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Abstract: The road networks provide key information for a broad range of applications such as urban
planning, urban management, and navigation. The fast-developing technology of remote sensing
that acquires high-resolution observational data of the land surface offers opportunities for automatic
extraction of road networks. However, the road networks extracted from remote sensing images are
likely affected by shadows and trees, making the road map irregular and inaccurate. This research
aims to improve the extraction of road centerlines using both very-high-resolution (VHR) aerial
images and light detection and ranging (LiDAR) by accounting for road connectivity. The proposed
method first applies the fractal net evolution approach (FNEA) to segment remote sensing images into
image objects and then classifies image objects using the machine learning classifier, random forest.
A post-processing approach based on the minimum area bounding rectangle (MABR) is proposed
and a structure feature index is adopted to obtain the complete road networks. Finally, a multistep
approach, that is, morphology thinning, Harris corner detection, and least square fitting (MHL)
approach, is designed to accurately extract the road centerlines from the complex road networks.
The proposed method is applied to three datasets, including the New York dataset obtained from
the object identification dataset, the Vaihingen dataset obtained from the International Society for
Photogrammetry and Remote Sensing (ISPRS) 2D semantic labelling benchmark and Guangzhou
dataset. Compared with two state-of-the-art methods, the proposed method can obtain the highest
completeness, correctness, and quality for the three datasets. The experiment results show that the
proposed method is an efficient solution for extracting road centerlines in complex scenes from VHR
aerial images and light detection and ranging (LiDAR) data.

Keywords: road centerline; object recognition; road connectivity; very-high-resolution image;
LiDAR data

1. Introduction

The road network is the backbone of the city [1] and plays an essential role in many application
fields, such as city planning, navigation, and transportation [2–4]. Conventional methods to obtain the
road network require extensive surveying fieldworks and are often time-consuming and costly [5].
The fast-developing technology of remote sensing offers abundant and continuous observations of the
land surface, making it an attractive data source for producing road maps [6].

Extensive efforts have been made to extract information on the road network from optical remote
sensing images [7,8]. The spatial resolution of the remote sensing images needs to be sufficiently high to
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allow road recognition [9]. Roads in the very-high-resolution (VHR) images are locally homogeneous
and have elongated shapes with specific width [3,10]. Given the above characteristics, some studies
designed the detectors of points and lines to extract road networks. For example, Hu et al. [11] designed
a spoke wheel operator for quantifying angular texture feature of pixels and detecting road pixels.
Liu et al. [10] first detected road edges from remote sensing data to extract the road networks. Shi et
al. [12] detected road segments by the template matching method and then generated a connected
road network. In addition, the image classification is another common solution to road extraction
from optical remote sensing images [13–16]. The basic idea of the solution is first to classify remote
sensing images into binary road and non-road groups and then post-process the road groups based on
the structural characteristics and contextual features to obtain the road network [15,17]. In general,
although various methods for road network extraction have been proposed, it is still a challenging
task to extract complete and accurate road networks from VHR images in complex scenes because of
the interferences of trees, shadows and non-road impervious surface (such as buildings and parking
lots) [4].

Studies have also tried to extract the road networks from the light detection and ranging (LiDAR)
data [18–22]. Airborne LiDAR is a new surveying technology that could provide three-dimensional
information of surface objects, which can be used to effectively distinguish roads from buildings [23].
In addition, the multiple echoes of airborne LiDAR can weaken the influence of tree obscuration
on road extraction [24]. Extracting road networks from the airborne LiDAR data typically consists
of two steps: road point clouds identification and road network construction [18]. The intensity
information of the LiDAR point clouds is often used for extracting the road point clouds. For example,
Clode et al. [25] extracted road points by setting an empirical threshold of intensities. To reduce
the subjectivity of threshold determination, Choi et al. [19] set the intensity threshold based on the
mean and variance of the intensities of the road points, which are selected by reference to VHR
images. Xu et al. [20] determined the intensity threshold based on the histogram. For road network
construction, Hu et al. [21] first extracted road center points by clustering the road points using the
mean shift algorithm and then generated road centerlines using a weighted Hough transform. Hui et
al. [22] derived road centerlines by first rasterizing the road point clouds and then extracting the road
centerlines using a hierarchical fusion and optimization algorithm. While the current studies have
demonstrated the potential of airborne LiDAR for the application of road extraction, it is still difficult
to use the LiDAR data alone without the spectral information for road extraction because the non-road
impervious surface is easily misidentified as roads [18,20,26].

To overcome the disadvantage of using single-source remote sensing data, recent studies try
to extract road networks by combining VHR images with the LiDAR data [27,28]. These methods
can be divided into two categories. One is to use the LiDAR data as the primary data and the VHR
images as the supplemental data. In this category of methods, the VHR images are usually used to
assist the identification of road point clouds. For example, Liu et al. [27] fused the LiDAR data with
Red-Green-Blue (RGB) images to obtain point clouds with multispectral information and derive road
networks from the fused data. Hu et al. [29] extracted road points from ground points by combining
the contextual information derived from the aerial images and then obtained road network from road
points using the iterative Hough transform algorithm. The other method is to use VHR images as
the primary data and the LiDAR data as the supplemental data. In this category of methods, the
LiDAR data is often first converted into digital surface model (DSM) and normalized DSM (nDSM)
and then used analogously as a spectral band. For example, Sameen et al. [28] first derived nDSM
from the LiDAR data, then extracted the road networks combining VHR images with nDSM by a fuzzy
object-based analysis. Grote et al. [30] obtained the road networks by integrating the intensity and
DSM derived from LiDAR data and the spectral features using a pixel-based classification method. In
general, although some methods have been proposed, the problem of removing obscuration effects of
trees and shadows on road extraction has not been solved well [21].
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Road centerlines is another effective representation of the roads and can clearly show the road
topology and accurately locate the position of the road [31]. The morphological thinning is a common
method for road centerline extraction [32–34], but the accuracy of road centerlines extracted by the
method is relatively low [32,33]. To improve road centerlines extraction, Zhang et al. [35] proposed
a road centerline extraction method based on the random transform. Poullis et al. [36] used the
Hough transform algorithm to extract road centerlines. Although these methods perform well for
straight road segments, they are not suitable for the complex road networks. To extract the road
centerlines from the complex road networks, Shi et al. [33] first decomposed the road network into
unconnected road segments and then extracted the road centerline for each road segment using a
locally weighted regression method. Finally, all the isolated road centerlines were further linked
to form the road centerline network. Although the method solves the problem of road centerline
extraction of multi-branch road networks, the road centerline extraction effect is still poor for the curve
road segments.

In order to improve the accuracy of road centerline extraction under complex scenes, this paper
proposes a novel road centerline extraction method combining VHR images with LiDAR data. The
main contributions of the research are to (1) develop an interference processing approach based
on MABR to eliminate the negative effects of shadows, trees, and cars on the road network; and
(2) propose a road centerline extraction approach to obtain regular and complete road centerline
networks from complex road networks. The remainder of this paper is organized as follows. Section 2
introduces the study materials and data preprocessing. Section 3 describes the principle and process of
the proposed method in detail. The road centerline extraction results of three datasets are given in
Section 4. Section 5 discusses the effectiveness and uncertainty of the proposed method. Finally, the
conclusion is presented in Section 6.

2. Study Materials

In this study, three datasets are chosen to assess the effectiveness and adaptability of the
proposed method.

The first dataset shown in the first row of Figure 1 is located in New York; therefore, it is called
the New York dataset in this paper. It comes from the object identification dataset [37], which was
collected in 2014 and included both VHR images and airborne LiDAR data. The VHR images have a
spatial resolution of 15 cm and include four channels of the red, green, blue, and near-infrared bands.
The spatial size of the VHR image used in this paper is 5200 × 5000 pixels. The airborne LiDAR data is
provided as point clouds and the density is approximately 5 points/m2. In this dataset, roads have
similar spectral signatures with other impervious surface (such as the parking lots and buildings) and
the road is often covered and sheltered by shadows, trees, and cars.

The second dataset is the Vaihingen dataset [38], which is obtained from the ISPRS 2D semantic
labelling benchmark and includes both VHR images and airborne LiDAR data. It is shown in the
second row of Figure 1. The VHR images consist of the red, green, and near-infrared bands with a
spatial resolution of 9 cm. The image size used is 4300 × 4200 pixels. The airborne LiDAR data was
captured with the Leica ALS50 system, and its average point density is 4 points/m2. Roads in the
Vaihingen dataset vary in widths and shapes, and are severely influenced by shadows, trees, and cars.

The third dataset is the Guangzhou dataset and is shown in the third row of Figure 1. It covers
28.8 km2 for Conghua district, Guangzhou city, and is used to access the effectiveness of the proposed
method for large-scale road extraction. The Guangzhou dataset consists of VHR images and airborne
LiDAR data, and was collected using the Y-5 fixed wing aircraft in 2015. The VHR image has a spatial
resolution of 0.5 m, including three channels of red, green, and blue, and was collected using tianbao
AC IC180 digital camera. The airborne LiDAR data was captured with the Trimble Harrier68i system,
and its average point density is 4.95 points/m2.

The airborne LiDAR point clouds are preprocessed into normalized digital surface model (nDSM)
for subsequent analysis. The LiDAR point clouds are first used to derive the digital surface model
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(DSM) and then classified into ground and non-ground points by the multidirectional ground filtering
algorithm [39]. The digital terrain model (DTM) was simply generated based on the ground points.
nDSM that could describe the height of the objects aboveground is simply derived by the difference
between DSM and DTM.

Road maps of the three experiment areas are downloaded from the OpenStreetMap (OSM)
website [40] and rectified as the reference data.Remote Sens. 2018, 10, x FOR PEER REVIEW  4 of 20 
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Figure 1. The experimental materials for three datasets. The first, second, and third rows represent the
New York dataset, the Vaihingen dataset, and the Guangzhou dataset, respectively.

3. Methodology

Figure 2 shows the workflow of the proposed method, which mainly involves the following
steps: (1) segment the fused data of the VHR image and nDSM into image objects using the fractal net
evolution approach (FNEA) [41]; (2) classify the image objects using the random forest classifier [42]
based on the spectral, textural, and structural information; (3) generate road network by first applying
a filling approach based on the minimum area bounding rectangle (MABR) [2] and then removing the



Remote Sens. 2018, 10, 1284 5 of 20

false road segments by shape filtering based on the skeleton-based object linearity index (SOLI) [3];
(4) extract the road centerline network using a multistep approach, which mainly includes three
processing steps, namely morphology thinning [34], Harris corner detection [43], and least square
fitting [31], so it is called the MHL approach for short.
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Figure 2. The workflow of the proposed method for extracting the road centerline network.
VHR—very-high-resolution; LiDAR—light detection and ranging; OSM—OpenStreetMap.

3.1. Image Segmentation

Image segmentation, a procedure that partitions an image into disjoint homogeneous segments,
is one crucial step to perform object-based image analysis (OBIA) [44,45]. This study adopts
FNEA [15,45,46], a bottom-up region-merging technique, to segment the fused data of the VHR
images and nDSM. FNEA first starts from individual pixels to group pixels sharing similarities in
spectral into objects and then merges every two adjacent objects iteratively until the fusion factor (f )
reaches a scale parameter (T). Many studies have shown that the scale parameter (T) has an important
influence on OBIA [44,47,48]. Thus, we will discuss the influence of T on road centerline extraction in
detail in Section 5. The fusion factor f is defined as follows:

f = Wspectral × ∆Hspectral + Wshape × ∆Hshape (1)

where Wspectral and Wshape are the weights of the spectral and shape heterogeneities, respectively. In
the three datasets of this paper, they are empirically set as 0.8 and 0.2, respectively; ∆Hspectral and
∆Hshape are the differences of spectral and shape heterogeneity, respectively, between before and after
object merging.

∆Hspectral = ∑B
b=1 Wb ×

[
Nmerge × σmerge −

(
Nobj1 × σobj1 + Nobj2 × σobj2

)]
(2)
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where B is the number of bands used in image segmentation; Wb is the weight of band b (1 ≤ b ≤ B);
Nmerge, Nobj1, and Nobj2 are the number of pixels in the merged object, object 1, and object 2, respectively;
and σmerge, σobj1, and σobj2 represent the corresponding standard deviations.

∆Hshape = Wcom × ∆hcom + Wsmooth × ∆hsmooth (3)

where ∆hcom and ∆hsmooth are the compactness and smoothness heterogeneities, respectively; and Wcom

and Wsmooth are the corresponding weights, which are set as 0.4 and 0.6, respectively.

3.2. Random Forest Classification

This study applies the machine learning method, random forest, to classify the objects derived
from the fused images into the classes of road, shadow, tree, car, building, and bare groups. The
random forest classifier designed by Breiman [42] consists of a number of tree classifiers that are
trained independently using a random feature subset sampled from the object feature sets and cast the
votes to determine the class of the objects. The prediction of the object class can be expressed as the
vote of all tree classifiers as follows:

H(x) = argmax
Y

∑K
i=1 I(hi(x) = Y) (4)

where H(x) is the class for the object x; hi(x) is the class for the object x based on the tree classifier i; K
is the number of tree classifiers; Y represents the output variable; and I denotes an indicative function.

The random forest classifier requires defining two parameters, including the number of tree
classifiers k and the number of features within the feature subset m [42,49]. The out-of-bag (OOB)
errors are commonly used to evaluate the accuracy of the random forest classifier. As the number
of tree classifiers increases, OOB errors gradually decrease to a certain level and the computation
burden of the entire classification process increases [42]. To obtain sufficient classification accuracy
with acceptable computation cost, k is set as the number of tree classifiers when the OOB error starts to
converge [50]. By trial and error, OOB error has converged when k is set to 200 in the three datasets in
this study. The number of features within the feature subset is usually set as one-third or square root
of the total feature numbers [51] and is set in this study as the square root of the total feature number.

The features for each image object used in the random forest classifier include the spectral,
elevation, texture, structural, and index features. The spectral feature used is derived as the average
spectral value of pixels within the corresponding object as follows:

Fb
spe(i) =

1
N ∑pεi SPb(p) (5)

where Fb
spe(i) is the spectral feature of object i in band b; and SPb(p) is the spectral value of pixel p in

the corresponding band.
The elevation feature is useful to classify objects with different heights [47]. The elevation features

used in this study include the elevation mean and the elevation variance as follows:

EM(i) =
1
N ∑pεi nDSM(p) (6)

EV(i) =
1
N ∑pεi(nDSM(p)− EM(i))2 (7)

where EM is the elevation mean; EV is the the elevation variance; and nDSM(p) is the nDSM value of
pixel p.

The texture features that describe the spatial distribution of pixels within an object are useful for
distinguishing among artificial objects [52]. The texture features are derived based on the gray-level
co-occurrence matrix (GLCM) [51,53], which describes the local probability statistics tabulation of the



Remote Sens. 2018, 10, 1284 7 of 20

occurrence of pixel gray level combinations. Both homogeneity (HOM) and entropy (ENT) are used to
quantify the spectral heterogeneity of an object as follows:

HOM(i) = ∑L−1
a,b=0

P(a, b)
1 + (a− b)2 (8)

ENT(i) = −∑L−1
a,b=0 P(a, b)× ln(P(a, b)) (9)

where L is the number of gray levels; and P(a, b) is the value at cell (a, b) in the GLCM derived from
object i.

Because roads in the VHR images have specific structural characteristics like elongated shapes
and large curvatures [3,10], the structural feature is useful for road extraction from the VHR images.
The metric of density is used to describe structural characteristics of objects:

DEN(i) =
√

A(i)
1 +

√
Var(Xi) + Var(Yi)

(10)

where DEN denotes the density; A(i) is the area of object i; Var(Xi) and Var(Yi) are the variance of
the X coordinated and Y coordinated pixels, respectively, within object i.

The widely used vegetation index, normalized difference vegetation index (NDVI), is used to
distinguish between vegetation and non-vegetation:

NDVI(i) =
NIR(i)− R(i)
NIR(i) + R(i)

(11)

where NIR(i) and R(i) are the the average spectral value of object i in the near-infrared band and the
red band, respectively.

3.3. Road Network Construction

3.3.1. MABR-Based FILLING

The road segments extracted by classification are often discontinuous. The main reasons causing
the discontinuities of road segments include the following: (1) non-ground objects, such as trees and
buildings, cast shadows on the road, which changes the spectral characteristics of road segments
covered, and leads to the road segments being misclassified as shadows; (2) some road segments are
shielded by trees on both sides of the road, which causes the road segments to be mistaken as trees.
Thus, there is a significant adjacency relationship between the road segments and interference objects
leading to the discontinuity of the road segment.

In order to link the discrete road segments and obtain a complete road network, road patches
incorrectly classified as shadows and trees must be modified to road. Using the external rectangle of
valid boundary pixels that refer to the boundary pixels of the interference object adjacent to the road
segments is an effective method to approximatively represent the road patch. In general, the external
rectangle includes minimum bounding rectangle (MBR) [54] and minimum area bounding rectangle
(MABR) [2]. Compared with the MBR, the MABR can represent the road patch more accurately. Thus,
this study uses the MABR of the valid boundary pixels to approximatively represent the road patch.
The construction of the MABR was proposed by Wang [2]. The MBR of the valid boundary pixels is
first created and used as a search rectangle and then the search rectangle is rotated around the centroid
of the valid boundary pixels at a regular angle interval angle of 2◦. The search rectangle with the
smallest area is the MABR and used to approximatively represent the road patch.

Based on the above principles and methods, this study proposes a MABR-based filling approach
to link the discrete road segments and obtain a complete road network. The detailed processing steps
are given in Algorithm 1.
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Algorithm 1. The detailed processing steps of MABR-based filling approach.

Input: Object-based classification
Output: Complete road network
1. For road, shadow and car classes, morphology opening is performed in turn to break small connections;
2. Labal object-based classification by connected component analysis.

Lshadow, Ltree and Lcar represent connected components of shadow, tree and car classes, respectively;
3. Identify the adjacency relation between connected components.

Ni is the number of road connected components adjacent to connected components i;
4. For each Lshadow, Ltree and Lcar

if (Ni ≥ 1) then
extract valid boundary pixels and create the minimum area bounding rectangle (MABR).
revise class of the pixels within the MABR as road.

else
continue

end if
5. Remove over-filling by taking building and bare classes as mask.

3.3.2. Shape Filtering

After the filling processing, many false road segments, which are caused by misclassification and
filling processing, still exist. Road segments are usually elongated structures with specific widths,
making them distinguishable from the false road segments [3,11,33]. The skeleton-based object linearity
index (SOLI) [3] is adopted to remove the false road segments:

SOLI =

{
L2

s
Ab

i f MWb ∈ [Wmin, Wmax]

0 otherise
(12)

MWb = Ab/Ls (13)

where Ab is the area of road segment b; and Ls is the length of the road segment’s skeleton extracted
using the morphology skeletonization. In order to remove the skeleton’s legs, morphology spurring
is adopted and the parameter of processing times is set as twice maximum distance map value of
object [3]; Wmin and Wmax are the minimum width value and maximum width value, respectively, of
all roads within the network, which are obtained by external road-specific knowledge; and MWb is the
mean width of road segment b.

3.4. Road Centerline Extraction

Morphology thinning is a common approach to extract the road centerlines from the road
segments [15,16,33]. It is both fast and easy to perform. However, the road centerlines extracted
by the approach are unsmooth and have many spurs [33], especially in the complex road network
with irregular boundaries. In order to obtain a smooth and accurate road centerline network from
a complex road network, the least square fitting is adopt to post-process the initial road centerline
network, which is extracted by morphology thinning in this study.

For each road centerline segment, the least square fitting can be expressed as follows:

min ∑N
i=1 yi −

(
p1xn

i + p2xn−1
i + · · ·+ pnxi + pn+1

)
(14)

ŷi = round
(

p1xn
i + p2xn−1

i + · · ·+ pnxi + pn+1

)
(15)

where N is the number of pixels of the road centerline segment R; xi and yi represent the row number
and the column number, respectively, of the road centerline pixel i; and ŷi is the column number of
pixel i after fitting.
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The initial road centerline network is usually complex and has many branches. Hence, least
square fitting cannot be directly used to post-process the initial road centerline network. In order to
solve the problem, the Harris corner detection approach [43,55] is used to decompose the initial road
centerline network into the road centerline segment. The approach recognizes corner points according
to the average gray change, which is calculated by moving a local windows in different directions and
can be expressed as follows:

E(x, y) = ∑s ∑t w(s, t)[x fs(s, t) + y ft(s, t)]2

= x2 ∑s ∑t w(s, t) f 2
s (s, t) + 2xy ∑s ∑t w(s, t) fs(s, t) ft(s, t)

+y2 ∑s ∑t w(s, t) f 2
t (s, t)

(16)

where E(x, y) represents the average gray change in the coordinate (x, y); w(s, t) is the local windows;
and fs(s, t) and ft(s, t) represent the partial derivatives of the image in the s direction and the t
direction, respectively. After the average change calculated, a threshold (TH) is set to extract corner
points. When the average gray change of a pixel is greater than the threshold, the pixel is identified as
a corner point. The threshold is set to 0.33 in the study.

The road centerline extraction approach proposed synthesizes the morphology thinning, the
Harris corner detection, and the least square fitting, so it is called the MHL approach for short.
Algorithm 2 shows its detailed processing steps.

Algorithm 2. Road centerline extraction by the MHL approach.

Input: Complex road network
Output: Accurate road centerline network
1. Extract the initial road centerline network by the morphology thinning;
2. Decompose the initial road centerline network into the road centerline segment using the Harris
corner detection.
3. Link road centerline segments with similar direction and spatial neighborhood;
4. Remove short road centralline segments whose length is less than the average road width;
5. Fitting each road centerline segment using the least square fitting.

3.5. Method Comparison

To understand the robustness of the proposed method based on comparative studies, two methods
from the work of Huang [15] and Miao [32] are implemented to extract the road centerline network of
the two experimental areas. The method proposed by Huang et al. (2009) takes a common strategy
for road centerline extraction, which first conducts a multiscale segmentation and then classifies the
image objects at each scale based on spectral-structural features and support vector machines. Finally,
the road information for different scales is integrated and the morphology thinning is adopted to
extract the road centerline network [15]. The method proposed by Miao et al. (2016) is a novel road
centerline extraction method, which first extracts road segments using two different method, including
expectation maximization clustering and linearness filter, and then obtains the road centerlines from
the road segments using the RANdom SAmple Consensus. Finally, the discontinuous road centerlines
are linked into a complete road centerline network by setting many information fusion rules [32].

3.6. Accuracy Assessment

The road data from OpenStreetMap (OSM) is applied as the reference data to assess the road
centerline network extraction. Three common metrics, completeness, correctness, and quality, are
adopt. To derive the evaluation metrics, a buffer with specified width is built for the extracted road
centerline network [16,56]. The portion of reference road centerline network inside the buffer zone
is called “matched reference” and the other portion is called “unmatched reference”. A same width
buffer is then built around the reference road centerline network. The portion of road centerline
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network extracted inside the buffer zone is called “matched extraction”. Finally, the length of matched
reference, unmatched reference, matched extraction, reference road centerline network, and extracted
road centerline network are calculated. In this study, the buffer width of the three datasets are set as
25 pixels, 35 pixels, and 5 pixels, respectively.

Completeness is the ratio between matched reference with reference road centerline network as follows:

Completeness =
matched re f erence

re f erence road centerline network
(17)

Correctness is the ratio between matched extraction with extracted road centerline network:

Correctness =
matched extraction

extractd road centerline network
(18)

Quality is derived as follows:

Quality =
matched extraction

extracted road centerline network + unmatched re f erence
(19)

4. Results

4.1. The New York Dataset

Figure 3 shows road network extraction for the New York dataset. It can be seen that (1) after
image segmentation, the road objects present unique strip characteristics. However, due to the
interference of shadows and trees, the road objects’ boundary is irregular (Figure 3a); (2) Because of the
misclassification and interferences, some road segments are misclassified as shadows, trees, and cars,
while some impervious surfaces are misclassified as roads (Figure 3b); (3) After interference filling,
although the road network’s boundary is still irregular, many discrete road segments are connected,
and the connectivity of the road network is significantly enhanced. However, there are still many false
road segments (Figure 3c); (4) The shape filter based on the SOLI can remove the false road segments,
and road networks can be well superimposed on the VHR image (Figure 3d). In general, there are a lot
of mistakes in the road network extracted only by classification, and the MABR-based interference
filling and the shape filtering can effectively eliminate the influence of interference factors on road
extraction and obtain a complete road network from the classified image.

Figure 4 shows the road centerline network extraction of different methods for New York dataset.
For this dataset, all the three methods could correctly extract most of the road segments. However,
the road centerline network obtained by Huang’s method (Figure 4b) is discontinuous with many
gaps in between road centerlines. The road centerline network obtained by Miao’s method (Figure 4c)
has many false road centerline segments. Compared with Huang’s method and Miao’s method, the
road centerline network obtained by the proposed method (Figure 4a) is both complete and regular.
The road centerlines marked with red rectangle are overlaid on the false-color composite image as
shown with details in Figure 4d–f. It is clear that the road centerline extraction of the proposed method
can be better superimposed on the VHR image (Figure 4d), whereas one of Huang’s methods has
many discontinuities where the road is shaded by trees (Figure 4e), and the one of Miao’s methods
has many false road centerline segments, as well as low position accuracy, especially in curved road
segments (Figure 4f). Overall, the visual comparison of different road centerline extraction illustrates
the advantages of the proposed method in road centerline extraction for a complex scene.
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Table 1 shows the quantitative assessment of road centerline extraction of different methods for
the New York dataset. It can be seen that Huang’s method achieves relatively higher correctness, but
the completeness and the quality are the lowest, indicating that the road centerline network extracted
by classification method has high position accuracy, but there are also many omissions. Miao’s method
can balance commissions and omissions, and the completeness and the correctness are close and both
of them are greater than 0.85. However, the accuracy is still low, so it is difficult to meet the accuracy
requirements of production application. Compared with Huang’s method and Miao’s method, the road
centerline network extracted by the proposed method has the highest completeness, correctness, and
quality value, which indicates that the proposed method can effectively balance between commissions
and omissions, and improve the accuracy of the road network extraction.

Table 1. Quantitative assessment of road centerline extraction of different methods for the New York
dataset.

Method Completeness Correctness Quality

Proposed method 0.9306 0.9599 0.8810
Huang’s method 0.7939 0.9313 0.7162
Miao’s method 0.8653 0.8785 0.7737

4.2. The Vaihingen Dataset

Figure 5 shows the road centerline network extraction for Vaihingen dataset. Initial road network
(Figure 5a) is extracted by object-based classification. It can be seen that the initial road network is
discontinuous and there are many false road segments. In order to obtain a complete and accurate
road network, the initial road network is post-processed by the MABR-based interference filling and
the shape filtering. Figure 5b shows the road network after post processing. Compared with Figure 5a,
isolate road segments are linked and many false road segments are removed in Figure 5b. Figure 5c,d
show the road centerline network extracted by the morphological thinning and the MHL approach,
respectively. By comparison, the road centerline network extracted by the MHL approach is smooth
and many short branches are removed. Figure 5e,f show the road centerline network extracted by
Huang’s method and Miao’s method, respectively. It can be found that the road centerline network
extracted by Huang’s method has a large number of discontinuous and short branches, and one
extracted by Miao’s method is regular, but many non-road impervious surface are incorrectly detected
as road. Overall, all three methods could correctly extract the roads with large width, however, the
road centerline extraction results of the three methods are poor for narrow road segments with a large
proportion of shadow obstructing.

Table 2 shows the quantitative assessment of road centerline extraction of different methods for the
Vaihingen dataset. The similar conclusion can be obtained from the Vaihingen dataset. Compared with
Huang’s method and Miao’s method, the proposed method can also achieve the highest completeness,
correctness, and quality value in the Vaihingen dataset.

Table 2. Quantitative assessment of road centerline extraction of different methods for the Vaihingen
dataset.

Method Completeness Correctness Quality

Proposed method 0.9047 0.9576 0.8490
Huang’s method 0.8139 0.8829 0.7007
Miao’s method 0.8817 0.8821 0.7870
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Figure 5. The road centerline network extraction for Vaihingen dataset. (a) The initial road network
extracted by object-based classification; (b) the road network obtained by shape filter; (c) the road
centerline network extracted by morphology thinning; (d–f) are shown the road centerline network of
the proposed method, Huang’s method [13] and Miao’s method [30], respectively.

4.3. The Guangzhou Dataset

Figure 6 shows the road centerline network extraction for the Guangzhou dataset. Figure 7
shows the local comparison of road centerlines extracted by different methods. It is not difficult to
find from Figure 6 that the proposed method can correctly extract most of the road centerlines for
a wide range with complex scene, but there are some omissions. Case 1 in Figure 7 shows that in
road segments where road widths change greatly, all three methods can extract the road centerlines.
Nevertheless, comparison indicates that the road centerlines extracted by the proposed method are
the most accurate, while one extracted by Huang’s method is less smooth, and some strip bares are
identified as roads in one extracted by Miao’s method. Case 2 in Figure 7 shows the road centerline
extraction of the area where there are many non-road impervious surface. In this scene, Huang’s
method and Miao’s method are easy to mistake non-road impervious surface as the roads, and the
narrow road segments are easy to be missed. Case 3 in Figure 7 shows the road centerline extraction of
different methods in the case of serious interference. We can find from this case that it is difficult for
all three methods to accurately extract the centerlines of the road segments in which most of area is
shielded by shadows and trees. Case 4 in Figure 7 shows the road centerline extraction of the curved
road segment and road intersections. According to the case, the road centerlines extracted by the
proposed method are relatively smooth, but there is usually a deviation in the section of road segments
with large curvature. However, Huang’s method can effectively overcome the deviation problem of
road centerlines of curved road segments. Compared with the road centerlines extracted by proposed
method, although the smoothness of one extracted by Miao’s method is low, the centerlines of road
intersections are relatively accurate. Table 3 shows the quantitative assessment of road centerline
extraction of different methods for the Guangzhou dataset. Compared with the New York dataset and
the Vaihingen dataset, although the accuracies of the road centerline network slightly decreases, the
completeness and correctness are both greater than 0.8, and even the correctness is as high as 0.9354.
Meanwhile, the completeness, correctness, and quality of the road centerline network extracted by
the proposed method are highest. Therefore, the proposed method can be applied to road centerline
network extraction of a wide range with complex scenes.
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Table 3. Quantitative assessment of road centerline extraction of different methods for the Guangzhou
dataset.

Method Completeness Correctness Quality

Proposed method 0.8019 0.9354 0.7522
Huang’s method 0.7314 0.8211 0.6890
Miao’s method 0.7832 0.8726 0.7169

5. Discussion

In this section, we take the New York dataset and the Vaihingen dataset as examples to discuss
the effectiveness of key processes, parameter sensitivity, and computational cost of different methods.

5.1. Effectiveness Analysis of Key Processes

It can been seen from Figures 4 and 5 that compared with Huang’s method and Miao’s method,
the road centerline network extracted by the proposed method is more complete, and has fewer false
road centerline segments. Moreover, Tables 1 and 2 quantitatively show that the proposed method
can achieve the highest completeness, correctness, and quality for both the New York dataset and
the Vaihingen dataset. Therefore, the proposed method is an efficient solution for road centerline
extraction from VHR aerial image and LiDAR data.

The proposed method is a multi-stage method. In order to analyze the effectiveness of each
stage processing and the influence of them on road extraction, the accuracy assessment of the road
centerline network obtained by each stage processing is carried out. Figure 8 shows the accuracy
of road centerline network extracted by several key processing. Overall, all three key processing
steps, namely, filling process, shape filter, and centerline extraction, can improve the completeness,
correctness, and quality of road centerline extraction in the two datasets. However, the effects of
different processing steps are not exactly same. The improvement of completeness is greater than
that of correctness for the filling process, whereas the shape filter focuses on the improvement of
correctness. The main reason is that the filling process only repairs the gaps caused by shadows and
trees, but the false road segments are not processed, whereas the shape filter only removes a lot of
false road segments. The centerline extraction has a great improvement on both completeness and
correctness. This mainly because the road centerline fitting improves the position accuracy of road
centerline network extraction.
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5.2. Parameter Sensitivity Analysis

The scale parameter (T) determines the termination condition of object merging in the process of
image segmentation, hence it is a key parameter for image segmentation. Many studies have analyzed
the effect of T on the image segmentation. In this research, the influence of T on the road centerline
network extraction is further analyzed.
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Figure 9 shows the image segmentation and road centerline extraction of different scale parameters
using a small region in the New York dataset. It can be seen that the road centerline extraction of scale
parameter 140 is superior to one of scale parameter 80 and 200. Some bare lands are misclassified
as roads in the road centerline extraction of scale parameter 80, whereas the accuracy of the road
centerline extraction of scale parameter 200 is relatively low, and there are some false road centerline
segments adjacent to the road centerline network. The main reason is that the road is over-segmented
and some bare lands present elongated structure similar to road segments when the scale parameter is
set to 80, while the road is under-segmentation and other impervious surfaces adjacent to the road are
merged into road objects when the scale parameter is set to 200.
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Figure 9. The road centerline extraction of different scale parameter. (a–c) show the image segmentation
of the scale parameter as 80, 140, and 200, respectively; (d–f) show the road centerline extraction of
corresponding scale parameter.

Figure 10 shows the accuracies of road centerline network extracted by different scale parameters.
The investigations for both two datasets show a similar conclusion—that the road centerline extraction
of scale parameter 140 has the highest completeness, correctness, and quality. Compared with
over-segmentation, a slight under-segmentation can achieve better road centerline extraction for
the proposed method.
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5.3. Computational Cost Analysis

In this study, all the experiments are performed on a PC with a Intel Core 4 CPU at 3.20 GHz
and 24-GB RAM. Image segmentation is performed by eCognition software, and other experimental
processing run under MATLAB R2014a. As Huang’s method and proposed method are implemented
on two different platforms, the computational cost is counted independently. Each experiment is
repeated five times, and the average running time is taken as the computational cost. Table 4 shows
the computational costs of different methods for the New York and Vaihingen datasets. Although
the computational cost of the proposed method is slightly greater than that of Huang’s method and
Miao’s method, the accuracy of the proposed method is higher than that of the two comparison
methods. What’s more, the computational cost of the proposed method is far less than that of manual
drawing. Thus, in terms of computational cost, the proposed method is still an effective solution for
road centerline extraction in complex scene.

Table 4. Computational costs of different methods for the New York and Vaihingen datasets.

New York Dataset Vaihingen Dataset

Proposed
Method

Huang’s
Method

Miao’s
Method

Proposed
Method

Huang’s
Method

Miao’s
Method

Image segmentation 687 s 846 s — 529 s 581 s —
Other processing 1585 s 723 s 2143 s 1137 s 507 s 1479 s

Total 2272 s 1569 s 2143 s 1666 s 1088 s 1479 s

6. Conclusions

This study develops a method to extract road centerline network in complex scenes using both
aerial VHR images and LiDAR data. A MABR-based interference filling approach is developed to
remove the negative influences of shadows, trees, and cars on road centerline extraction. A multistep
approach that integrates the morphology thinning, Harris corner detection, and least square fitting is
proposed to accurately extract the road centerline from the complex road networks.

Three datasets are chosen to assess the effectiveness and adaptability of the proposed method by
comparison with two existing methods. The results based on the three datasets show that the proposed
method can obtain the highest completeness, correctness, and quality. For straight road sections, the
proposed method can effectively eliminate the negative influences of shadows and trees, and obtain
accurate road centerlines. However, for curved road segments that are severely obstructed by shadows
and trees, the effect of the proposed method needs to be further improved. In general, although the
proposed method has a little limitation, it can effectively reduce the workload of road mapping, and
thus it is still an effective solution for road centerline extraction in a complex scene.

In future work, the performance of the proposed method for curved road segments severely
obstructed by shadows and trees will be further improved. What is more, road change detection
combined with the road vector map will be carried out to expand the application of the
proposed method.
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Abbreviations

The following abbreviations are used in this manuscript:

VHR Very-High-Resolution
LiDAR Light Detection and Ranging
MABR minimum area bounding rectangle
MBR minimum bounding rectangle
FNEA fractal net evolution approach
DSM digital surface model
nDSM normalized digital surface model
DTM digital terrain model
OSM open Street Map
SOLI skeleton-based object linearity index
MHL morphology thinning, Harris corner detection, and least square fitting
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