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Abstract: Globally, the urban heat island (UHI) effect is a major problem which leads to
urban residents suffering from adverse urban ecological environments and serious health risks.
Understanding the impacts of urban landscape features on the thermal environment has been
an important focus across various fields of research. The purpose of this study is to analyze the
impacts of urban heat source–sink landscape patterns on urban heat islands, using the fast-growing
Zhengzhou City in central China as the case study. Landsat data (captured in 1996, 2006, and 2014),
various geospatial approaches, and correlation analysis were applied to facilitate the analysis.
Based on the contributions of the urban landscape to land surface temperature (LST), we empirically
identified the heat sources and heat sinks. Then, the composition and configurations of heat source
and sink landscapes were estimated by a series of spatial metrics at the landscape and class levels.
The results showed that the overall mean land surface temperature (LST) in the study area increased
by 2.72 ◦C from 1996 to 2014. This observed increasing trend in overall mean LST is consistent
with the process of rapid urbanization in the study area, which was evidenced by the dramatic
increase in impervious surfaces and the substantial loss in vegetation cover. Generally, as observed,
landscape composition has a stronger influence on LST than does landscape configuration. For heat
sources, the proportion, size, aggregation, and density of patches have positive effects on LST, while
adjusting the spatial distribution and abundance of urban landscape are effective ways to control
the UHI effects. In contrast, the percentage, size, density, and aggregation of heat sink patches have
negative effects on LST. Additionally, the effects of increasing total patch edges and shape complexity
should be considered when mitigating the UHI effect. These findings are beneficial for furthering
our understanding of how urban landscape patterns affect UHI, and they can help optimize urban
landscape patterns to alleviate the UHI effect and enhance sustainable development in the study area.

Keywords: urban heat island; urban landscape patterns; land surface temperature; Zhengzhou City

1. Introduction

Rapid urbanization changes the features of natural land surfaces into impervious surfaces [1,2],
and these landscape changes are a direct consequence of sharp urban development [3,4]. Specifically,
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the process of increasing urbanization has been accompanied by a series of environmental issues,
one of which is the urban heat island (UHI) effect [5]. The UHI is a phenomenon that describes the
occurrence of warmer air temperatures in urban areas than those in the surrounding rural areas [6–9].
The UHI effect can have detrimental impacts on the living environment, human health, and overall
urban biosphere [10]; thus, the UHI effect has been a major research theme across various interrelated
fields of study [11–13]. Research on the UHI effect could contribute to the mitigation of the adverse
impacts on the urban living environment and promote sustainable development.

According to previous studies, the UHI effect is classified into three types: the first type is surface
UHI (SUHI), which is calculated based on land surface temperature (LST), and the other two types
are boundary and atmospheric UHI. In recent years, the importance of SUHI has increasingly been
recognized because the methodological advancement of thermal infrared remote sensing indeed
provides opportunities to measure LST from space and characterize spatiotemporal structures [14,15].
LST has been one of the most important parameters used in the investigation of UHI effects based
on the application of satellite images [10,16,17]. This study focuses on the surface UHI, and remote
sensing tools and thermal band images are employed to retrieve LST. Currently, the relationship
between landscape pattern and LST has received considerable attention, and many previous studies
have extensively presented and estimated the effects of land use/land cover (LULC) characteristics
on LST [18–22], especially between LST and the abundance and spatial patterns of vegetation and
impervious surfaces [23–25]. These studies have found that impervious surface has the largest
contribution to LST; in contrast, vegetated landscapes are generally beneficial and decrease LST [2,26].
In addition, multiresolution analyses and spatial metrics are the most popular methods for assessing
the impacts of urban landscape patterns on LST [22]. Previous research provides valuable insights
into mitigating the UHI effect. However, there are still few surface UHI studies that have investigated
the impacts of landscape composition and configuration on LST; additionally, the previous literature
based on conventional LULC classification methods failed to consider the effects of other factors of
the landscape pattern, such as patch density, patch shape, and patch configuration, which increase
the uncertainties in exploring the relationship between landscape pattern and UHI [5]. Hence, one
of the most important research topics is to study the impact of landscapes of different sizes, shapes,
and configurations on the UHI effect, and a synthetic research method is needed to address how
landscape patterns affect UHI; this would provide an effective approach that could be used to reveal
regional ecological status and spatial variability.

This study aims to more accurately explore the impacts of landscape compositions and
configurations on UHIs using the source–sink theory of landscape ecology. The concepts of sources
and sinks are frequently used in studies on the carbon cycle [27], atmospheric pollution [28–30],
and other ecological topics [14,31]. A source landscape generally refers to a landscape that promotes
ecological processes; in contrast, a sink landscape generally refers to a landscape that weakens
ecological processes [32]. For the thermal environment, source and sink areas encompass a new
type of dual information about landscape patterns and ecological processes that are independent
of scale, and the contributions of sink and source landscapes to the UHI determine the intensity
of the UHI [33]. The LULC types that can help to mitigate the UHI effect are considered as heat
sink landscapes due to their weakening effects. Conversely, the LULC categories that commonly
generate UHI effect are defined as heat source landscapes because of their positive contributions to the
thermal environment. This LULC classification aims to provide some insights into the advancement
of UHI research, and it can distinguish the potential contributions of heat sink and heat source
landscapes to the UHI effect and decrease uncertainty when exploring the relationships between
landscape patterns and UHI [5]. Hence, it can be assumed that the various compositions, shapes,
and spatial configurations of source and sink landscapes may affect the LST distribution. This method
has contributed to the strict understanding of ecological processes and spatial variability under the
landscape ecology framework [32]. Therefore, analyzing the thermal effects of heat sources and heat
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sinks and understanding the associations between UHI and landscape patterns can provide valuable
information for landscape planning and produce effective measures for mitigating the UHI effect.

Worldwide, different varieties of city types have been analyzed for UHI effect in existing studies,
ranging from tropical cities to mountain cities [13,34] and from desert cities to coastal cities [35,36].
However, only a few scholars have paid attention to the thermal environment issues in China’s
inland megacities so far [37]. In fact, inland China has experienced unprecedented urbanization
over the past several decades and produced a series of environmental problems. Therefore, more
urbanization-related research like on the UHI effect has been an issue of concern, as it links healthier
and more comfortable urban living environments with modifications of urban climate. This study
contributes to the current literature in three ways: First we propose to explore the effects of landscape
compositions and configurations on urban thermal environment from a source–sink perspective.
The advantage of using the source–sink concepts is that investigating the relationship between
landscape pattern and UHI effect can reduce uncertainties and increase accuracy compared with the
previous studies. Second, we use the contribution index model to analyze urban landscapes and their
thermal effects; this contributes to understanding source–sink landscape patterns and their ecological
processes. Additionally, this research was implemented in Zhengzhou City, one of the rapidly
urbanizing metropolitan regions in inland China. Using Landsat-5 TM and Landsat-8 OLI image data
and various geospatial methods, including profile analysis and landscape metrics, we analyzed the
spatiotemporal variations in land surface temperature (LST) and explored the relationship between
LST and landscape features using the source–sink theory. A synthetical investigation of the results
can provide valuable information in terms of optimizing urban landscape patterns to mitigate UHI
effect and promote sustainable urban development. Besides this, this study can serve as a significant
reference for other regions experiencing rapid urbanization and for other inland cities around the
world. The specific objectives of this paper are as follows: (1) profile spatiotemporal variations in
LST using geospatial methods; (2) explore how to identify heat sink and heat source landscapes;
(3) analyze how landscape composition and patterns impact LST and how this effect is influenced by
heat sink and source patches; and (4) explore the relationship between landscape pattern and LST by
statistical analysis.

2. Data and Methodology

2.1. Study Area

Zhengzhou City well lends itself to assessing the dynamics of the UHI effect because it is a typically
fast-growing metropolitan region which is experiencing rapid industrialization and urbanization in
China; additionally, it has huge economic growth and a dense population. Zhengzhou is located
in central China (112◦42′E–114◦14′E, 34◦16′N–34◦58′N) (Figure 1), and the city covers an area of
about 7446.2 km2. Zhengzhou is the capital of Henan Province, making it an important central city
and transportation hub in central China, and the city has a long history that dates back more than
5300 years. Currently, as the important megacity in the Central Plains Economic Region and one of the
eight great capitals of ancient China, Zhengzhou is regarded as an important node-city in the “One Belt,
One Road” initiative between China and European countries. Zhengzhou locates within the northern
temperate zone with a continental monsoon climate. The annual average temperature is about 14.4 ◦C.
The months with the higher temperatures are July and August, and the colder months are December
and January [38]. The area has an annual precipitation of 640.9 mm, and the terrain trends toward
higher terrain in the southwest and lower terrain in the northeast. The Yellow River goes through this
region and delineates the northern boundary of Zhengzhou City. According to Zhengzhou Statistics
(http://www.zzstjj.gov.cn/), the population living in the central urban area of Zhengzhou increased
from 2.09 million to 4.78 million, with an average annual growth rate of 7.15%, between 1996 and
2014. Meanwhile, the urbanization rate of Zhengzhou increased from 50.1% to 68.3%, which was
continuously higher than the national average. Additionally, the population density increased from

http://www.zzstjj.gov.cn/
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767 persons per km2 to 1259 persons per km2. Such a dramatic LULC process inevitably results in
urban environmental degradation and the UHI effect due to the increased density of developed areas
and the loss of urban green spaces.

1 

 

 

Figure 1. The location of Zhengzhou City in Henan Province, China (the four traffic rings around the
downtown area are shown).

2.2. Satellite Data and Preprocessing

According to this purpose of this study, we found that long time intervals are beneficial to
studying changes in landscape patterns. Besides this, Zhengzhou City experienced a large-scale urban
construction movement after the implementation of a series of urban development strategies in 2006,
which resulted in great changes in the urban landscape. Based on this background, the Landsat
images of three typical years (1996, 2006, 2014) could meet the needs of studying the problem of urban
landscape patterns’ effect on the urban heat island effect. In this study, two Landsat-5 images and
one Landsat-8 OLI/TIRS image were selected and downloaded from the USGS website (Table 1).
To minimize bias arising from haze or cloud pollution, only cloud-free image data or image data with
minimal cloud cover (i.e., less than 5%) were selected. Based on the overall purpose of this study,
all images that contained thermal bands were processed for LST retrieval, and LULC classifications
were generated.
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In this study, prior to LULC classification mapping and LST retrieval, each satellite image was
processed using a set of preprocessing procedures. The preprocessing procedures included radiometric
calibration, atmospheric correction, and geometric distortion correction. Subsequently, all the images
were resampled to 30m spatial scale to correspond to the resolution of the multispectral bands [39].

Table 1. Descriptions of Landsat TM and OLI/TIRS images used in this study.

On-Board Sensor Acquisition Date Path/Row Source

Landsat TM 20 May 1996 124/36
http://glovisusgs.gov/Landsat TM 16 May 2006 124/36

Landsat OLI/TIRS 27 May 2014 124/36

2.3. Urban Landscape Classification

The land cover type maps of the study area were produced for 1996, 2006, and 2014 by using
supervised classification and man–computer interactive interpretation in ENVI 5.1 software. The final
urban landscapes were divided into six classifications, including impervious surface (IS), farmland,
bare land, grassland, water, and forest. Subsequently, the overall accuracy assessments of the land
cover classifications were carried out with 400 generated reference points employing a stratified
random sampling technique [40] for each map that represented different land cover types in the
study area. Google Earth images with high spatial scale and other auxiliary data including urban
planning maps and soil type data were employed as reference information for the 1996, 2006, and 2014
classified maps. In addition, we depended on our visual interpretation of the Landsat images applying
different band combinations to improve the classification accuracy [41]. As a result of that, the accuracy
assessments revealed kappa coefficients larger than 86.6% for each classified land use map, which met
the analysis requirements proposed by Jassen et al. [42].

2.4. Retrieval and Ranking of Land Surface Temperature (LST)

The LST values were measured from the thermal infrared bands of the Landsat satellite data.
In order to retrieve accurate LST values, firstly, the infrared radiation intensity L received by the
satellite sensor was estimated using Equation (1) [43–46]:

Lλ =
[
εB(TS) + (1− ε)L↓λ

]
τ + L↑λ (1)

where Lλ denotes the at-sensor radiance, ε denotes the surface emissivity, B(Ts) denotes the heat
radiation brightness of black body, Ts denotes a value retrievable from Equation (1) by inversion of
Planck’s law, L↑λ denotes the upwelling atmospheric radiance, while L↓λ denotes the downwelling
atmospheric radiance, and τ denotes the atmospheric transmittance. The atmospheric profile
parameters were calculated by using National Centers for Environmental Prediction (NCEP) in the
NASA web-based tool (http://atmcorr.gsfc.nasa.gov/). Then, the emissivity of surface materials (ε)
was calculated by using Equations (2)–(4) [47]:

ε = mPv + n (2)

m = (εv − εs)− (1− εs)Fεv (3)

n = εs + (1− εs)Fεv (4)

where εv denotes vegetation emissivity and εs denotes soil emissivity. In our study, we draw on the
results of Sobrino et al. [47] for m (0.004) and n (0.986). Pv denotes the vegetation proportion, which
was expressed as follows (Equation (5)) [48]:

http://glovis usgs.gov/
http://atmcorr.gsfc.nasa.gov/
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Pv = (
NDVI − NDVImin

NDVImax − NDVImin
)

2
(5)

where NDVI denotes the normalized difference vegetation index, which is one of the most popular
and easy-to-apply approaches used in UHI studies [49,50]. NDVImin denotes the minimum value of
NDVI, while NDVImax denotes the maximum value of NDVI. The NDVI can be derived by utilizing
the surface reflectance of the Landsat images (Equation (6)):

NDVI = (
ρNIR − ρRed
ρNIR + ρRed

) (6)

where ρNIR and ρRed represent the reflectance of the near-infrared band and the red band,
respectively [10,25]. Then, the emissivity-corrected LST values were measured with the following
Equations (7) and (8) [51]:

LST =
TB

1 + (λ× TB/ρ) ln ε
(7)

ρ = h× c/σ(1.438× 10−2 mK) (8)

where TB denotes satellite brightness temperature in degrees Kelvin, λ denotes wavelength of emitted
radiance (for Landsat TM/ETM+: λ = 11.5 µm [51,52], and for Landsat OLI/TIRS: λ = 10.8 µm [22]),
σ denotes the Boltzmann constant (1.38× 10−23 J/K), h denotes Planck’s constant (6.626× 10−34 Js),
c denotes the velocity of light (2.998× 108 m/s), and ε denotes the land surface emissivity. Finally,
the resulting LST values were converted from degrees Kelvin to degrees Celsius (◦C) [40].

Based on the abovementioned analysis, it is not suitable to directly compare LST values or
analyze the differences in LST values for multiyear periods because of the seasonality and inter-annual
uncertainty of the atmospheric conditions. As a result, the LST values were standardized in ArcGIS
10.2 software based on the data range (Equation (9)), and the density slice method was employed to
divide LST values into five levels [5,53,54] (Table 2):

Ts =
Ti − Tmin

Tmax − Tmin
(9)

where Ts is the standardized LST value of a pixel; Ti is the initial LST of pixel i; and Tmax and Tmin are
the maximum and minimum LST values of the whole area, respectively.

Table 2. Ranking of land surface temperature (LST) levels.

LST Level Division

Low TS ≤ Tmean − 2std
Sub-low Tmean − 2 std < TS ≤ Tmean − 0.5 std
Medium Tmean − 0.5 std < TS ≤ Tmean + 0.5 std
Sub-high Tmean + 0.5 std < TS ≤ Tmean + 2 std

High TS > Tmean + 2std

Note: TS denotes the standardized LST; Tmean denotes the mean standardized LST; std denotes the standard deviation.

2.5. Identification of Heat Source and Sink Landscapes

In this section, we identified the properties of heat source and sink landscapes based on the
contribution of each land use/land cover category to the thermal environment effect, and the formula
is as follows [55]:

HSI =
Sih
Si

/
Sh
S

(10)

where Sih denotes the total areas of high and sub-high LST zones in the ith category; Si denotes the
area of the ith category of LULC; S denotes the total area of the research object; and Sh denotes the total
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areas of high and sub-high LST zones in the entire study region. If HSI > 1, the land cover category
has a large contribution to the thermal environment effect and should be defined as a heat source;
in contrast, if HSI < 1, the land cover category should be defined as a heat sink [5].

In addition, the contributions of the source–sink landscapes to the intensity of the LST are different
at the local scale. We introduced the contribution index (CI) to compute the contribution of source and
sink landscapes [18,32], and the CI is expressed as (Equation (11)) [33]

Contribution Index(CI) = Dt × F (11)

where Dt denotes the difference in the LST between the sink or source landscape and the whole area
and F denotes the fraction of the total area that is source or sink landscape. For a source landscape,
Dt is positive and the CI is also positive; conversely, both values are negative for a sink landscape.

Due to the intensity of LST at the local scale identified by the contributions of the source or
sink landscape, the landscape index (LI) can be defined as the absolute value of the ratio of the CI;
the formula is as follows (Equation (12)) [33]:

Landscape Index(LI) = |CIsink/CIsource|. (12)

When LI > 1, the contributions of the source and sink landscapes weaken the thermal environment.
Then, when the LI value is <1, the contributions of the source and sink landscape strengthen the thermal
environment. Finally, when LI = 1, the thermal environment is unchanged. Therefore, different LI
values denote different degrees of weakening or strengthening of the thermal environment at the
local scale.

2.6. The LST Profile Analysis

This specific analysis identifies the spatial variability of LST from the urban center to the suburbs
of the study region. Multidirectional LST profiles of Zhengzhou City following the diagonal and
orthogonal directions, i.e., west–east, northwest–southeast, north–south, and northeast–southwest,
were produced based on the LST values in three time series (1996, 2006, 2014). The LST value was
computed by each polygon grid snapped to the respective LST retrieval maps from 1996, 2006, and 2014.
The central location of Zhengzhou City, called kilometer 0, was located. Then, a series of sampling
points were extracted by sampling with a distance interval of 180 m for each profile. Finally, the LST of
each profile was investigated.

2.7. Quantification of Landscape Pattern Metrics and LST

To explore the relationships between the landscape patterns of heat source–sink and the LST
based on the classification results, a series of landscape metrics (including composition, shape,
and configuration) were estimated in FRAGSTATS 4.2 [56]. The selection of the moving window
size would affect the calculation of landscape metrics, given that larger grid size and exothermic
effects will hide small heat source–sink patches, while too small a grid size may cause large heat
source–sink patches to be fragmented [5].Therefore, based on the above principles and after a series
of tests, a 900 m × 900 m moving window was chosen to measure the landscape metrics because
the results from this resolution accurately reflect the changes in landscape patterns of the study
area according to the two principles of selecting landscape metrics: (1) minimal redundancy and
(2) significant implication in both theory and practice [57,58]. The four landscape-level metrics were
selected to depict the general characteristics of the landscape and the seven class-level metrics were
selected to depict the characteristics of the specific category of heat source or sink in each grid from the
perspective of patch density, patch shape, and patch configuration (Table 3). Additionally, to eliminate
edge effects, grids that have an area of covered landscape less than 100% were excluded. A continuous
surface was created using the landscape metrics and LST values of 1307 grids covering Zhengzhou.
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Finally, the Pearson correlation was applied to examine the relationships between LST and landscape
pattern metrics of heat sources and heat sinks.

Table 3. The list of landscape pattern metrics [56,59].

Level Category Metric

Landscape level

Composition Patch density (PD)
Shape Landscape shape index (LSI)

Spatial configuration Contagion (CONTAG)
Shannon diversity index (SHDI)

Class level

Composition Percent cover of class area (PLAND)
Patch density (PD)

Shape
Edge density (ED)

Mean shape index (SHAPE_MN)
Mean fractal dimension index (FRAC_MN)

Spatial configuration Landscape division index (DIVISION)
Aggregation index (AI)

3. Results

3.1. Land Cover Changes and the LST of LULC Classes

Figure 2 shows the spatiotemporal changes in land cover maps of Zhengzhou City from 1996 to
2014. The results indicated that the area of impervious surface (IS) increased from 112.8 km2 to 282 km2

between 1996 and 2006, and an ever-higher growth in the area of impervious surface (130.7 km2) was
detected between 2006 and 2014. This is equivalent to a total increase of 299.9 km2 in the area of IS
over 19 years. This translates to a net increase of 266.87% and a 15.78 km2 gain per year. The change
indicates that the Zhengzhou City has experienced rapid urbanization over approximately the past
two decades. Forest and grassland had a total net loss of 3.15% and 13.94% between 1996 and 2014,
respectively. Generally, the spatiotemporal changes in the land cover have been heavily impacted by
the rapid expansion of impervious surface in the study area.

Figure 2. Land cover maps of Zhengzhou City, China in (a) 1996, (b) 2006, and (c) 2014.

Table 4 shows the dynamics of LST associated with specific land cover types across the study
period. As can be seen, the impervious surface showed higher surface temperatures, while forest and
water displayed lower surface temperatures between 1996 and 2014. The mean LST of the IS was
consistently higher than the mean LSTs of other land cover types, and its mean LST increased from
28.204 ◦C to 30.583 ◦C. Overall, the impervious surface could promote the UHI effect, while to some
extent, the vegetation (i.e., forest and grassland) and water could mitigate the UHI effect.
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Table 4. The LST change in land cover from 1996 to 2014 (unit: ◦C).

Land Cover
1996–2006 2006–2014

Mean LST (◦C) SD LST (◦C) Mean LST (◦C) SD LST (◦C)

Impervious surface 28.204 1.511 30.583 1.439
Bare land 27.956 2.193 28.817 2.274

Forest 24.851 1.160 24.732 1.079
Water 22.872 0.761 23.175 0.835

Farmland 26.041 1.642 26.005 1.744
Grassland 24.867 1.663 25.158 1.693

3.2. Spatial Pattern of the LST

Table 5 displays the LST in the different ring road areas of Zhengzhou City from 1996 to 2014.
The pattern of LST has experienced obvious changes throughout the whole study area. In 1996, the LST
of Zhengzhou City ranged between 13.24 ◦C and 40.83 ◦C, with a mean LST of 29.24 ◦C. The mean LST
gradually decreased from the first ring road to the fourth ring road. Areas with high LST values were
mainly concentrated in the area within the first ring road. In 2006, the LST ranged from 12.05 ◦C to
44.97 ◦C, with the mean LST of 30.04 ◦C. This shows that Zhengzhou City experienced a 0.8 ◦C increase
in its mean LST between 1996 and 2006. Areas with high LST values were mainly concentrated in the
area of the second ring road. In 2014, the LST ranged from 18.84 ◦C to 45.28 ◦C, with a mean LST of
31.96 ◦C. This indicates that the mean LST of Zhengzhou City gradually increased from 2006 to 2014.
Areas with high LST values were mainly concentrated in the fourth ring road. Overall, the mean LST
of Zhengzhou City experienced an increase of 2.72 ◦C during the study period, and areas with high
LST values become wider from the first ring road to the fourth ring road, which was consistent with
the examined urbanization results in this part of the study area (Figure 3).

Table 5. LST values in the different Zhengzhou City ring road areas from 1996 to 2014 (unit: ◦C).

Year Indicator 1st Ring Road 2nd Ring Road 3rd Ring Road 4th Ring Road The Whole Study Area

1996
Max LST 36.96 40.44 40.83 40.82 40.83
Min LST 27.11 13.24 13.24 13.23 13.24

Mean LST 32.73 32.67 31.10 29.96 29.24

2006
Max LST 38.11 42.35 42.37 44.97 44.97
Min LST 26.13 24.71 21.18 12.05 12.05

Mean LST 32.63 32.64 31.84 30.58 30.04

2014
Max LST 39.87 41.71 45.28 45.28 45.28
Min LST 28.28 28.28 24.19 20.06 18.84

Mean LST 33.59 33.51 33.49 33.59 31.96

Figure 3 shows the spatial patterns of LST levels from 1996 to 2014. In 1996, the overall pattern
of the LST was higher in the south and lower in the north of the study area. The high and sub-high
LST zones were mostly near the south of the third ring road and the central portion of the second
ring road, respectively, and the sub-low and low LST zones were mostly distributed near the north of
the fourth ring road. In 2006, the high and sub-high LST zones become wider, and these zones were
mainly in the center of Zhengzhou City, while the sub-low and low LST zones gradually reduced.
In 2014, the high and sub-high LST zones expanded to the north of the study area, and were mainly
distributed in built-up areas found in the regions including the Zheng Dong New District and the
Hi-Tech Development Zone. This indicated that activities including land development and urban
expansion played an important part in promoting the severe UHI effect. The sub-low and low LST
zones were mostly distributed in green spaces and water found in the north and south parts of the
study area. In general, the sub-high and medium LST zones occupied a large proportion of Zhengzhou
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City across the three time points. Meanwhile, the thermal environment also showed strong spatial
differences with urban expansion.

Figure 3. Spatial patterns of different LST levels in Zhengzhou in (a) 1996, (b) 2006, and (c) 2014.

According to the LST profile analysis of Zhengzhou City (Figure 4), the results revealed that the
zones closest to the city center did not show the highest mean LST between 1996 and 2014. The mean
LST value reached its peak approximately 5 km from the city center before it reduced gradually.
In addition, the pattern of mean LST along the LST profile shows evidence for the presence of the UHI
phenomenon in the study area; more specifically, the LST values were small in 1996 but became larger
in 2006 and even larger in 2014 because of the expansion in the amount of impervious surface.
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Figure 4. Multitemporal and multidirectional LST profiles of Zhengzhou City.

3.3. The Classification of Heat Source and Sink Landscapes

Based on the HSI values applied to denote the contribution of land cover types to the thermal
environment effect in 1996, 2006, and 2014, impervious surface (1.683, 1.847, 1.869, respectively) and
bare land (1.264, 1.251, 1.352, respectively), with HSI values > 1, obviously strengthened the thermal
effect and were defined as heat source landscapes. Farmland (0.631, 0.809, 0.615, respectively), water
(0.153, 0.221, 0.201, respectively), forest (0.352, 0.266, 0.109, respectively), and grassland (0.788, 0.417,
0.315, respectively), with HIS values < 1, were defined as heat sink landscapes. Using this information,
we identified the composition of land cover types in heat sources and sinks (Figure 5). As for the
composition, it can be shown that the major proportion of heat sources were impervious surface (IS)
in the study area, while the remaining part was the bare land. The heat sinks consisted primarily of
farmland and grassland, while the remaining parts were water bodies and forest.

Then, we mapped the spatial patterns of heat source and sink zones (Figure 6). Between 1996
and 2014, heat source zones were distributed in the central and northern regions of Zhengzhou
City, and heat sink zones were located in the southern and northwestern regions of the study area.
These heat sink zones had the lowest LST values among the urban areas because of the presence of
vegetation cover. Additionally, the dominant portion of heat source increased gradually from the
center to the surrounding regions, while the remaining portion of heat sink gradually decreased during
the study period.

Figure 4. Multitemporal and multidirectional LST profiles of Zhengzhou City.

3.3. The Classification of Heat Source and Sink Landscapes

Based on the HSI values applied to denote the contribution of land cover types to the thermal
environment effect in 1996, 2006, and 2014, impervious surface (1.683, 1.847, 1.869, respectively) and
bare land (1.264, 1.251, 1.352, respectively), with HSI values > 1, obviously strengthened the thermal
effect and were defined as heat source landscapes. Farmland (0.631, 0.809, 0.615, respectively), water
(0.153, 0.221, 0.201, respectively), forest (0.352, 0.266, 0.109, respectively), and grassland (0.788, 0.417,
0.315, respectively), with HIS values < 1, were defined as heat sink landscapes. Using this information,
we identified the composition of land cover types in heat sources and sinks (Figure 5). As for the
composition, it can be shown that the major proportion of heat sources were impervious surface (IS)
in the study area, while the remaining part was the bare land. The heat sinks consisted primarily of
farmland and grassland, while the remaining parts were water bodies and forest.

Then, we mapped the spatial patterns of heat source and sink zones (Figure 6). Between 1996
and 2014, heat source zones were distributed in the central and northern regions of Zhengzhou
City, and heat sink zones were located in the southern and northwestern regions of the study area.
These heat sink zones had the lowest LST values among the urban areas because of the presence of
vegetation cover. Additionally, the dominant portion of heat source increased gradually from the
center to the surrounding regions, while the remaining portion of heat sink gradually decreased during
the study period.
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 Figure 5. The composition proportion of land cover types in heat source and sink.

Figure 6. Spatial distribution of heat sources and sinks in Zhengzhou City in (a) 1996, (b) 2006,
and (c) 2014.

At the local scale, Table 6 reveals the CI and LI of heat sources and sinks in the different Zhengzhou
City ring road areas between 1996 and 2014. The rapid expansion of urban land resulted in dramatic
change in the layouts and areas of heat sources and sinks. During the study period, the percentage of
heat source areas showed a decreasing trend from the first ring road to the fourth ring road; contrarily,
the percentage of heat sink areas indicated an increasing trend from the first ring road to the fourth
ring road. The CI values for heat sources gradually decreased from the first ring road to the fourth
ring road, while the absolute CI value for heat sinks become increased from the first ring road to the
fourth ring road. The LI values of the different Zhengzhou City ring road areas were estimated and
are presented in Table 6. The LI value was lower than 1 from the first ring road area to the fourth
ring road area, which indicated that the combined contributions of heat source and sink landscapes
promoted surface urban heat. However, overall, the LI value had an increasing trend and was getting
closer to 1 from the first ring road to the fourth ring road between 1996 and 2014. This implied that the
contributions of heat source and sink landscapes could weaken the UHI effect to some extent.
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Table 6. The heat source and sink indices in different ring road areas of Zhengzhou City from 1996
to 2014.

Year Indicator 1st Ring Road 2nd Ring Road 3rd Ring Road 4th Ring Road

1996

Percentage of heat source area 97.16 89.14 57.91 38.34
Percentage of heat sink area 2.84 10.86 42.09 61.66

CI of heat source 0.263 1.479 1.451 0.773
CI of heat sink −0.005 −0.091 −0.525 −0.615

LI 0.019 0.061 0.361 0.796

2006

Percentage of heat source area 86.59 86.66 69.06 48.65
Percentage of heat sink area 13.41 13.34 30.93 51.34

CI of heat source 2.431 1.771 2.225 1.609
CI of heat sink −0.085 −0.068 −0.199 −0.339

LI 0.034 0.038 0.089 0.211

2014

Percentage of heat source area 96.03 96.36 90.31 79.32
Percentage of heat sink area 3.97 3.67 9.69 20.68

CI of heat source 2.431 1.849 2.129 1.909
CI of heat sink −0.051 −0.034 −0.114 −0.25

LI 0.021 0.019 0.054 0.131

Note: CI denotes the contribution index, LI denotes the landscape index.

3.4. Effects of Heat Source and Sink Patterns on LST

Table 7 indicates the correlation coefficients between LST and landscape metrics of heat sources
and sinks at the landscape scale. As shown, in heat source landscapes between 1996 and 2014, LST was
positively correlated with CONTAG, LSI, PD, and SHDI. These results indicated that as the percentage
of heat source patches is increased in the study area, the UHI effect would be enhanced. Contrarily,
in heat sink landscapes from 1996 to 2014, LST was negatively correlated with CONTAG, LSI, PD,
and SHDI, which implied that higher values of these variables would be accompanied by lower LST
values. In general, these variables revealed the different effects of the general landscape composition,
shape, and spatial configuration characteristics on the UHI effect.

Table 7. Correlation coefficients of landscape pattern of heat sources and heat sinks and LST at the
landscape level.

LST Acquired Year CONTAG LSI PD SHDI

Heat sink
1996 −0.296 * −0.261 * −0.201 * −0.214 **
2006 −0.328 * −0.331 ** −0.352 ** −0.344 **
2014 −0.481 ** −0.495 ** −0.551 ** −0.498 **

Heat source
1996 0.217 * 0.246 ** 0.293 ** 0.293 **
2006 0.323 ** 0.398 * 0.316 * 0.378 **
2014 0.435 ** 0.451 ** 0.554 ** 0.479 **

Note: * denotes significance at the 0.05 level; ** denotes significance at the 0.01 level (two-tailed).

In light of the results of the Pearson correlation analysis for heat source–sink and LST at the
class level during the study period (Table 8), for the landscape metrics of heat sources, the spatial
arrangement variables including AI and DIVISION exerted positive influence on LST. This indicated
that a higher dispersion degree of heat sources is necessary and beneficial for reducing the effect on
LST. Additionally, the composition variables including PD and PLAND, both of which were local
variables, mostly had positive effects on LST. This implied that an increase in the proportion of heat
source patches would strengthen the UHI effect, especially in developed urban areas. The shape
variable SHAPE_MN had global positive influence on LST. This implied that an increase in the shape
irregularity of heat source patches would strengthen the thermal environment effect. The local variable
FRAC_MN had a significant positive correlation with LST, which meant that the UHI effects of heat
source patches could be reduced by lessening the degree of shape complexity.
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According to the results of the Pearson correlation analysis for the landscape metrics of heat sinks
and LST at the class level (Table 8), as with spatial arrangement, AI had a significant global negative
effect on LST, which indicated that higher aggregations of heat sink patches could reduce the thermal
environment effect. DIVISION also exerted a negative influence on LST, which suggested that a higher
dispersion degree of heat sinks was not beneficial to mitigating the UHI effect. The composition
variables, including PD and PLAND, were mainly negatively correlated with LST, which revealed that
LST would be reduced with an increase in the proportion and density of heat sink patches. In addition,
the local variable ED had negative influences on LST, which illustrated that an increase in the edge
regularity of heat sink patches would generate a cooling effect. The shape variable SHAPE_MN
exerted negative influence on LST overall, and for some regions with distributed heat sink patches,
an increase in the shape irregularity might enhance the cooling effect. The local variable FRAC_MN
was negatively correlated with LST, which suggested that heat sink patches generate better cooling
effects when their shape complexity was improved.

Table 8. Correlation coefficients of class-level landscape features and heat source–heat sink LST.

1996 2006 2014

Heat Sink Heat Source Heat Sink Heat Source Heat Sink Heat Source

AI −0.245 ** 0.235 ** −0.313 ** 0.369 ** −0.423 ** 0.405 **
DIVISION −0.221 ** 0.296 ** −0.336 ** 0.464 ** −0.475 ** 0.515 **

ED −0.240 ** 0.012 −0.398 ** 0.015 * −0.454 ** 0.005 *
PD −0.280 ** 0.278 ** −0.377 ** 0.378 ** −0.515 ** 0.587 **

PLAND −0.285 ** 0.236 ** −0.342 ** 0.479 ** −0.529 ** 0.559 **
FRAC_MN −0.234 ** 0.227 ** −0.380 ** 0.357 ** −0.420 ** −0.410 **

SHAPE_MN −0.223 ** 0.221 ** −0.276 ** 0.388 ** −0.326 ** 0.415 **

Note: * denotes significance at the 0.05 level; ** denotes significance at the 0.01 level (two-tailed).

4. Discussion

4.1. Urbanization and Its Effects on Urban Thermal Environment

This study reveals that Zhengzhou City has experienced rapid urbanization, as evidenced by
the substantial increase in the spatial extent of impervious surface (IS) over the past two decades
(Figure 2). These findings are consistent with the existing research [60,61]. In fact, there are varying
urbanization processes on the national scale because of the Chinese central government’s different
regional development strategies. The period of rapid urbanization process in central China remarkably
lagged that of the southern and eastern regions, which favored the national priority development
strategy initiated since the 1978 Reform and Opening-up policy [60]. Since the 2000s, central
China has entered a stage of rapid urbanization, especially Zhengzhou City, which was deeply
influenced by the planning policies of the Central Plain Urban Agglomeration (CPUA) in 2006 and
the Central Plain Economic Region (CPER) in 2010, according to the statistical data of Zhengzhou
City (http://www.zzstjj.gov.cn). As shown in Figure 7, the urbanization rate of China has presented
a trend of continuous growth from 1996 to 2014; this process has resulted in a significant urban heat
island effect in major Chinese cities. In central China especially, the urban warming effect is more
obvious [62]. Additionally, Figure 7 also indicated that the urbanization rate of Zhengzhou City was
higher than those of the Henan Province and of China in the study period. Consequently, such rapid
expansion of urbanization has led to a more prominent urban thermal environment effect than in
surrounding areas, as evidenced by the remarkable change in land use/land cover, especially from the
former arable land to the newly emerging built-up land which features impervious surface with sparse
vegetation and water bodies, thus decreasing the cooling effect of the former natural/seminatural
surfaces. Besides this, referring to other UHI research in several Chinese megacities, we obtained
the mean UHI values of Nanchang, Shijiazhuang, Tianjin, Shanghai, and Nanjing at approximately
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1.64 ◦C, 0.59 ◦C, 0.87 ◦C, 1.1 ◦C, and 0.5 ◦C, respectively [10,63]. Although these studies were analyzed
in different time series, they can be used to understand the general situation of the UHI intensity in
China. In this study, we showed that the mean LST value of Zhengzhou City increased by 2.72 ◦C from
1996 to 2014, higher than those of major large cities in China. Hence, we can believe that the urban
warming effect in Zhengzhou City is relatively strong in China.

Figure 7. Urbanization rate and population growth of Zhengzhou City.

The urban growth of Zhengzhou City has evident spatial characteristics: the city areas have
a clear shift and expand towards the northeast and southwest from 1996 to 2014 due to increased
central government support and a number of planning policies from the local government. As the
core city of central China, Zhengzhou City has exerted an important impact on regional development.
In 1996, Zhengzhou had a gross domestic product (GDP) of 49.82 billion Yuan (RMB), which increased
to 677.7 billion Yuan (RMB) in 2014 (www.tjj.zhengzhou.gov.cn). The city was home to 2.09 million
people in 1996, and its population has grown continually and reached 4.78 million people in 2014
(www.tjj.zhengzhou.gov.cn). People flock to the city for various major socio-economic opportunities
and an improved quality of life. However, such rapid urbanization has resulted in some negative
effects on the natural environment. Between 1996 and 2014, most of the newly developed lands
resulted from farmland, bare land, and grassland conversions. A considerable proportion of natural
land surfaces were replaced with various buildings, traffic facilities, and other impervious surfaces.
The built-up land area of Zhengzhou city has grown dramatically by 13.9% annually from 1996 to 2014,
a higher rate than even those of the coastal megacities, such as Shanghai (3.58%, between 1997 and
2008) [64] and Guangzhou (7.7%, from 1979 to 2002) [65]. The rapid expansion of built-up land severely
changed the source–sink landscape patterns formed by vegetation or water in the city underlying
surface and further affected the biophysical parameters and conditions in the urban ecosystem [66,67].
These built-up surfaces generally reflect less and absorb more of the sun’s energy [9]. Some previous
studies have also shown that the built-up land environment has high heat capacity and thermal
conductivity rates [44,68,69]. This can cause unbalanced energy flux via latent flux. The examined
increasing trend in the UHI effect in Zhengzhou City has been influenced by landscape changes caused
by rapid urbanization. The findings of this study revealed that the impervious surface had consistently
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higher LST values than other LULC types from 1996 to 2014. The high LST zones were generally
distributed in impervious surface types, while the low LST zones were distributed in land surfaces
covered with vegetation. This result is consistent with other studies on UHI effect [10,22]. According to
the LST profile analysis, the increase in mean LST was based on the expansion of built-up areas, which
was the region with the highest fraction of impervious surface from 1996 to 2014. This also confirms
the previous conclusion that UHI effect has a positive correlation with urban size, which revealed that
the air temperature in urban areas tended to increase with the expansion of urban size [13,70,71].

4.2. The Relationships between the Heat Source–Sink Landscape Pattern and LST

In this study area, the landscape feature differences between heat sources and sinks were
investigated at both the landscape level and the class level. For the landscape level, our results indicated
that the composition and spatial configuration metrics were significantly associated with mean LST and
were positive for heat sources and negative for heat sinks between 1996 and 2014. These findings are
consistent with other studies, e.g., Chen and Yu [3] found significant relevance between mean LST and
landscape patterns of SHUI (positive) and SHUS (negative) zones in Guangzhou, China. According to
the category of heat sources and sinks, impervious surface occupies a high proportion of heat source
zones, while grassland is dominant in heat sink zones throughout the cities. The major reason for this
difference is that the thermal properties of the landscape types are distinct. Thus, it can be thought that
landscape composition has a more notable influence on LST compared with landscape configuration in
the study area. Many studies have demonstrated this result in metropolitan regions [22,72]. This result
suggests the need to devote more efforts to expanding the coverage of green space to alleviate
the thermal environment effect in Zhengzhou City. In addition, the investigation also found that
class-based landscape composition and spatial configurations of heat source and sink were essential
factors impacting the thermal environment. Specifically, the impacts of the heat source composition on
the heat environment mostly showed an increase of LST, with a rise in the proportion and density of
heat source patches. For the spatial arrangement of heat sources, aggregated landscape patterns can
drastically promote urban temperatures. Because a remarkable positive association existed between
the LST and the shape index of heat source patches, several smaller heat sources patches would
generate a stronger thermal environment effect than larger and contiguous patches. On the other hand,
with an increase in the proportion of heat sink patches, the impact of the heat sink composition on
the heat environment revealed a decrease of LST. In addition, a higher diversity of heat sink patches
can also effectively decrease LST. For the spatial configuration of heat sinks, a landscape arrangement
with aggregated patterns and large patch size would be more practical in reducing the UHI effect
than dispersed patches of heat sinks. The edge features and shape complexity of heat sink patches
are also important to promote a cool island effect, as the increase of total patch edges and shape
complexity could enhance the exchange of energy between heat sink patches and their surrounding
areas [13,73,74].

4.3. Implications for UHI Mitigation

As discussed above, rapid urbanization has influenced the ecological environment of Zhengzhou
City and generated UHI effects. The main reason for the increase in UHI effects is that more natural
lands have been changed into impervious surface areas; this conversion comes at the expense of
(i.e., the loss of) urban green spaces. In general, impervious surfaces enhance LST due to their higher
thermal inertia [10], while vegetation helps reduce LST by providing a shade effect that can prevent land
surface exposure to solar radiation and by generating cooling effects through evapotranspiration [22].
In this context, the increase in vegetation coverage is one way to alleviate the UHI effects, and it is
key for the policy makers of Zhengzhou City to think about the provision of more forest areas and
green spaces in their future urban planning to reduce the thermal environment effects. In addition,
it should be noteworthy that the uneven LST intensity distribution also has adverse impacts on the
dwelling environment and natural ecosystems [25]. As urbanization intensified between 1996 and
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2014, the UHI effect became more intense in the study area, especially in terms of the spatial variation
of LST values between urban and rural areas. The results show that regions approximately 5 km
along the profiles from the city center are generally warmer than other regions in Zhengzhou City.
Hence, we would like to recommend that urban planners use some effective UHI mitigation strategies
within these regions. The previous studies have widely investigated highly reflective cool surfaces and
retro-reflective (RR) materials as new countermeasures to the UHI effect [75–77]. Several studies have
also proved that increasing the surface albedo of building envelopes and urban paving in urban areas
can readily decrease air temperature [78–80]. For Zhengzhou City, the establishment of green roofs,
cool pavements, cool roofs, and urban gardens in regions should be encouraged [13,81,82].

The other significant implication of the results relates to the strategies of the heat source–sink
landscape patterns to alleviate the UHI effect. The expansion of the impervious surface areas is
an established trend in the rapid process of urbanization [3]. This phenomenon was observed in
Zhengzhou City from 1996 to 2014, and elsewhere in Chinese megacities and the world [83–85].
The rapid increase in impervious surface and the consequences of urbanization on the thermal
environment are common to many other megacities in the world [86,87]. For example, concerning
the relationships between AI, PD, and PLAND of heat source landscapes, Zhengzhou City was
similar to Guangzhou, Shenzhen, and Wuhan [3,5,57], while in terms of the relationships between
AI and SHAPE_MN of heat sink landscapes, Zhengzhou City was consistent with Bangkok, Jakarta,
and Manila in southeast Asia [22]. Hence, given the situation and reality of Zhengzhou City and
other megacities in rapid-development regions of the world, remarkably reducing the total amount of
developed built-up areas is unrealistic. The findings observed in Zhengzhou City can provide useful,
valuable information to relieve the effect of urbanization on the urban thermal environment. On the
one hand, the results of this study may help urban planners optimize the spatial configurations of
land cover landscapes to reduce the UHI effect. Reasonably adjusting the spatial distribution of heat
source patches and increasing the diversity of landscape spatial configuration are effective ways to
alleviate the thermal environment effect in future urban development. Dispersing built-up surfaces
by arranging various green spaces in the surrounding areas could enhance the exchange of energy
between them, which could generate cooling island effects. On the other hand, suitably regulating
urban landscape morphology and ensuring a reasonable geometry of landscape patches are also
conducive to mitigating the UHI effect [3,5]. Meanwhile, larger and contiguous heat sink patches,
including green spaces and water, can contribute to optimizing the diversity of urban landscape spatial
configurations and significantly decreasing the magnitude of LST. In addition, the increase in shape
complexity, scale, and total patch edges of heat sink patches would also be beneficial for mitigating the
UHI effect.

4.4. Limitations

The present study has synthetically analyzed the spatiotemporal evolution of LST and revealed the
detailed relationships between landscape patterns and LST. However, there are some factors, including
socio-economic transformation and seasonal variation, that were not included in the classification
of heat sources and sinks due to limited data accessibility. Therefore, they are likely to exert certain
impacts on the investigation of the relationship between urban landscape and LST. Besides this,
long-series Landsat images can reduce the effect of climate background on LST and obtain better
LST values, but due to the influence of weather factors such as cloud pollution and precipitation,
the available images are limited, so long time series data cannot be obtained; this is also a limitation
of this paper. In addition, the different biophysical conditions in urban regions commonly result
in spatial heterogeneity of the landscape pattern. However, the heterogeneous effects of landscape
pattern on LST were not considered sufficiently in correlation analysis using the statistical models.
Hence, in future study, more and longer time series data should be included when possible, and the
findings under different seasonal conditions and meteorological parameters should be compared.
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Meanwhile, the heterogeneous effects of urban landscape on the thermal environment should be
seriously considered by a suitable statistical model.

5. Conclusions

This study investigated the spatiotemporal variation of LST in Zhengzhou City, China between
1996 and 2014 using thermal remote sensing and geospatial approaches. The results reveal that the
overall mean LST has increased by 2.72 ◦C in the study area, which indicates that the local climate
of Zhengzhou City and its environmental conditions have been influenced by the formation of the
UHI phenomenon. This observed increasing trend in overall mean LST is consistent with the process
of rapid urbanization in the study area, which led to the dramatic increase in the impervious surface
areas and the substantial loss of vegetation coverage.

In addition, based on a comprehensive assessment of the contributions of various LULC types
to the thermal environment, we identified the heat source and heat sink landscapes for the thermal
environment. The relationships between landscape patterns and LST were also examined by applying
correlation analysis.

The results revealed significantly different impacts of heat source and heat sink landscape on LST,
and it was determined that the impact on LST is not only due to urban landscape composition but
also to its size, shape, and spatial configurations. However, landscape compositions have stronger
influence on LST than spatial configurations. For the heat source landscape patches, an increase in
their proportion and density would strengthen the UHI effects, while adjusting the spatial distribution
and abundance of urban landscape are effective ways to reduce LST. For the heat sink landscape
patches, an increase in their size, density, and aggregation would enhance cooling effects. Meanwhile,
increasing the total patch edges and shape complexity of heat sink patches should be considered as
ways to alleviate the thermal environment effect. In general, these results have important implications
for urban planners in designing and optimizing the urban landscape pattern to mitigate the UHI effect,
so that the study area can have a healthier living environment and enhance sustainable development.
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