function of the inversion model, γe, Ωe and Ωw estimation algorithm, segment size, PAI,
WAI, tree species composition, and plant functional types.

5.1. Reason for Differences between PAIe, PAI, WAIe and WAI Estimates Estimated from the Seven Inversion
Models with or without Consideration of Ge, Gw, γe, Ωe, and Ωw

Since pe(θ), pw(θ), Ge(θ), Gw(θ), Ωe(θ), and Ωw(θ) varied obviously with zenith angles in the
range of 0–90◦ (Figures 3, 5 and 6). The trend in the variations of Ge(θ), Gw(θ), Ωe(θ), and Ωw(θ)

with zenith angles in the range of 0–90◦ did not comply with the trend in the variations of pe(θ) and
pw(θ) in the same zenith angle range (Figures 3, 5 and 6). However, different zenith angle ranges were
used by the seven inversion models to estimate the PAI and WAI of leaf-on and leaf-off forest scenes.
Therefore, both the inversion model, Ge, Gw, γe, Ωe and Ωw estimation algorithm, and segment size
are the factors that contributed to the differences between the PAI or WAI estimated from the seven
inversion models. That’s because the pe(θ), pw(θ), pe_i(θi), pe(θ′), pw(θ′), pe_i(θi), pw_i(θi), Ge(θ),
Gw(θ), Ge_i, Gw_i, Ωe(θ), Ωw(θ), Ωe_i, and Ωw_i that were used in the PAI and WAI estimation for the
seven inversion models are obviously different between each other.

Amongst the five factors of the inversion model, Ge and Gw, γe, Ωe and Ωw estimation algorithm,
and segment size, the PAI and WAI estimation was less affected by Ge and Gw; by contrast, the PAI
and WAI estimation was largely affected by other factors (Figures 8, 9 and 11, Tables 2–4, A1 and A2)
(Appendix C.1). The largest variation in proportion between the PAIe, PAI, WAIe, and WAI estimated
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from any two inversion models amongst the seven inversion models with or without consideration
of γe, Ge, Gw, Ωe, and Ωw at the leaf-on and leaf-off scenes is that derived from Miller_10-65 and
Miller_0-90 (Equations (3) and (5)) without consideration of γe, Ωe, and Ωw, but with consideration of
Ge and Gw (Figures 8, 9 and 11, Tables 2–4, A1 and A2). The mean PAIe and WAIe estimates derived
from Miler_0-90 are approximately two times the estimates derived from Miller_10-65 (Table 2).
This result means that the inversion model contributed more to the variations between the results
of the seven inversion models as the variations in proportion tended to decrease if Ωe and Ωw were
considered in the PAIe, PAI, WAIe, and WAI estimation (Tables 2, 4, A1 and A2). The zenith angle
ranges covered by the two inversion models of Miller_10-65 and Miller_0-90 and the processing
solution of the null gap fraction measurements can explain the large differences between the mean
PAIe or WAIe estimates of the two inversion models. The reason is that both the logarithm of the mean
pe(θ) and pw(θ), and the weight (sin(θ)dθ) tended to increase with zenith angles in the range of 0–90◦

(Figure 3). Further, the defined PAI and WAI of 10 for the null gap fraction measurements at the zenith
angles close to the horizon are usually larger than the estimates derived using Equation (4) based on
the mean pe(θ) and pw(θ) collected at the zenith angle range of 10–65◦.

Compared with two inversion models, namely, Miller_10-65, and Miller_0-90, the variations in
proportion between the mean PAIe or WAIe estimates of any other two inversion models estimated
without consideration of Ωe and Ωw are relatively small (Tables 2–4). The variations of the Ωe(θ)

and Ωw(θ) in the zenith angle range of 0–90◦ at the leaf-on and leaf-off forest canopy are specific to
sites, species, and estimation algorithms [10,17,41,61]. Chen et al. [61] reported that the Ωe of most
natural forest stands range from 0.50 to 0.75. Similarly, the γe of the coniferous forest canopy is also
specific to sites and tree species, and previous studies reported that γe usually ranges from 1.20 to
2.08 [10,22,47]. Therefore, amongst the four factors of the inversion model, γe, Ωe and Ωw estimation
algorithm, and segment size, the dominant factor that contributed more to the differences between the
PAI or WAI estimated from the seven inversion models except Miller_10-65 considering γe, Ge, Gw, Ωe,
and Ωw is the function of the inversion model, γe, Ωe and Ωw estimation algorithm, segment size, and
tree species composition, and the structural characteristics of the forest canopy.

The differences between the mean PAIe or WAIe results of the two inversion models covered
with the same zenith angle ranges, such as Miller_0-90 and DHP_0-90, and DHP_0-81 and DHP_0-90,
are mainly deduced from the differences between the gap fraction and weight calculation methods of
the two inversion models (Tables 2 and 3). For these inversion models covered with different zenith
angle ranges, such as Miller_0-80 and Miller_0-90, and Miller_0-80 and DHP_0-90, all the three aspects
of the inversion model, including zenith angle range, gap fraction, and weight calculation methods,
are the main sources of differences between the PAIe or WAIe estimates of the different inversion
models (Figure 4, Tables 2 and 3).

5.2. Can PAI or WAI be Estimated Accurately from the Currently Available Inversion Models without Field
Measurements of Ge(θ) and Gw(θ) of Forest Canopy

To address the challenge of measuring the Ge(θ) and Gw(θ) of the leaf-on and leaf-off forest
canopy, the 57.3 inversion model was recommended by many previous studies to derive the PAI
and LAI of vegetation canopy [18,22,45,62]. Previous studies showed that this inversion model is
a good choice to avoid the error source of Ge and Gw in the PAI and WAI estimation of vegetation
canopy [18,45,62]; this conclusion was also confirmed in the present study (Figure 5 and Tables 2 and 3).
The merit of the 57.3 inversion model is that the Ge(θ) and Gw(θ) of leaf-on and leaf-off forest canopy
were approximately intersected at the zenith angle near 57.3◦ (1 radian) and are equal to about 0.5 at
this zenith angle [7,15,45,63]; this conclusion was also confirmed in the present study at the leaf-on
and leaf-off scenes with three typical and contrasting types of Ge and Gw (Figure 5).

Since the Ge(θ) and Gw(θ) varied obviously with zenith angles in the range of 0–90◦ (Figure 5),
the Ge(θ) and Gw(θ) measurements would be the critical input parameters for the seven inversion
models except 57.3 in the PAI and WAI estimation of leaf-on and leaf-off scenes. A sign of
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the important role of Ge and Gw in the PAI and WAI estimation is that large differences were
found between the PAIe or WAIe estimates derived from Miller_10-65 estimated with or without
consideration of Ge and Gw (Tables 2 and 3). The large differences indicate that it is inappropriate
to assume that Ge(θ) and Gw(θ) are equal to 0.5 at all zenith angles in the PAI and WAI estimation.
However, the minor differences in proportion between the PAIe or WAIe estimated using the inversion
models of Miller_0-80, LAI-2200, DHP_0-81, and DHP_0-90 with or without consideration of Ge and
Gw are small (below <4%) (Tables 2 and 3), showing that the error source of Ge and Gw was largely
reduced in the PAIe and WAIe estimation. The zenith angle ranges covered by the four inversion
models is the reason for the reduction of the error source of Ge and Gw in the PAIe and WAIe estimation.
As inferred from Equation (4) that the PAI and WAI are linearly related to the Ge(θ) and Gw(θ),
respectively, therefore, the PAI and WAI estimation errors are equivalent in proportion to the Ge and
Gw errors. Therefore, the trade-off between the PAIe and WAIe overestimation or underestimation
caused by the underestimation or overestimation of Ge(θ) and Gw(θ) at zenith angles less than near
57◦, and the opposite trend of the PAIe, and WAIe underestimation or overestimation caused by the
overestimation or underestimation of Ge(θ) and Gw(θ) at zenith angles greater than near 57◦ are the
reason for the removal of the error source of Ge(θ) and Gw(θ) in the PAIe and WAIe estimation for
the four inversion models (Figure 5, Tables 2 and 3). The larger values of the logarithm of the mean
pe(θ) and pw(θ), and sin(θ)dθ at the zenith angle range of 57–90◦ compared with those at the zenith
angle range of 0–57◦ can explain why a narrow zenith angle range of the former zenith angle range is
enough to trade off the PAIe and WAIe underestimation or overestimation caused by the error source
of Ge(θ) and Gw(θ) at the latter zenith angle range. Therefore, we can conclude that the impact of
Ge and Gw on the PAIe, WAIe, PAI, and WAI estimation of leaf-on and leaf-off forest canopy can be
reduced to a low level (4%) by selecting appropriate inversion models such as Miller_0-80, LAI-2200,
DHP_0-81, DHP_0-90, and 57.3.

5.3. Can the Ωe and Ωw of Leaf-on and Leaf-off Forest Canopy be Effectively Estimated based on the DHP
Images Using the Currently Available Algorithms

The PAI and WAI underestimation of the seven inversion models were largely reduced or removed
if the γe, Ωe, and Ωw were considered in the PAI and WAI estimation of leaf-on and leaf-off scenes,
except the combinations of inversion model, γe, Ωe, and Ωw estimation algorithm and segment size
with PCS (Figures 7–11, Tables A1 and A2). Therefore, we can conclude that the clumping effect of the
canopy element and woody component of the forest canopy was the main reason for the severe PAI
and WAI underestimation of the seven inversion models if γe, Ωe, and Ωw were not considered in the
PAI and WAI estimation. This finding is consistent with the conclusions drawn from previous studies
which reported that the large underestimation of PAI for optical methods are due to the clumping
effect of the canopy element of the forest canopy [15,18,34,35,56]. However, Leblanc and Fournier [18]
reported an opposite conclusion that the WAI estimated using the 57.3 inversion model without
consideration of Ωw were close to the true WAI of leaf-off forest scenes. The WAI corrected by Ωw were
found to be larger than the true WAI of leaf-off forest scenes in their study [18]. The nature of the 3D
tree models of leaf-off forest scenes used in their study compared with those in the present study is the
factor that contributed to the different conclusions drawn in these two studies. The leaf-off tree models
represented by trunks only (without branches) were adopted by Leblanc and Fournier [18], but the
leaf-off detailed 3D tree models with trunks and branches were used in the present study to generate
the leaf-off forest scenes. The diameters of trunks are larger than those of branches, and trunks are
closer to the sensor compared with the branches in the upper canopies, making the trunks contribute
more gap fraction measurements as they would. The branches contribute 50–70% of the WAI of the
forest canopy [64]; the absence of branches in leaf-off forest scenes would further increase the clumping
effect of the woody component, resulting in the overestimation of WAI corrected by Ωw in the study
by Leblanc and Fournier [18].
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The distinct PAI underestimation for all the combinations of inversion model, γe, Ωe estimation
algorithm, and segment size except those with PCS at the leaf-on deciduous scenes with PAI > ~3.5
(Figure 9), indicating that the Ωe of those scenes was not accurately estimated by the three algorithms
of CC, LX, and CLX. Cutini et al. [32] reported that the leaves of deciduous forest canopy tended to
concentrate at the top crown to compete for light. Therefore, limited direct sunlight can penetrate
through the top crown of these forest canopies and into the ground for those with large PAI.
Furthermore, insufficient gap fraction or gap size measurements that the Ωe estimation algorithms
rely on to estimate Ωe were collected from these leaf-on deciduous forest canopies would cause the Ωe

estimation algorithms to underestimate Ωe. Thus, the Ωe underestimation would be the main reason
for the overall PAI underestimation at the leaf-on deciduous forest canopy with relatively large PAI.
For leaf-on deciduous forest scenes, if the inversion models are the same, the combinations of inversion
model, γe, Ωe estimation algorithm, and segment size with LX_5 performed the best, followed by
the combinations with CLX_15 in the PAI estimation, except the combinations with Miller_10-65.
This conclusion does not contradict the finding of Woodgate [45] even though different tree species
were examined in these two studies. Woodgate reported that CLX_15 performed the best compared
with other combinations of Ωe estimation algorithm (CC, LX, and CLX) and segment size (15◦, 45◦,
and 90◦) to estimate the Ωe of eucalypt forest canopy, but LX_5 was not analyzed in that study [45].
Better performance of LX to estimate the Ωe of leaf-on Gliricidia sepium forest canopy was also reported
by van Gardingen et al. [25]; they found that the PAI underestimation decreased from 50% to 15% after
the PAI estimates were corrected by Ωe derived using LX.

Compared with the leaf-on deciduous forest scenes, the gap fraction or gap size measurements
collected at leaf-off deciduous forest scenes would be relatively sufficient as leaves were removed
from the canopy and only woody components were left. Therefore, the accuracy of the Ωw estimates
estimated from CC, CLX, and LX at leaf-off deciduous forest scenes would be improved compared with
those estimated at the leaf-on deciduous forest scenes. A sign of the improvement of the accuracy of
the Ωw estimates at the leaf-off deciduous forest scenes is that the WAI estimated from all combinations
of inversion model, Ωw estimation algorithm, and segment size at the leaf-off deciduous scenes were
closer to the one-to-one line compared with the PAI estimated using the same combination of the
inversion model, γe, Ωe estimation algorithm, and segment size at the leaf-on deciduous scenes
(Figures 9 and 11). The large slope and small RMSE and MAE of the combinations of inversion model,
Ωw estimation algorithm, and segment size with LX_5 except those combinations with Miller_10-65
and Miller_0-80 indicating that the Ωw of leaf-off deciduous scenes can be accurately estimated if
appropriate Ωw estimation algorithm and segment size was adopted (Table A2).

The PAI estimated from the seven inversion models except Miller_10-65 at the leaf-on coniferous
forest canopy are close to the one-to-one line, except at the sub-series coniferous scenes of SPS (Figure 8).
This result indicates that the Ωe of the sub-series coniferous scenes of JPSS and OPSW was accurately
estimated by CLX if appropriate segment size was adopted. Furthermore, accurate PAI estimates can
be obtained at the sub-series coniferous scenes of JPSS and OPSW if γe and Ωe were considered in the
PAI estimation (Figure 8 and Table A1). For the sub-series coniferous scenes of SPS, the PAI estimated
from all the combinations of inversion model, γe, Ωe estimation algorithm, and segment size at six
scenes deviated largely from the one-to-one line, regardless of the inversion model, Ωe estimation
algorithm, and segment size used by the combinations, except those combinations with Miller_10-65
(Figure 8). Upon further examination, the reference Ωe of the six scenes range from 1.0 to 1.35. The stem
distribution mode of five of the six scenes is regular. Currently, the Ωe estimation algorithms except
PCS used in this study cannot effectively deal with the situations of regular distribution of the canopy
element in space at the scale of beyond-shoot. The Ωe estimation algorithms would overestimate Ωe(θ)

in the six scenes with reference Ωe ≥ 1.0, as the Ωe(θ) estimates obtained from these Ωe estimation
algorithms were always ≤ 1 (Appendix C.3). Therefore, the Ωe(θ) overestimation would be the reason
for the severe PAI overestimation at the six scenes of the sub-series coniferous scenes of SPS. If the
six scenes with reference Ωe ≥ 1 were removed from the sub-series coniferous scenes of SPS, then the
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combinations of inversion model, γe, Ωe estimation algorithm, and segment size with LX_15 would
perform the best followed by combinations with the same inversion model but with CLX to estimate
the PAI of the sub-series coniferous scenes of SPS, except combinations with Miller_10-65, Miller_0-80,
and Miller_0-90. This finding is different from the conclusion of Pisek et al. [60], who reported that
CLX outperformed other Ωe algorithms (CC, LX, and CMN) to estimate the Ωe of an old Scots Pine
plot with the age of 124 years. The one plot covered in the study of Pisek et al. [60] and only six scenes
of the sub-series coniferous scenes of SPS left after removing those SPS scenes with reference Ωe ≥ 1
may have contributed to the differences between the conclusions drawn from these two studies.

In conclusion, the best performance of Ωe and Ωw estimation algorithms in estimating the Ωe

and Ωw of leaf-on and leaf-off forest canopy is the function of tree species and plant functional
types. The different characteristics of the clumping effect of canopy element and woody component
between the leaf-on deciduous scenes, leaf-on coniferous scenes, and leaf-off deciduous scenes and
the obvious differences between the Ωe(θ) and Ωw(θ) estimates derived from the four Ωe and Ωw

estimation algorithms (CC, CLX, LX, and PCS) with different theoretical basis have contributed to the
different conclusions of the best combination of Ωe and Ωw estimation algorithm and segment size to
estimate the Ωe and Ωw of the leaf-on and leaf-off scenes (Figures 6, 8, 9 and 11, Tables A1 and A2).
No universally valid Ωe and Ωw estimation algorithm and segment size is available to accurately
estimate the Ωe and Ωw of all leaf-on and leaf-off scenes, respectively. This finding indicates that there
is still room to improve the performance of the currently available Ωe and Ωw estimation instruments
and algorithms to accurately estimate the Ωe and Ωw of leaf-on and leaf-off forest canopy, especially
for those canopies with reference Ωe and Ωw > 1 (Appendix C.3).

There are several critical problems still existed for the four Ωe and Ωw estimation algorithms.
For example, segment size is a key parameter for LX and CLX to estimate the Ωe and Ωw of leaf-on
and leaf-off forest canopy. However, determining appropriate segment sizes of LX and CLX is difficult,
particularly for the DHP approach [18,26,45]. Gonsamo et al. [26] reported that the Ωe estimates
derived from LX decreased evidently by decreasing segment sizes from 15◦ to 5◦ and slightly changed
further by decreasing segment sizes from 5◦ to 2.5◦. The minor variations in the Ωe estimates obtained
from LX using the latter range of segment sizes indicate that the spatial distribution of the canopy
element in all segments was approaching the assumption of random distribution. Improved accuracy
of Ωe estimates obtained from LX with smaller segment sizes was reported by previous studies [26,45].
This trend was also observed in the present study (Tables A1 and A2). However, the proportions of
segments without gaps in all the segments also increased dramatically if small segment sizes were
used to estimate Ωe and Ωw [18,26,45]. The logarithm of the gap fraction of these segments without
gaps gave undefined results, and a subjectively assumed PAI or WAI is typically assigned to these
segments [17,26]. Therefore, the assumed PAI or WAI for the segments without gaps would be an
error source for LX. On the other hand, the lack of ability of LX to recognize and utilize large gaps
of between-crown clumping to estimate the Ωe and Ωw of leaf-on and leaf-off forest canopy remains
unresolved, regardless of segment size ranging from large (120◦) to small (5◦ or 2.5◦).

Besides the two disadvantages of LX described, there are two more problems related to the
small segment size faced for CLX. Firstly, the short length of segment increases the possibility of null
gaps or full gaps in the transect of segment as reported previously [18,26,45]. Secondly, the short
length of segment will likely violate the assumption of an infinite horizontal plane defined by the CC
algorithm [58]. However, CC relies on the collected gap size measurements to evaluate the clumping
effect of the canopy element and woody component at the segment scale. Therefore, the limited and
insufficient gap sizes collected by CLX at the transect of each segment compared with TRAC would
become the weakness of CLX in evaluating the clumping effect of the canopy element and woody
component at the segment scale. The combinations of the inversion model, γe, Ωe and Ωw estimation
algorithm, and segment size with CLX did not always perform better than other combinations with the
same inversion models but with different Ωe and Ωw estimation algorithms to estimate the PAI and
WAI of leaf-on and leaf-off scenes (Figures 8, 9 and 11, Tables A1 and A2). This finding is not consistent
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with the conclusions of Gonsamo and Pellikka [41], Leblanc and Fourier [18], and Woodgate [45]
that CLX is better than other Ωe estimation algorithms (CC, LX, and PCS) in estimating the Ωe of the
leaf-on forest canopy. Both the plant functional types, 3D forest scenes and segment sizes contributed
to the differences between the conclusions drawn in the present and previous studies. The RMSE
and MAE of the PAI and WAI estimated from the combination of inversion model, γe, Ωe and Ωw

estimation algorithm, and segment size with LX_5 at the leaf-on and leaf-off deciduous scenes were
smaller than those estimated from the combinations with the same inversion model but with CLX
(Table A1), illustrating that the clumping effect of the canopy element and woody component at the
segment scale was not thoroughly measured by CC for CLX.

For PCS, the significant PAI and WAI overestimation for the combination of the inversion model,
γe, Ωe, and Ωw algorithm and segment size with PCS illustrated that PCS overestimated the Ωe and Ωw

remarkably at both the leaf-on and leaf-off scenes (Figures 8, 9 and 11). The Ωe and Ωw overestimation
for PCS was also reported in previous studies [41,43]. The combinations of the inversion model, γe, Ωe,
and Ωw estimation algorithm and segment size with CC underestimated the PAI and WAI of leaf-on
and leaf-off forest scenes, except at the SPS coniferous scenes (Figures 8, 9 and 11). This finding is
consistent with the reports of Pisek et al. [60], Leblanc and Fourier [18], and Woodgate [45] that parts
of the large nonrandom gaps were not removed by CC, leading to an underestimation of Ωe and Ωw,
and underestimated the PAI and WAI of forest canopy further.

Because the performance of the seven inversion models to estimate the PAI and WAI of the
leaf-on and leaf-off forest canopy with consideration of γe, Ωe, and Ωw were strongly dependent on the
accuracies of the Ωe and Ωw estimates (Tables A1 and A2) (Appendix C.1). All the above-mentioned
problems of the four Ωe and Ωw algorithms (CC, CLX, LX. and PCS) need to be solved reasonably in
the future to improve the accuracies of the Ωe and Ωw estimates derived from the four algorithms.

5.4. Which Inversion Model(s) is (are) More Reliable to Estimate the PAI and WAI of the Leaf-on and Leaf-off
Forest Canopy

The zenith angle ranges covered by the seven inversion models are apparently different.
As explained previously, the zenith angle range covered by Miller_10-65 is the reason why the PAI
and WAI estimated from the combination of the inversion model, γe, Ωe and Ωw estimation algorithm,
and segment size with Miller_10-65 were still smaller than those estimated from other combinations
with different inversion models but with the same Ωe and Ωw estimation algorithm and segment
size. On the other hand, the PAI and WAI underestimation of Miller_10-65 illustrates the necessity
of incorporating the gap fraction measurements at large zenith angles, which were not covered by
Miller_10-65, to the PAI and WAI estimation of the leaf-on and leaf-off forest canopy. However,
a problem in using the gap fraction measurements at large zenith angles in the PAI and WAI estimation
is the high probability of obtaining null gap fraction measurements at these zenith angles, as reported
by previous studies [17,25,26] and the present study (Figure 4). Several solutions were proposed to
address the undefined inversion of the null gap fraction measurements, such as adding half or one
pixel to the annulus of the DHP images or defining arbitrary upper PAI or LAI limit values of 8 or
10 [17,25,26]. However, those proposed solutions cannot derive accurate PAI and LAI estimates for
those annuli without gaps due to evident subjectivities. Therefore, the processing solutions of the null
gap fraction measurements would produce estimation errors to the derived PAI and WAI estimates.
Significant differences were observed between PAIe_Miller_0−90 and PAIe_DHP_0−90 or WAIe_Miller_0−90
and WAIe_DHP_0−90 estimates at the leaf-on and leaf-off scenes, respectively, especially for those scenes
with PAI~ > 2.5 at the leaf-on scenes and WAI~ > 2.25 at the leaf-off scenes (Figure 7c,f and Figure 10c,f)
(Appendix C.2). The significant differences indicate that the PAIe and WAIe estimation were largely
affected by the processing solutions of the null gap fraction measurements as the null gap fraction
measurements at the zenith angles close to the horizon were completely removed for DHP_0-90 at all
annuli compared with Miller_0-90 (Figure 4), and the same zenith angle range of 0–90◦ was covered by
the two inversion models. Similarly, the PAI and WAI estimation errors of the processing solutions of
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the null gap fraction measurements can also be avoided for the two inversion models of LAI-2200 and
DHP_0-81 as the same zenith angle width of annulus of 10◦ was adopted by the two inversion models
to obtain the gap fraction measurements similar to DHP_0-90.

Compared with six other inversion models, the 57.3 inversion model shows three advantages
in estimating the PAI and WAI of the leaf-on and leaf-off forest canopy. Firstly, the 57.3 inversion
model is simple to apply. Furthermore, the Ge(θ) and Gw(θ) of leaf-on and leaf-off forest canopy
can be assumed to be equal to approximately 0.5 at the zenith angle of 57.3◦. Thus, no Ge(θ) and
Gw(θ) measurements need to be collected in the field if the 57.3 inversion model would be used to
estimate the PAI and WAI of forest canopy. Secondly, determining the exposure settings for imaging
DHP photographs that can avoid overexposure near the zenith and underexposure near the horizon
is difficult in the field. Accurate exposure settings to collect DHP images can be obtained due to
the reason that only the gap fraction measurements with zenith angles near 57.3◦ are needed for the
57.3 inversion model. Thirdly, determining a reasonable threshold to binarize all the pixels of DHP
images with zenith angles ranging from 0◦ to 90◦ is difficult because light conditions change across
different image areas of the DHP images. Therefore, an accurate threshold that is used to binarize
the DHP images can be obtained if only the pixels with zenith angles near 57.3◦ were considered for
the PAI and WAI estimation. The 57.3 inversion model does not always outperform other inversion
models to estimate the PAI and WAI of all leaf-on and leaf-off forest canopies although it can provide
PAI and WAI estimates with relatively good accuracies compared with other inversion models if
appropriate Ωe and Ωw estimation algorithms would be adopted, and the Ωe, γe, and Ωw would be
considered in the PAI and WAI estimation (Figures 8, 9 and 11 and Appendix C.1). With the merits of
the 57.3 inversion model described, the 57.3 inversion model can be treated as an alternative choice to
estimate the PAI and WAI of the leaf-on and leaf-off forest canopy if the best combination of inversion
model, γe, Ωe and Ωw estimation algorithm, and segment size remains unknown.

In conclusion, based on Figures 8, 9 and 11, Tables A1 and A2, we suggest that 57.3, LAI-2200,
and Miller_0-90 followed by DHP_0-81, DHP_0-90, and Miller_0-80 to be used in estimating the PAI
and WAI of the leaf-on and leaf-off forest canopy. The PAI and WAI estimated from Miller_0-90 were
closer to the one-to-one line compared with those derived from DHP_0-90, although the impact of the
null gap fraction measurements of each zenith angle on the PAI and WAI estimation was difficult to
evaluate quantitatively in the field, caution is needed if Miller_90 would be used to estimate the PAI
and WAI of the leaf-on and leaf-off forest canopy, especially for canopies with large PAI and WAI.

The performance of the seven inversion models to estimate the PAI and WAI of the leaf-on and
leaf-off forest canopy with consideration of γe, Ωe, and Ωw was significantly affected by the Ωe and
Ωw estimation algorithm and segment size used, and also the true PAI and WAI, and the reference Ωe

and Ωw of leaf-on and leaf-off forest scenes (Appendix C). Therefore, the performance of the inversion
model to estimate the PAI and WAI of the leaf-on and leaf-off forest canopy is the function of Ωe and
Ωw estimation algorithm, segment size, reference Ωe and Ωw, PAI, WAI, and plant functional types.
No universal best inversion model is available to estimate the PAI and WAI of all the leaf-on and
leaf-off forest canopies even if γe, Ωe, and Ωw were considered in the PAI and WAI estimation.

5.5. Limitations and Perspectives

If Miller_0-90 (Equation (3)) would be adopted to estimate the PAIe and WAIe of the leaf-on and
leaf-off forest scenes based on the mean pe(θ) and pw(θ) at zenith angles in the 0–90◦ range with
interval of 1◦ (Figure 3), then the proportions of the PAIe and WAIe measurements derived at the zenith
angle range of 0–9◦ to the PAIe and WAIe, which were estimated using Miller_0-90 (Equation (3)) at
the full zenith angle range of 0–90◦, are both below 1% at the leaf-on and leaf-off scenes. This result
indicates that the estimation error is small when we assume that the Ωe(θ) and Ωw(θ) estimates with
zenith angles in the 0–9◦ range with interval of 1◦ are equal to the Ωe(θ) and Ωw(θ) at the zenith
angle of 10◦ in the PAI and WAI estimation of the five inversion models of Miller_0-80, Miller_0-90,
LAI-2200, DHP_0-81, and DHP_0-90 in this study. An option to cope with the defect of the assumption
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made in this study is to estimate the Ωe(θ) and Ωw(θ) of the leaf-on and leaf-off forest canopy at the
zenith angle range of 0–9◦ using TRAC, multispectral canopy imager (MCI) [8], and digital cover
photography (DCP) [24] at the zenith angles ranging from 0–9◦.

A dataset of field measurements of the PAI and WAI of leaf-on and leaf-off forest canopy would
be useful to understand the performance of the seven inversion models in estimating the PAI and WAI
when the field plots cover a wider range of PAI, WAI, Ωe, Ωw, γe, tree species composition, and plant
functional types. The ground slope would also influence the seven inversion models to estimate the
PAI and WAI of the leaf-on and leaf-off forest canopy and can be evaluated in the future.

6. Conclusions

The conclusions of this study are as follows: (1) Both the factors of inversion model,
canopy element and woody component projection functions, canopy element and woody component
estimation algorithms, and segment size are contributed to the differences between the PAI and WAI
estimated from the seven inversion models. (2) No universally valid combination of inversion model,
γe, Ωe and Ωw, estimation algorithm, and segment size is available to obtain accurate estimates of
PAI and WAI for all leaf-on and leaf-off forest canopies. The best combination of inversion model, γe,
Ωe and Ωw estimation algorithm, and segment size to estimate the PAI and WAI of leaf-on and leaf-off
forest scenes is the function of inversion model, γe, Ωe and Ωw estimation algorithm, segment size,
tree species composition, and plant functional types. (3) The impact of Ge and Gw measurements on the
PAI and WAI estimation of the leaf-on and leaf-off forest canopy can be reduced to a low level (<4%)
and neglected in the PAI and WAI estimation by adopting appropriate inversion models. Accurate PAI
and WAI of forest canopy can be estimated from the DHP method without the field measurements of
Ge(θ) and Gw(θ). (4) We suggest 57.3, LAI-2200, and Miller_0-90 followed by DHP_0-81, DHP_0-90,
and Miller_0-80 to be used in estimating the PAI and WAI of the leaf-on and leaf-off forest canopy.
Caution is needed if Miller_90 would be used to estimate the PAI and WAI of the leaf-on and leaf-off
forest canopy, especially for canopies with large PAI and WAI. (5) The performance of the combinations
of inversion model, γe, Ωe and Ωw estimation algorithm, and segment size to estimate the PAI and
WAI of leaf-on and leaf-off forest canopy strongly relied on the accuracies of the Ωe and Ωw estimates.
LX and CLX performed better than the two other algorithms in estimating the Ωe and Ωw of the
leaf-on and leaf-off forest canopy, respectively. However, the best combinations of the Ωe and Ωw

estimation algorithm, and segment size to estimate the Ωe and Ωw of the leaf-on and leaf-off forest
canopy depend on the plant functional types and tree species composition. Caution is needed in
applying the conclusions of this study to estimate the PAI and WAI of forest canopy with different tree
species compositions or plant function types.
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Appendix A. List of Symbols

• 57.3 the 57.3 inversion model (Equation (4))
• A(θ, θe) the projection coefficient at the canopy element inclination angle of θe and the view zenith

angle of θ

• CC the gap size distribution algorithm
• CLX the combination of gap size and logarithmic averaging algorithm
• CMN the modified gap size distribution algorithm
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• DBH diameter at breast height
• DCP digital cover photography
• DHP digital hemispherical photography
• DHP_0-81 the DHP_0-81 inversion model (Equation (9))
• DHP_0-90 the DHP_0-90 inversion model (Equation (10))
• f (θe) canopy element angle distribution function
• f (θw) woody component angle distribution function, θw is the woody component inclination angle
• Ge canopy element projection function
• Gw woody component projection function
• Ge(θ) the mean projection of unit surface area of the canopy element on the plane perpendicular

to the view zenith angle of θ

• Gw(θ) the mean projection of unit surface area of the woody component on the plane
perpendicular to the view zenith angle of θ

• Ge_i the Ge estimate of the ith annulus
• Gw_i the Gw estimate of the ith annulus
• ILMSVP In situ LAI Measurements Simulation and Validation Platform software
• JBSS Järvselja birch stand (summer)
• JBSW Järvselja birch stand (winter)
• JPSS Järvselja pine stand (summer)
• LAI leaf area index
• LAI-2200 the LAI-2200 inversion model (Equation (7))
• LUT look-up table
• LX the logarithmic averaging algorithm
• LXW the modified logarithmic averaging algorithm
• MAE mean absolute error
• MCI multispectral canopy imager
• Miller_0-90 the Miller theorem (Equation (3))
• Miller_10-65 the Miller_10-65 inversion model (Equation (5))
• Miller_0-80 the Miller_0-80 inversion model (Equation (6))
• MTVSP the measurement tools of vegetation structural parameters software
• OPSW Ofenpass pine stand (winter)
• PAI plant area index
• PAIe effective plant area index
• PAIe_Miller_0−90 effective plant area index estimated from Equation (3) with the assumption that

γe or Ωe(θ) is equal to 1
• PAIe_57.3 effective plant area index estimated from Equation (4) with the assumption that γe or

Ωe(θ′) is equal to 1
• PAIe_Miller_10−65 effective plant area index estimated from Equation (5) with the assumption that

γe or Ωe(θ) is equal to 1
• PAIe_Miller_0−80 effective plant area index estimated from Equation (6) with the assumption that

γe or Ωe(θ) is equal to 1
• PAIe_LAI−2200 effective plant area index estimated from Equation (7) with the assumption that γe

or Ωe_i is equal to 1
• PAIe_DHP_0−81 effective plant area index estimated from Equation (9) with the assumption that γe

or Ωe_i is equal to 1
• PAIe_DHP_0−90 effective plant area index estimated from Equation (10) with the assumption that

γe or Ωe_i is equal to 1
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• PCS the Pielou’s coefficient of spatial segregation algorithm
• pe(θ) canopy element gap fraction at θ

• pe_i(θi) the canopy element gap fraction of the ith annulus at θ

• R2 pearson correlation coefficient
• RMSE the root mean square error
• SPS Scots pine scenes
• TRAC tracing radiation and architecture of canopies
• WAI woody area index
• WAIe effective woody area index
• WAIe_Miller_0−90 effective woody area index estimated from Equation (3) with the assumption

that Ωw(θ) is equal to 1
• WAIe_57.3 effective woody area index estimated from Equation (4) with the assumption that

Ωw(θ′) is equal to 1
• WAIe_Miller_10−65 effective woody area index estimated from Equation (5) with the assumption

that Ωw(θ) is equal to 1
• WAIe_Miller_0−80 effective woody area index estimated from Equation (6) with the assumption

that Ωw(θ) is equal to 1
• WAIe_LAI−2200 effective woody area index estimated from Equation (7) with the assumption that

Ωw_i is equal to 1
• WAIe_DHP_0−81 effective woody area index estimated from Equation (9) with the assumption that

Ωw_i is equal to 1
• WAIe_DHP_0−90 effective woody area index estimated from Equation (10) with the assumption

that Ωw_i is equal to 1
• Wi the weight factor of the ith annulus
• θ zenith angle
• θi the center zenith angle of the ith annulus
• θ′ the single zenith angle (or centered at an angle for a range of angles) of the PAI estimation
• Ωe canopy element clumping index
• Ωw woody component clumping index
• Ωe(θ) canopy element clumping index at θ

• Ωw(θ) woody component clumping index at θ

• Ωe_i the Ωe estimate of the ith annulus
• Ωw_i the Ωw estimate of the ith annulus
• γe needle-to-shoot area ratio

Appendix B. In Situ LAI Measurements Simulation and Validation Platform (ILMSVP)

ILMSVP provides the ability of generating forest scenes based on the 3D tree models and the
input parameters of stand density, tree stem distribution mode, and scene size. The forest scenes
were generated in accordance with the following rules: (i) The voxel-based tree models with the voxel
element size of 0.1 m × 0.1 m × 0.1 m were produced for all explicit 3D tree models one by one.
The total voxel number of each tree model was calculated based on the height, width, and depth of
the minimum bounding box of the tree model. For each tree model, the attribute of 1 was assigned to
those voxels, within which any canopy elements are located, otherwise, 0 was assigned to other voxels.
(ii) If the stand density of the scene is smaller than the designated parameter, then a tree model was
randomly chosen from all the candidate tree models and randomly placed in the scene. Newly placed
tree models in the scenes were tested to check if they overlapped with existing surrounding trees within
the 3D space before they were placed in the scenes. If the voxels with the attribute of 1 of the newly
placed tree models overlapped with any voxels with the attribute of 1 of other tree models, then the
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newly placed tree models were either rotated with a specified azimuth angle to avoid overlapping
or moved to a new location. (iii) All trees in the scenes (100 m × 100 m) were placed following a
customized tree stem distribution pattern, such as random, regular, and clumped. The spatial locations
of the tree models of those scenes with clumped stem distribution mode were calculated using the
deformation-kernel method proposed by Brendan and Przemyslaw [65]. (iv) All the scenes with size
of 900 m × 900 m were reproduced using a scene-cloning technique. Firstly, a small scene with size of
100 m × 100 m was created through the aforementioned two steps. Then, four scenes were cloned in
four orthogonal directions adjacent to the small scene. The other forest scenes (100 m × 100 m) within
the scenes with size of 900 m × 900 m were cloned in a similar manner using a different centric scene
each time. To improve the randomness of the scenes, all the cloned scenes were rotated with a random
azimuthal angle of 0◦, 90◦, 180◦, and 270◦ before planting.

Reverse ray-tracing method was previously used to generate the black-and-white binary DHP
images within the forest scenes [18,41,42]. This method was also adopted by ILMSVP to generate the
binary DHP images within the central area of each scene with the size of 25 m× 25 m. A perfect fisheye
lens (with 180◦ field of view) with polar projection was chosen to generate DHP images. The resolution
of the generated DHP images was 4000 pixels× 4000 pixels, and the camera height was 1.0 m. For every
pixel in the generated images, a single ray was traced from the camera position in the direction of the
pixel centroid to determine if there was an intersection event between the ray and canopy element [45].
The ray tracing would result in preclassified binary images of black (0, intersected; canopy element)
and white pixels (1, passed or not intersected; sky). For simplicity, the DHP images were assumed to be
generated under ideal uniform sky conditions. Majasalmi et al. [66] and Nackaerts et al. [67] reported
that a sampling scheme with 12 to 15 randomly distributed sampling points would be enough to
obtain the accurate gap fraction measurements of the forest canopy. A cross-pattern sampling scheme
comprising 13 sampling points (5 m separation excluding central sampling point), of which 4 are
located near the center with a distance of 5 m between one another, was adopted by ILMSVP as the
sampling scheme to arrange the sampling points at the central area of each scene. This cross-sampling
scheme was also used by Leblanc and Fournier [18] to obtain the Ωe and Ωw of the leaf-on and leaf-off
forest canopy based on DHP method.

Appendix C. Factors that Affect the Performance of the Seven Inversion Models to Estimate the
PAI and WAI of Leaf-on and Leaf-off Forest Scenes

Appendix C.1. Inversion Model, Ωe and Ωw, Estimation Algorithm, and Segment Size

Appendix C.1.1. Leaf-on Forest Scenes

Large differences were observed between the PAI derived from the combinations of inversion model,
γe, Ωe estimation algorithm, and segment size with different inversion models but with the same Ωe

estimation algorithm and segment size, and from the combinations with the same inversion model
but with different Ωe estimation algorithms and segment sizes, and from the combinations with the
same inversion model and Ωe estimation algorithm but with different segment sizes (Figures 8 and 9,
Table A1). For example, Figure 9d shows large differences between the PAI estimated from the three
combinations of LAI-2200 and CC, LAI-2200 and LX_5 and LAI-2200 and PCS at the leaf-on deciduous
scenes (Table A1). Another evidence of the significant differences between the PAI estimates of
the three combinations are the large differences between the RMSE, MAE and regression slope of
the three combinations, which are 1.79, 1.33, 0.54; 0.89, 0.57, 0.75; and 2.60, 2.50, 0.64, respectively
(Table A1). Similarly, the RMSE, MAE and regression slope of the two combinations of LAI-2200
and LX_15 and LAI-2200 and LX_30 are 1.28, 0.96, 0.68, and 1.52, 1.19, 0.63, respectively (Table A1).
The large differences between the RMSE, MAE, and regression slope of the two groups of the three
combinations of inversion model, γe, Ωe estimation algorithm, and segment size indicate that the
performance of the seven inversion models to estimate the PAI of leaf-on coniferous and deciduous
scenes with consideration of γe and Ωe are strongly dependent on the Ωe estimation algorithm and
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segment size used. The RMSE, MAE, and regression slope of the PAI, which were estimated from
the three combinations of Miller_10-65 and LX_5, Miller_0-90, and LX_5, and DHP_0-90 and LX_5
at the sub-series coniferous scenes of JPSS and OPSW, are 2.22, 1.87, 0.46; 0.83, 0.54, 0.82, and 1.29,
0.85, 0.65, respectively (Table A1). The large difference between the RMSE, MAE, and regression slope
of the three combinations illustrate that the inversion model also plays a key role to influence the
performance of the combination of inversion model, γe, Ωe estimation algorithm, and segment size to
estimate the PAI of leaf-on deciduous and coniferous scenes (Figures 8 and 9, Table A1).

The combinations of inversion model, γe, Ωe estimation algorithm, and segment size with CLX
and LX, and CC and LX performed better than the combinations with the same inversion model
but with different Ωe estimation algorithms to estimate the PAI of the two sub-series coniferous
scenes of JPSS and OPSW and another sub-series coniferous scenes of SPS, respectively, except those
combinations with Miller_10-65 and Miller_0-80 (Figure 8 and Table A1). For leaf-on deciduous scenes,
the combinations of inversion model, γe, Ωe estimation algorithm, and segment size with LX and CLX
performed better than the combinations with the same inversion model but with two other estimation
algorithms to estimate the PAI, except the combinations with Miller_10-65 (Figure 9 and Table A1).

Table A1. Correlation statistics between true and estimated PAI calculated from seven inversion models
with consideration of Ge, γe, and Ωe at three groups of sub-series scenes. RMSE and MAE are expressed
in PAI units (m2/m2).

Inversion Models PAI Estimation Sub-Series Scenes R2 Intercept Slope RMSE MAE

Miller_10-65

Considering γe and Ωe (CC)
JPSS, OPSW 0.98 0.05 0.40 1.80 1.53

SPS 0.93 −0.62 0.70 2.05 2.19
JBSS 0.95 0.14 0.32 2.83 2.40

Considering γe and Ωe (CLX_15)
JPSS, OPSW 0.98 −0.01 0.62 1.20 0.96

SPS 0.93 −0.24 0.84 1.10 0.90
JBSS 0.97 0.34 0.40 2.27 1.82

Considering γe and Ωe (CLX_30)
JPSS, OPSW 0.98 0.07 0.56 1.31 1.05

SPS 0.93 −0.33 0.83 1.24 1.0
JBSS 0.96 0.34 0.38 2.39 1.92

Considering γe and Ωe (CLX_45)
JPSS, OPSW 0.97 0.11 0.53 1.37 1.10

SPS 0.93 −0.41 0.82 1.35 1.18
JBSS 0.96 0.34 0.36 2.46 2.0

Considering γe and Ωe (LX_5)
JPSS, OPSW 0.98 −0.21 0.67 1.23 1.01

SPS 0.93 −0.34 0.87 1.08 0.89
JBSS 0.98 0.14 0.46 2.22 1.87

Considering γe and Ωe (LX_15)
JPSS, OPSW 0.98 −0.21 0.57 1.52 1.34

SPS 0.93 −0.77 0.89 1.39 1.09
JBSS 0.97 0.07 0.41 2.50 2.08

Considering γe and Ωe (LX_30)
JPSS, OPSW 0.98 −0.20 0.52 1.68 1.49

SPS 0.93 −0.92 0.87 1.61 1.33
JBSS 0.96 0.05 0.37 2.66 2.21

Considering γe and Ωe (PCS)
JPSS, OPSW 0.86 1.57 0.97 1.69 1.37

SPS 0.54 4.73 0.17 1.80 1.48
JBSS 0.81 2.39 0.41 1.30 0.89

Miller_0-80

Considering γe and Ωe (CC)
JPSS, OPSW 0.98 −0.03 0.66 1.09 0.97

SPS 0.92 −0.83 1.10 0.89 0.59
JBSS 0.94 0.19 0.46 2.18 1.73

Considering γe and Ωe (CLX_15)
JPSS, OPSW 0.98 0.05 0.90 0.39 0.21

SPS 0.91 0.12 1.17 1.27 0.88
JBSS 0.96 0.46 0.56 1.55 1.04

Considering γe and Ωe (CLX_30)
JPSS, OPSW 0.98 0.11 0.83 0.49 0.31

SPS 0.91 −0.12 1.18 1.13 0.78
JBSS 0.96 0.44 0.53 1.68 1.16

Considering γe and Ωe (CLX_45)
JPSS, OPSW 0.98 0.14 0.79 0.57 0.40

SPS 0.92 −0.30 1.18 1.02 0.67
JBSS 0.96 0.43 0.51 1.76 1.23

Considering γe and Ωe (LX_5)
JPSS, OPSW 0.98 −0.25 0.98 0.40 0.28

SPS 0.91 0.09 1.19 1.32 0.84
JBSS 0.97 0.22 0.62 1.45 1.02
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Table A1. Cont.

Inversion Models PAI Estimation Sub-Series Scenes R2 Intercept Slope RMSE MAE

Considering γe and Ωe (LX_15)
JPSS, OPSW 0.98 −0.29 0.86 0.73 0.62

SPS 0.91 −0.62 1.25 1.10 0.82
JBSS 0.96 0.11 0.57 1.77 1.34

Considering γe and Ωe (LX_30)
JPSS, OPSW 0.98 −0.31 0.80 0.92 0.82

SPS 0.92 −0.93 1.25 0.99 0.87
JBSS 0.95 0.08 0.53 1.96 1.51

Considering γe and Ωe (PCS)
JPSS, OPSW 0.86 2.51 1.22 3.28 3.23

SPS 0.55 6.70 0.27 3.75 3.50
JBSS 0.84 2.90 0.53 1.58 1.27

Miller_0-90

Considering γe and Ωe (CC)
JPSS, OPSW 0.98 −0.11 0.89 0.51 0.37

SPS 0.93 −0.79 1.38 1.40 0.68
JBSS 0.93 −0.02 0.69 1.46 1.24

Considering γe and Ωe (CLX_15)
JPSS, OPSW 0.98 −0.02 1.14 0.53 0.42

SPS 0.91 0.65 1.33 2.40 1.85
JBSS 0.95 0.34 0.75 0.93 0.61

Considering γe and Ωe (CLX_30)
JPSS, OPSW 0.98 0.03 1.07 0.41 0.31

SPS 0.91 0.31 1.37 2.25 1.62
JBSS 0.95 0.32 0.72 1.04 0.74

Considering γe and Ωe (CLX_45)
JPSS, OPSW 0.98 0.07 1.03 0.35 0.30

SPS 0.92 0.04 1.40 2.14 1.30
JBSS 0.94 0.31 0.70 1.11 0.81

Considering γe and Ωe (LX_5)
JPSS, OPSW 0.98 −0.33 1.22 0.53 0.37

SPS 0.91 0.58 1.36 2.49 1.93
JBSS 0.96 0.11 0.82 0.83 0.54

Considering γe and Ωe (LX_15)
JPSS, OPSW 0.98 −0.39 1.11 0.34 0.28

SPS 0.92 −0.29 1.46 2.18 1.29
JBSS 0.95 −0.0 0.76 1.13 0.92

Considering γe and Ωe (LX_30)
JPSS, OPSW 0.98 −0.41 1.04 0.41 0.26

SPS 0.92 −0.82 1.52 2.0 0.94
JBSS 0.94 −0.04 0.73 1.31 1.12

Considering γe and Ωe (PCS)
JPSS, OPSW 0.86 2.86 1.33 3.94 3.89

SPS 0.77 7.10 0.43 4.72 4.64
JBSS 0.88 2.85 0.71 1.96 1.79

LAI-2200

Considering γe and Ωe (CC)
JPSS, OPSW 0.98 0.02 0.76 0.77 0.63

SPS 0.93 −1.12 1.30 1.01 0.91
JBSS 0.95 0.26 0.54 1.79 1.33

Considering γe and Ωe (CLX_15)
JPSS, OPSW 0.98 0.07 1.07 0.43 0.34

SPS 0.92 −0.10 1.43 2.19 1.54
JBSS 0.97 0.59 0.67 1.01 0.53

Considering γe and Ωe (CLX_30)
JPSS, OPSW 0.98 0.16 0.98 0.32 0.27

SPS 0.92 −0.37 1.44 1.97 1.28
JBSS 0.96 0.57 0.63 1.17 0.68

Considering γe and Ωe (CLX_45)
JPSS, OPSW 0.98 0.21 0.93 0.31 0.21

SPS 0.92 −0.56 1.43 1.80 0.94
JBSS 0.96 0.56 0.61 1.26 0.75

Considering γe and Ωe (LX_5)
JPSS, OPSW 0.98 −0.30 1.16 0.40 0.31

SPS 0.92 −0.18 1.47 2.26 1.54
JBSS 0.98 0.29 0.75 0.89 0.57

Considering γe and Ωe (LX_15)
JPSS, OPSW 0.98 −0.34 1.01 0.39 0.28

SPS 0.92 −1.04 1.53 1.90 0.93
JBSS 0.97 0.16 0.68 1.28 0.96

Considering γe and Ωe (LX_30)
JPSS, OPSW 0.98 −0.34 0.93 0.58 0.51

SPS 0.92 −1.38 1.52 1.60 0.87
JBSS 0.96 0.13 0.63 1.52 1.19

Considering γe and Ωe (PCS)
JPSS, OPSW 0.86 3.01 1.54 4.72 4.73

SPS 0.54 8.21 0.31 5.35 5.27
JBSS 0.83 3.75 0.64 2.60 2.50

DHP_0-81

Considering γe and Ωe (CC)
JPSS, OPSW 0.98 −0.06 0.80 0.72 0.62

SPS 0.91 −1.04 1.35 1.27 1.03
JBSS 0.94 0.24 0.52 1.87 1.36

Considering γe and Ωe (CLX_15)
JPSS, OPSW 0.98 0.13 1.03 0.37 0.30

SPS 0.89 0.21 1.39 2.32 1.78
JBSS 0.96 0.56 0.61 1.24 0.71

Considering γe and Ωe (CLX_30)
JPSS, OPSW 0.98 0.16 0.96 0.30 0.22

SPS 0.90 −0.11 1.40 2.12 1.48
JBSS 0.96 0.52 0.59 1.38 0.84

Considering γe and Ωe (CLX_45)
JPSS, OPSW 0.98 0.19 0.92 0.30 0.16

SPS 0.90 −0.34 1.41 1.96 1.12
JBSS 0.95 0.51 0.57 1.46 0.90
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Table A1. Cont.

Inversion Models PAI Estimation Sub-Series Scenes R2 Intercept Slope RMSE MAE

Considering γe and Ωe (LX_5)
JPSS, OPSW 0.98 −0.21 1.12 0.36 0.28

SPS 0.89 0.24 1.40 2.39 1.82
JBSS 0.97 0.31 0.69 1.13 0.70

Considering γe and Ωe (LX_15)
JPSS, OPSW 0.98 −0.30 1.01 0.38 0.25

SPS 0.90 −0.61 1.48 2.06 1.18
JBSS 0.96 0.19 0.64 1.45 1.05

Considering γe and Ωe (LX_30)
JPSS, OPSW 0.98 −0.33 0.95 0.54 0.44

SPS 0.90 −1.01 1.49 1.81 1.04
JBSS 0.95 0.15 0.60 1.64 1.23

Considering γe and Ωe (PCS)
JPSS, OPSW 0.86 3.05 1.29 4.02 4.02

SPS 0.55 7.67 0.35 5.04 4.87
JBSS 0.86 3.09 0.57 1.81 1.55

DHP_0-90

Considering γe and Ωe (CC)
JPSS, OPSW 0.98 0.03 0.72 0.87 0.73

SPS 0.91 −1.06 1.31 1.17 1.22
JBSS 0.95 0.25 0.49 2.0 1.50

Considering γe and Ωe (CLX_15)
JPSS, OPSW 0.97 0.17 0.93 0.31 0.19

SPS 0.90 −0.09 1.38 2.04 1.47
JBSS 0.96 0.53 0.58 1.39 0.85

Considering γe and Ωe (CLX_30)
JPSS, OPSW 0.97 0.21 0.88 0.35 0.19

SPS 0.90 −0.33 1.39 1.87 1.24
JBSS 0.96 0.50 0.56 1.52 0.96

Considering γe and Ωe (CLX_45)
JPSS, OPSW 0.97 0.24 0.84 0.41 0.21

SPS 0.90 −0.51 1.39 1.74 0.93
JBSS 0.96 0.49 0.54 1.59 1.01

Considering γe and Ωe (LX_5)
JPSS, OPSW 0.98 −0.13 1.02 0.29 0.19

SPS 0.90 −0.10 1.40 2.10 1.50
JBSS 0.97 0.30 0.65 1.29 0.85

Considering γe and Ωe (LX_15)
JPSS, OPSW 0.98 −0.20 0.91 0.52 0.41

SPS 0.90 −0.81 1.46 1.83 1.01
JBSS 0.96 0.19 0.60 1.60 1.16

Considering γe and Ωe (LX_30)
JPSS, OPSW 0.98 −0.22 0.86 0.69 0.58

SPS 0.90 −1.12 1.46 1.62 0.96
JBSS 0.95 0.16 0.56 1.78 1.33

Considering γe and Ωe (PCS)
JPSS, OPSW 0.87 2.69 1.23 3.49 3.42

SPS 0.69 6.61 0.47 4.43 4.19
JBSS 0.86 2.92 0.55 1.64 1.31

57.3

Considering γe and Ωe (CC)
JPSS, OPSW 0.97 −0.15 0.84 0.70 0.47

SPS 0.93 −1.78 1.51 1.36 0.72
JBSS 0.95 0.11 0.60 1.67 1.34

Considering γe and Ωe (CLX_15)
JPSS, OPSW 0.97 0.22 1.09 0.64 0.47

SPS 0.89 0.16 1.43 2.49 1.96
JBSS 0.97 0.65 0.66 1.00 0.50

Considering γe and Ωe (CLX_30)
JPSS, OPSW 0.97 0.30 1.0 0.45 0.36

SPS 0.90 −0.29 1.47 2.27 1.67
JBSS 0.96 0.56 0.63 1.17 0.67

Considering γe and Ωe (CLX_45)
JPSS, OPSW 0.97 0.33 0.94 0.39 0.30

SPS 0.91 −0.59 1.51 2.15 1.32
JBSS 0.96 0.52 0.62 1.25 0.75

Considering γe and Ωe (LX_5)
JPSS, OPSW 0.98 −0.31 1.23 0.59 0.39

SPS 0.90 −0.04 1.48 2.53 1.85
JBSS 0.97 0.29 0.76 0.87 0.48

Considering γe and Ωe (LX_15)
JPSS, OPSW 0.98 −0.34 1.06 0.38 0.24

SPS 0.91 −1.14 1.60 2.18 1.18
JBSS 0.96 0.15 0.69 1.25 0.89

Considering γe and Ωe (LX_30)
JPSS, OPSW 0.97 −0.36 0.99 0.51 0.42

SPS 0.92 −1.72 1.66 1.97 1.11
JBSS 0.96 0.12 0.65 1.44 1.11

Considering γe and Ωe (PCS)
JPSS, OPSW 0.82 3.52 1.57 5.38 5.33

SPS 0.47 8.53 0.25 5.46 5.34
JBSS 0.83 3.53 0.55 2.14 1.96

All correlations are significant (p < 0.05, two-tailed t-test) except the combinations of inversion model, γe,
Ωe estimation algorithm, and segment size with PCS at the sub-series coniferous scenes of SPS. For each inversion
model, the best two combinations of inversion model, γe, Ωe estimation algorithm, and segment size to estimate the
PAI of three groups of sub-series scenes are indicated in boldface and red color in Table A1.
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Appendix C.1.2. Leaf-off Forest Scenes

Large differences were observed between the WAI derived from the combinations of inversion
model, Ωw estimation algorithm, and segment size with different inversion models but with the same
Ωw estimation algorithm, and segment size, and from the combinations with the same inversion model
but with different Ωw estimation algorithms and segment sizes (Table A2 and Figure 11). For example,
Figure 11d shows large differences between the WAI estimated from the three combinations of LAI-2200
and CC, LAI-2200 and LX_5, and LAI-2200 and PCS at the leaf-off deciduous scenes (Table A2).
Another evidence of the large differences between the WAI estimates of the three combinations are
the significant differences between the RMSE, MAE, and regression slope of the three combinations,
which are 0.32, 0.20, 0.72; 0.15, 0.07, 0.90, and 0.68, 0.66, and 1.22, respectively (Table A2). Similarly,
the RMSE, MAE, and regression slope of the three combinations of Miller_10-65 and CC, Miller_0-80
and CC and 57.3 and CC are 0.74, 0.59, 0.42; 0.49, 0.34, 0.60, and 0.30, 0.18, and 0.76, respectively
(Table A2). The obvious differences between the RMSE, MAE, and regression slope of the two groups
of the three combinations of inversion model, Ωw estimation algorithm and segment size indicate
that the performance of the combination of inversion model, Ωw estimation algorithm and segment
size to estimate the WAI of leaf-off deciduous scenes strongly rely on the inversion model and Ωw

estimation algorithm used. No significant differences were observed between the WAI estimated
from the combinations of inversion model, Ωw estimation algorithm and segment size with the same
inversion model and Ωw estimation algorithm (LX and CLX) but with different segment sizes (Figure 11
and Table A2). For example, the mean variations in proportion between the WAI estimated from
57.3 and CLX_15 and those derived from 57.3 and CLX_30, and 57.3 and CLX_45 are 8% and 12%,
respectively. Similarly, the mean variations in proportion between the WAI estimated from 57.3 and
LX_5 and those derived from the two combinations of 57.3 and LX_15 and 57.3 and LX_30 are 9% and
12%, respectively. These results illustrate that the option of segment size is not the key factor that
affects the performance of the combination of inversion model, Ωw estimation algorithm, and segment
size to estimate the WAI of leaf-off deciduous scenes.

The combinations of inversion model, Ωw estimation algorithm, and segment size with LX and
CLX performed better than the combinations with the same inversion model but with two other
Ωw estimation algorithms to estimate the WAI of leaf-off deciduous scenes, except the combinations
with Miller_10-65, Miller_0-80, and DHP_0-90 (Table A2). The combination of inversion model,
Ωw estimation algorithm, and segment size with PCS tended to systematically overestimate the WAI
at the leaf-off deciduous scenes except the combinations with Miller_10-65 (Figure 11).

Table A2. Correlation statistics between true and estimated WAI of leaf-off deciduous forest scenes
estimated from seven inversion models considering Gw and Ωw. The RMSE and MAE are expressed in
WAI units (m2/m2).

Inversion Models PAI Estimation R2 Intercept Slope RMSE MAE

Miller_10-65

Considering Ωw (CC) 0.99 0.05 0.42 0.74 0.59
Considering Ωw (CLX_15) 0.96 0.21 0.51 0.50 0.30
Considering Ωw (CLX_30) 0.96 0.25 0.45 0.55 0.35
Considering Ωw (CLX_45) 0.96 0.27 0.42 0.57 0.38

Considering Ωw (LX_5) 0.98 0.03 0.53 0.60 0.47
Considering Ωw (LX_15) 0.98 0.03 0.48 0.68 0.54
Considering Ωw (LX_30) 0.98 0.03 0.45 0.71 0.56
Considering Ωw (PCS) 0.98 0.21 0.76 0.23 0.10

Miller_0-80

Considering Ωw (CC) 0.98 0.07 0.60 0.49 0.34
Considering Ωw (CLX_15) 0.97 0.25 0.69 0.27 0.17
Considering Ωw (CLX_30) 0.97 0.30 0.63 0.31 0.21
Considering Ωw (CLX_45) 0.97 0.31 0.60 0.34 0.21

Considering Ωw (LX_5) 0.98 0.05 0.74 0.32 0.22
Considering Ωw (LX_15) 0.98 0.04 0.67 0.41 0.29
Considering Ωw (LX_30) 0.98 0.04 0.64 0.45 0.32
Considering Ωw (PCS) 0.98 0.31 0.98 0.33 0.31
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Table A2. Cont.

Inversion Models PAI Estimation R2 Intercept Slope RMSE MAE

Miller_0-90

Considering Ωw (CC) 0.96 −0.03 0.82 0.32 0.21
Considering Ωw (CLX_15) 0.96 0.18 0.89 0.22 0.15
Considering Ωw (CLX_30) 0.95 0.21 0.83 0.23 0.17
Considering Ωw (CLX_45) 0.95 0.22 0.81 0.24 0.17

Considering Ωw (LX_5) 0.97 −0.06 0.95 0.21 0.12
Considering Ωw (LX_15) 0.96 −0.04 0.88 0.26 0.18
Considering Ωw (LX_30) 0.96 −0.05 0.86 0.29 0.18
Considering Ωw (PCS) 0.97 0.24 1.16 0.47 0.42

LAI-2200

Considering Ωw (CC) 0.98 0.09 0.72 0.32 0.20
Considering Ωw (CLX_15) 0.97 0.33 0.84 0.24 0.18
Considering Ωw (CLX_30) 0.97 0.38 0.76 0.25 0.17
Considering Ωw (CLX_45) 0.97 0.40 0.73 0.26 0.16

Considering Ωw (LX_5) 0.98 0.07 0.90 0.15 0.07
Considering Ωw (LX_15) 0.98 0.06 0.81 0.23 0.14
Considering Ωw (LX_30) 0.98 0.05 0.77 0.28 0.19
Considering Ωw (PCS) 0.97 0.39 1.22 0.68 0.66

DHP_0-81

Considering Ωw (CC) 0.98 0.08 0.69 0.36 0.22
Considering Ωw (CLX_15) 0.97 0.29 0.78 0.21 0.15
Considering Ωw (CLX_30) 0.97 0.32 0.72 0.24 0.16
Considering Ωw (CLX_45) 0.97 0.34 0.69 0.25 0.18

Considering Ωw (LX_5) 0.98 0.07 0.84 0.20 0.11
Considering Ωw (LX_15) 0.98 0.06 0.76 0.28 0.19
Considering Ωw (LX_30) 0.98 0.06 0.73 0.32 0.21
Considering Ωw (PCS) 0.98 0.37 1.07 0.48 0.47

DHP_0-90

Considering Ωw (CC) 0.98 0.09 0.65 0.40 0.25
Considering Ωw (CLX_15) 0.97 0.28 0.74 0.23 0.15
Considering Ωw (CLX_30) 0.97 0.32 0.68 0.26 0.17
Considering Ωw (CLX_45) 0.97 0.33 0.65 0.28 0.18

Considering Ωw (LX_5) 0.98 0.08 0.79 0.24 0.14
Considering Ωw (LX_15) 0.98 0.07 0.72 0.33 0.21
Considering Ωw (LX_30) 0.98 0.07 0.69 0.37 0.24
Considering Ωw (PCS) 0.98 0.35 1.02 0.40 0.40

57.3

Considering Ωw (CC) 0.98 0.05 0.76 0.30 0.18
Considering Ωw (CLX_15) 0.97 0.46 0.73 0.28 0.22
Considering Ωw (CLX_30) 0.97 0.46 0.66 0.29 0.16
Considering Ωw (CLX_45) 0.96 0.45 0.65 0.29 0.16

Considering Ωw (LX_5) 0.98 0.08 0.89 0.16 0.06
Considering Ωw (LX_15) 0.98 0.06 0.81 0.23 0.12
Considering Ωw (LX_30) 0.98 0.06 0.78 0.27 0.14
Considering Ωw (PCS) 0.97 0.44 1.16 0.67 0.65

All correlations are significant (p < 0.05, two-tailed t-test). For each inversion model, the best performance of the
two combinations of inversion model, Ωw estimation algorithm and segment size to estimate the WAI of leaf-off
deciduous scenes are indicated in boldface and red color in Table A2.

Appendix C.2. The True PAI and WAI of Leaf-on and Leaf-off Forest Scenes

Scene PAI and WAI also affect the performance of the seven inversion models to estimate the
PAI and WAI of leaf-on and leaf-off scenes. For leaf-on deciduous scenes, the PAI underestimation
increased with the scene PAI obviously at the leaf-on deciduous forest scenes with PAI > 3.5 (Figure 9).
A sign of this trend is that the regression slope of the PAI estimated from all the combinations of
inversion model, γe, Ωe estimation algorithm, and segment size at the leaf-on deciduous scenes are
below one (Table A1). For leaf-on coniferous scenes, the seven inversion models, except Miller_10-65,
overestimated PAI at the SPS coniferous scenes with PAI > 6.0 if γe and Ωe were considered in the
PAI estimation (Figure 8). All the seven inversion models except Miller_10-65 and Miller_0-90 tended
to underestimate the WAI at the leaf-off deciduous scenes with WAI > 2.5, even though the Ωw was
considered in the WAI estimation (Figure 11).
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Appendix C.3. The Reference Ωe and Ωw of Leaf-on and Leaf-off Scenes

Figure A1 show the mean Ωe(θ) of the six leaf-on coniferous scenes with reference Ωe > 1 and
the mean Ωw(θ) of the five leaf-off deciduous scenes with reference Ωw > 1. The Ωe and Ωw estimates
were derived using CC, CLX, LX, and PCS. All Ωe estimation algorithms seem to overestimate the
Ωe(θ) at zenith angles near 57.3◦, especially for LX, CLX, and PCS (Figure A1a). Similarly, all Ωw

estimation algorithms overestimated the Ωw(θ) at zenith angles near 57.3◦ except CC (Figure A1b).
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