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Abstract: Canopy hyperspectral (HS) sensing is a promising tool for estimating rice (Oryza sativa
L.) yield. However, the timing of HS measurements is crucial for assessing grain yield prior to
harvest because rice growth stages strongly influence the sensitivity to different wavelengths and
the evaluation performance. To clarify the optimum growth stage for HS sensing-based yield
assessments, the grain yield of paddy fields during the reproductive phase to the ripening phase
was evaluated from field HS data in conjunction with iterative stepwise elimination partial least
squares (ISE-PLS) regression. The field experiments involved three different transplanting dates
(12 July, 26 July, and 9 August) in 2017 for six cultivars with three replicates (n = 3 × 6 × 3 = 54).
Field HS measurements were performed on 2 October 2017, during the panicle initiation, booting,
and ripening growth stages. The predictive accuracy of ISE-PLS was compared with that of the
standard full-spectrum PLS (FS-PLS) via coefficient of determination (R2) values and root mean
squared errors of cross-validation (RMSECV), and the robustness was evaluated by the residual
predictive deviation (RPD). Compared with the FS-PLS models, the ISE-PLS models exhibited higher
R2 values and lower RMSECV values for all data sets. Overall, the highest R2 values and the
lowest RMSECV values were obtained from the ISE-PLS model at the booting stage (R2 = 0.873,
RMSECV = 22.903); the RPD was >2.4. Selected HS wavebands in the ISE-PLS model were identified
in the red-edge (710–740 nm) and near-infrared (830 nm) regions. Overall, these results suggest that
the booting stage might be the best time for in-season rice grain assessment and that rice yield could
be evaluated accurately from the HS sensing data via the ISE-PLS model.
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1. Introduction

Laos is among the major rice (Oryza sativa L.) consuming countries in South-East Asia [1].
Even though Laos achieved self-sufficient rice production status in the late 1990s, and the national
economy has continuously grown, rice remains the main staple food for people in Laos, and its demand
is continuously growing [2]. Thus, in-season assessment of rice grain yield could benefit farmers
and rice-processing industries by quantifying produce supply and market prices. Rice yield can be
predicted by crop growth simulation models whose inputs are related to a wide range of environmental
variables (e.g., air temperature and solar radiation) [3], and rice yield is generally related to crop growth
and the nitrogen (N) status before the heading stage [4,5]. Therefore, indicators related to growth and
the N status before the heading stage have been applied in various models to predict yield variation
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among cultivars [6,7]. However, in Laos and other developing countries, these data may not be readily
available because gathering and accumulating such environmental data is difficult.

Canopy hyperspectral (HS) reflectance measurements are increasingly being used as a reliable
method for the timely assessment of crop growth and nutritive status [8–10]. The timing of the
measurements is crucial for the in-season assessment of grain yield because growth stages strongly
influence the sensitivity to different wavelengths and the prediction performance [11–13]. The spectral
signature responds to changes in aboveground biomass (BM), more precisely, leaf area index (LAI) and
chlorophyll contents [14]. The green LAI, defined as the one-sided green leaf area per unit horizontal
ground area [15], is directly related to the growth status of crops [16] and largely influences the canopy
spectral reflectance. Leaf chlorophyll contents are vital pigments for photosynthesis, and can provide
information on the physiological state of the crops. The leaf chlorophyll contents are strongly correlated
with nitrogen (N) content [17], and can be used for indirect estimation of crop N status at canopy
level [18,19]. Moreover, when multiplying LAI by chlorophyll contents (LAI × Chl), it is expected to
have a more robust relationship with canopy N status among years and development stages [18].

A common and widely used approach involves developing relationships between
ground-measured biophysical parameters (e.g., LAI and BM) and vegetation indices (VIs) [20–22], such
as the normalized difference vegetation index (NDVI) [23] and relative vegetation index (RVI) [24].
These VIs perform well during the early stages of crop growth, but the predictive accuracy greatly
decreases during the late growth stages, especially after the heading stage. A major issue with the
use of VIs centers on canopy reflectance being strongly affected by both structural (e.g., LAI) and
biochemical (e.g., chlorophyll) properties of the canopy [25]. During the late period of crop growth,
panicles change the canopy structure of crops and affect crop canopy spectral reflectance. The VIs
are influenced by saturation effects under moderate to high biomass conditions (LAI > 2.5–3.0 in
NDVI) [26]. When the canopy reaches 100% coverage, the amount of red light absorbance by the leaves
rapidly reaches a peak, while the near-infrared (NIR) scattering continues to increase. As a result,
once the rice canopy is closed, the NIR reflectance will continue to rise, but the red reflectance will
show only modest decreases, resulting in only slight changes in the VIs [26].

Most VIs use two or three wavebands, while multivariate analysis can provide more flexibility in
choosing individual narrow wavebands and improve the model’s ability to estimate the biophysical or
biochemical properties of rice plants [27,28]. Thus, stepwise multiple linear regression (MLR) analysis
has been widely used to select critical wavebands for estimating biophysical (biomass, LAI) [12,26,27]
and biochemical properties [29,30]. For the MLR analyses, 4–6 wavebands are generally used in the
final model to avoid the over-fitting issue. For example, Gnyp et al. [27] developed MLR models
to estimate biomass in rice at different growth stages, and obtained the best model at the tillering
stage using four wavebands at 672, 696, 814, and 707 nm. Partial least squares (PLS) is another
technique that has been widely applied to estimate biophysical and biochemical parameters from field
HS measurements [10,31,32]. Unlike MLR, PLS regression is a bilinear calibration method [33] that
can treat all available spectral wavebands without multicollinearity issues. PLS was initially used
for laboratory spectroscopy but is now increasingly used for analyzing HS data of wheat [34–36],
maize [37], paddy fields [8,9,32,38] and grasslands [39–42]. Previous studies have indicated that the
selection of appropriate wavebands can refine the predictive ability of the standard full-spectrum PLS
(FS-PLS) by optimizing important spectral wavebands [43,44]; therefore, several waveband selection
methods have been developed, such as iterative stepwise elimination PLS (ISE-PLS) [45] and genetic
algorithm PLS (GA-PLS) [46]. Nonetheless, no study has used the wavelength selection method on
PLS to estimate rice yield from canopy reflectance at different growth stages.

In this study, we aimed to clarify the optimal timing for assessing rice yield from field HS
measurements in Laos. Using canopy HS data, we also compared the predictive abilities of ISE-PLS and
FS-PLS to evaluate the relationship with grain yield during the reproductive stages (panicle initiation
and booting) to the ripening stage.
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2. Materials and Methods

2.1. Experimental Site and Field Design

This study was conducted in an experimental field at the Rice Research Center (RRC) of the
National Agriculture and Forestry Research Institute (NAFRI) (18◦8′56.65”N, 102◦44′9.78”E), in the
northern part of Vientiane in Laos (Figure 1). The soil type is characterized by clay loam (CL, 0–30 cm)
and light clay (LiC, 40–60 cm).

The experiment was performed during the growing period in 2017 using a randomized complete
block design with three replications (R1–R3), shown in Figure 1. Each plot size was 5 m × 2 m.
The treatments included three different transplanting dates (T1: 12 July, T2: 26 July, and T3: 8 August)
and six rice cultivars (cv.) (V1: cv. Tadokkham [TDK] 8, V2: cv. TDK11, V3: cv. TSN7, V4: cv.
Homsavanh [HSV], V5: cv. Khaophorbane [KPB], and V6: cv. Khaokongkane [KKK]); V4, V5, and V6
were planted in a village in southern Laos, V1, V2, and V3 were improved cultivated varieties expected
to be introduced to southern rain-fed paddy fields in the future. In southern Laos, there are wide areas
of rain-fed paddy fields and it is also an important area to support rice production.

In all the plots, 30-day-old seedlings were transplanted, and the planting density was 25 hills
m−2 (0.2 m × 0.2 m). N-P2O5-K2O (30-30-30; kg ha−1) fertilizer was applied at transplanting, and N
(15 kg ha−1) was applied at 25 and 50 days after transplanting (DAT). The weeds were controlled by
hand when necessary. Irrigation water was continuously supplied during the growing period.

Figure 1. Location of the experimental field at the Rice Research Center (RRC) of the National
Agriculture and Forestry Research Institute (NAFRI), and the plot design. V1–V6: Rice varieties
(TDK8, TDK11, TSN7, HSV, KPB, and KKK); R1–R3: Three replicates; T1–T3: Transplanting date (12,
26 July and 9 August 2017); DAT: Days after transplanting until the canopy reflectance measurement
on 2 October 2017.

2.2. Plant Sampling and Determination of Grain Yield

The harvest dates varied depending on differences in both the transplanting dates and the rice
varieties. Figure 2 shows the transplanting, flowering (start of the heading period), and harvest dates.
Plants were sampled on the harvest dates: T1 was harvested from 18 October to 27 October (day of year
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[DOY] = 291–300), T2 was harvested from 27 October–10 November (300–314), and T3 was harvested
from 6 November to 16 November (314–320) in 2017. At each sampling, the biomass (BM) was collected
by clipping ten rice hills (each hill had 3 rice plants) as five hills from the 4th and 6th columns among
the ten rows (every four hills in the middle) of each plot to avoid a border effect [47,48], defined as the
difference in the performance between external plants and internal plants in a plot. The rice yield was
estimated at a 14% moisture content (MC) for each treatment.

Figure 2. Transplanting, flowering, and harvest dates of rice for each single plot in the
experimental field.

2.3. Canopy HS Measurements

Canopy HS measurements were carried out on 2 October 2017. On that date, the rice growth
stages at T1, T2, and T3 included the ripening (with the exception of V4), booting, and panicle initiation
stages, respectively. To help explain the timing, Figure 3 shows the days to flowering (DTF) and days
to harvest (DTH) from the date of the HS field measurements. The negative values of DTF and DTH
indicate the number of days before flowering or harvesting, respectively, while the positive DTF values
indicate the number of days after flowering. The mean DTF values of the T1, T2, and T3 data sets were
4.11, −4.83, and −13.9 days, respectively, and the mean DTH values of the T1, T2, and T3 data sets
were −20.5, −30.7, and −39.2 days, respectively.

Canopy reflectance spectra were obtained using a portable MS-720 spectroradiometer
(EKO Instruments, Tokyo, Japan). The spectroradiometer has a spectral sampling wavelength of 3.3 nm
in the 350–1050 nm range, which was reproduced as a 1 nm-resolution wavelength for outputting the
data using MS720 software ver. 1.0 (EKO Instruments, Tokyo, Japan). A Spectralon reference panel
(Labsphere, Inc., Sutton, NH, USA) was used to optimize the MS720 prior to capturing every five
canopy reflectance measurements at each plot. The five spectral readings per plot were averaged for
further analyses. The measurements were performed between 12:30 and 14:00 local time (GST+7) on
a clear-sky day. For the irrigated rice field, the water and soil background influence the plant canopy
reflectance [49,50], especially in the early growth stage when the vegetation cover is low. To reduce
the background effects, the sensor head was held approximately 60 cm above the canopy at nadir.
The radiometer had a 25◦ field of view (FOV), producing a view area with a 22 cm diameter at the
canopy level.
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Figure 3. Days to flowering (DTF) and days to harvest (DTH) from the date of field hyperspectral (HS)
measurements on 2 October 2017.

2.4. Preprocessing of Spectral Data

To make the data processing easier to understand, Figure 4 shows a flowchart depicting a general
overview of the methodology.

The spectral data in both edge wavelength regions (350–399 nm and 931–1050 nm) were eliminated
due to a low signal-to-noise ratio generated by the instrument; the remaining 531 bands (400–930 nm)
were used for analyses. The spectral data were smoothed using the Savitsky-Golay smoothing filter [51].
A third-order, 15-band moving polynomial was fitted via the original reflectance signatures.

Figure 4. Flowchart depicting a general overview of the methodology.
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2.5. PLS Regression Analysis

FS-PLS and ISE-PLS were performed using smoothed reflectance data to evaluate the BM and
grain yield for all combined data (n = 54) and for the T1, T2, and T3 data sets (n = 18), respectively.
The FS-PLS equation is described as follows:

y = β1x1 + β2x2 + · · · + βkxk + ε (1)

where the response variable y is a vector of the grain yield, the explanatory variables x1 to xk are the
surface reflectance values for spectral bands 1 to k (400, 401, . . . , 930 nm), β1 to βk are the estimated
weighted coefficients, and ε is the error vector. To avoid over-fitting the model, the optimal number of
latent variables (NLV) was determined by leave-one-out (LOO) cross-validation, which was based on
the minimum value of the root mean squared error of cross-validation (RMSECV) [52]. The RMSECV
was calculated as follows:

RMSECV =

√
∑n

i = 1
(
yi − yp

)2

n
(2)

where yi and yp are the measured and predicted grain yields for sample i, respectively, and n is the
number of samples in the data set.

With respect to ISE-PLS, the ISE method eliminates noisy variables (wavebands) and selects useful
predictors. When PLS models include large numbers of redundant variables or outliers, the models’
predictive abilities may perform poorly, while the ISE method can overcome such problems. The model
performance depends on the importance of predictors (zi), which is computed as follows:

zi =
|βk|sk

∑K
k = 1|βk|sk

(3)

where sk is the standard deviation and βk is the regression coefficient; both sk and βk correspond to the
predictor variable of waveband k.

The PLS regression model was first developed using all available wavebands (531 bands,
400–930 nm). To create a scope in which useless predictor variables were removed and the predictive
ability was improved, each zk predictor was evaluated, and the minimum values were eliminated for
being less-informative wavebands. The PLS model was subsequently re-calibrated with the remaining
predictors [53]. The model-building procedure was then repeated until the final model was calibrated
with the maximum predictive ability. The final model was that with the maximum predictive ability,
as defined by the minimum RMSECV value [54].

2.6. Predictive Ability of PLS Regressions

To assess the predictive abilities of the FS-PLS and ISE-PLS models, the coefficient of determination
(R2), RMSECV, and residual predictive deviation (RPD) in conjunction with LOO cross-validation
were used in this study. High R2 and low RMSECV values indicate the best model for predicting
grain yield. The RPD was defined as the ratio of the standard deviation (SD) of the reference data
for predicting the RMSECV [55]. For the performance ability of the calibration models, the RPD is
suggested to be at least 3 for agricultural applications; RPD values between 2 and 3 indicate a model
with a good predictive ability, 1.5 < RPD < 2 indicates an intermediate model needing improvement,
and an RPD < 1.5 indicates that the model has a poor predictive ability [56].

All the data handling and linear regression analyses were performed using Matlab software ver.
9.0 (MathWorks, Sherborn, MA, USA).
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3. Results and Discussion

3.1. Grain Yield

The timing of transplanting to paddy fields is an important element to maximize rice productivity
under various environments and is closely related to the timing of heading and maturity [57].
Table 1 shows the descriptive analysis results for the grain yield of the combined data set (n = 54)
and each individual data set (n = 18). In the combined data set, treatments (transplanting dates and
rice varieties) generated a wide range of yield (101.3–462.0 g m−2). Among the data sets, compared
with those of T1 (292.9 g m−2, coefficient of variation [CV] = 26.5) and T3 (265.0 g m−2, CV = 27.5),
the mean grain yield and variance of T2 were higher (327.9 g m−2) and lower (CV = 17.3), respectively.
Although the influence of the variety was included, T2 (26 July) was considered the timing of optimal
transplanting to maximize yield (Ikeura et al. unpublished).

Table 1. Descriptive statistics of rice grain yield (g m−2).

Data Set n Min Max Mean SD CV

Combined 54 101.3 462.0 295.3 73.1 24.8
T1 18 133.0 425.6 292.9 77.5 26.5
T2 18 240.7 462.0 327.9 56.8 17.3
T3 18 101.3 375.1 265.0 72.9 27.5

n, number of samples; SD, standard deviation; CV; coefficient of variation (= Mean/SD × 100%).

3.2. Relationships between Canopy Reflectance and Grain Yield, BM

Figure 5 shows the mean canopy reflectance and Pearson’s correlation coefficient (r) values
between grain yield, BM, and reflectance spectra for the T1, T2, and T3 data sets. Differences in mean
reflectance were observed mainly in the green (520–580 nm) and NIR (740–930 nm) wavelength regions.
With respect to the mean reflectance at the booting stage (T2), the reflectance values in the visible
regions (400–680 nm) were lower than those in the other data stages, while the values were higher
in the NIR region (681–930 nm). The visible wavelength regions are related mainly to absorption by
chlorophyll a (centred at 430 and 660 nm) and chlorophyll b (centred at 640 nm), while reflectance in
the NIR region is determined mainly by the multiple scattering of light within the leaf due to internal
leaf structure characteristics [58,59].

Regarding correlations with grain yield at the ripening stage (T1), the shape showed the opposite
tendency to that shown by the other stages (Figure 5b). A similar trend was also reported by
Gnyp et al. [27], who reported that the pattern of correlation curves was similar at the different stages
(tillering, stem elongation, and booting stage) except for the heading stage. In the present study,
the r values ranged between −0.45 and 0.35. Even though the r values were slightly insignificant,
the reflectance values at 550 nm and 709–711 were highly correlated with the grain yield from the
panicle initiation stage (T3) to the booting stage (T2). The 550 nm region is near the peak of green
reflectance [60], whereas the 700–780 nm region is known as the red-edge region, which is strongly
related to the chlorophyll concentration and has been used to assess the N status of crops [61–64].
These two spectral regions have been used because of their high sensitivity to pigment contents in
various plant species [60,65]. At the ripening stage, leaf senescence that takes places in plants during
seed formation is accompanied by a progressive decrease in the photosynthetic pigments.

Similar to grain yield, the shape of correlations with BM at the ripening stage (T1) showed the
opposite tendency to the others (Figure 5c). Except for the booting stage (T2), the absolute r values
showed relatively higher values than that shown in grain yield. This might indicate that the canopy
HS reflectance was influenced by the BM more than the grain yield. Meanwhile, the canopy HS at the
booting stage is less sensitive than at other stages, which might be reflected by other factors relating to
the yield potential, which will be discussed more in the next section.
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Figure 5. Mean canopy reflectance (a) and correlation coefficient (r) between the grain yield (b),
biomass (BM) (c) and reflectance at each waveband for the T1, T2, and T3 data sets.

3.3. Grain Yield Evaluations with the FS-PLS and ISE-PLS Models

The cross-validated calibration results between canopy HS reflectance spectra and grain yields via
FS-PLS and ISE-PLS are shown in Table 2; the selected number of wavebands (NW) and the selected
NW as a percentage of the full spectrum (NW% = NW/whole waveband [531 bands] × 100) are
included. The NW (NW%) ranged from 2 to131 (0.4–24.7%). The optimum NLV ranged from 1 to
10 and was determined as the lowest RMSECV values calculated from LOO cross-validation to avoid
over-fitting the model. The ISE-PLS models showed better predictive accuracy than the FS-PLS models.
Figure 6 shows the relationships between the observed and cross-validated prediction values of grain
yield in each data set as predicted by the ISE-PLS models. These findings support previous results
indicating that the performance of FS-PLS models can be improved via waveband selection [42,52].

Overall, the best R2 and lowest RMSECV values were obtained with ISE-PLS at the booting stage
of the T2 data set (R2 = 0.843, RMSECV = 22.903). Moreover, low predictive accuracy from the combined
data could indicate that the in-season rice yield assessment depends on the appropriate growth stage
for canopy HS measurements. The RPD value indicated that the T2 data set used in the ISE-PLS
model accurately predicted the rice grain yield (RPD = 2.437). Although the predictive accuracy
for the T3 data set was lower, it could still be used confidently to make quantitative predictions by
ISE-PLS (RPD = 1.316). These results indicated that rice yield could be evaluated from HS data of the
reproductive phase, even though there were variations in the growth stage for cultivars in paddy fields.
Moreover, the booting stage (prior to flowering) of T2 could be the best timing for acquiring canopy
HS measurements to assess grain yield, and measurements after the flowering and heading stages
of T1 might be difficult. These findings are in agreement with those of previous studies in that the
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booting stage may be the best time for assessing rice grain yield with remote sensing technology [66,67].
The booting stage represents the peak period of nutrient growth for rice plants and has the highest
LAI, which can be attributed to the maximal photosynthetic capacity and yield potential.

Table 2. Optimum number of latent variables (NLV), coefficient of determination (R2), root mean
squared errors of cross-validation (RMSECV), and residual predictive values (RPD) from full-spectrum
partial least squares (FS-PLS) and iterative stepwise elimination PLS (ISE-PLS) models with a selected
number of wavebands (NW) and their percentages of the full spectrum (NW%).

Data Set Regression NLV R2 RMSECV RPD NW NW%

Combined
FS-PLS 3 0.113 68.927 1.050
ISE-PLS 2 0.157 66.734 1.085 2 0.4

T1
FS-PLS 1 0.009 86.114 0.875
ISE-PLS 2 0.023 80.216 0.939 84 15.8

T2
FS-PLS 3 0.078 58.480 0.944
ISE-PLS 10 0.843 22.903 2.437 11 2.1

T3
FS-PLS 8 0.301 66.418 1.068
ISE-PLS 7 0.479 54.088 1.316 131 24.7

Bold font represents RPD > 2.0.

Figure 6. Observed and cross-validated predicted values of rice grain yield (a–d) using ISE-PLS
regression for the combined (n = 54) and T1, T2 and T3 data sets (n = 18), respectively (see Table 2).

The improvement in grain yield is related to both BM (dry matter accumulation) and harvest
index (HI) [68], which can be explained by yield = HI × BM. Here, the relationship between canopy
HS data and BM is generally site-dependent and changes over time due to the changes in specific leaf
area, leaf ratio, and HI. In order to clarify the contribution of BM in yield evaluation of the present
study, linear regression analysis was also performed between BM and grain yield (Figure 7). The BM
at the harvest time correlated with the rice grain yield (R2 = 0.351, p < 0.01), but had a lower correlation
than that of the result of canopy HS assessments using T2 data. The result confirmed that the BM
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was one of the parameters to assess grain yield after the heading stage, but growth and nutritive
status assessed by canopy HS measurements before the heading stage were more reflective of the yield.
Historically, crop physiologists have studied the importance of increased BM after the heading stage
because the rice grain was determined during grain filling from heading to maturity stages [69,70].
However, recent researches clearly indicated that crop growth during the late reproductive period
related to the grain yield in rice [71,72]. Takai et al. [72] stated that, even if the rice varieties differed in
HI, the grain yield could be explained by the growth rate approximately two weeks before heading.
Their previous knowledge supports our findings that canopy HS measurements at the booting stage is
the best timing for assessing grain yield.

Figure 7. Relationship between BM and grain yield.

3.4. Important Wavebands for Predicting Rice Grain Yield

The selected wavebands from ISE-PLS with the mean reflectance spectra are shown in Figure 8.
In addition, Table 3 lists the main selected wavebands found within 20 nm of known absorption
features in the visible and NIR wavebands [58,61,64,73–75]. The red-edge (710–740 nm) wavelength
region was commonly selected in the majority of the ISE-PLS models, while the wavebands in the
visible region were selected in only the T3 data set (the panicle initiation stage). In the booting stage
of the T2 data set, the red-edge and NIR (830 nm) wavebands were selected in the final model and
exhibited good predictive accuracy.

The importance of these selected wavebands could be explained by process of N accumulation and
distribution during the rice growth stages. The accumulation and distribution of N in the vegetative
and reproductive organs of rice are the important processes in the determination of grain yield [76],
and leaves are major storage organs for N. From mid-tillering to 10 days after panicle initiation,
the period at which N uptake is maximal, 65% of the aboveground N is located within green leaf
blades [77]. Besides, the red-edge region is strongly related to LAI and chlorophyll concentration,
and indirectly correlated with leaf N [18]. Thus, the red-edge region was selected as having important
wavebands for the final model in this study. During the grain-filling period, a large amount of N
is required. The amount of N absorbed by the plant during this period is much smaller than the
amount of N that accumulates in the mature grains, and a large portion of grain N is translocated
from vegetative organs, especially leaf blades [78]. Therefore, canopy HS data at the ripening stage,
when leaf N diminishes, is not considered a suitable period for estimating rice yield.
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Figure 8. Canopy reflectance and selected wavebands (red bars) in the ISE-PLS models for the
(a) combined (n = 54) and (b) T1, (c) T2, and (d) T3 data sets (n = 18 per transplanting date).

Table 3. Selected wavebands from the iterative stepwise elimination partial least squares (ISE-PLS)
model to predict grain yield via previously known absorption features in the visible and near-infrared
(NIR) wavelengths.

Previously Known Wavebands with Related
Biochemical Components Waveband Selected in the Present Study from ISE-PLS

Wavelength
(nm)

Biochemical
Components References Combined T1 T2 T3

430 Chlorophyll a 58, 64 400, 411, 412,
433

- - 588–596
640 Chlorophyll b 58, 64 643–649
660 Chlorophyll a 58, 64, 73 690–694

700–780 Chlorophyll 61 714 723–749
706, 708, 712,
717, 719, 736,
740, 741, 744

731, 732,
747–762,
777–804

800 Lignin, Tannin 74 813, 820 809–813

- - 818–842,
861–866, 890

910 Protein 58, 75 893–910

930 Water, starch 58, 75 927 874–930 924, 926, 927,
929, 930

4. Conclusions

Timely and accurate rice yield assessments prior to harvest enable farmers and rice-processing
industries to quantify the production supply and market prices. In this study, we evaluated the
feasibility of using canopy HS data for in-season grain yield evaluations at the reproductive phase of
rice. We also investigated the performance of the ISE-PLS model by comparing it with the standard
FS-PLS model and discussed the importance of the selected wavebands for ISE-PLS.

Our results indicated that rice grain yield can be assessed by the ISE-PLS model, and the booting
stage was identified as the best time for in-season evaluations via canopy HS assessments. The selected
wavebands occurred in the red-edge and NIR wavelength regions. The selected wavebands in the
ISE-PLS model allowed assessments of rice grain yield with 84% accuracy. These findings suggest
that it is possible to evaluate rice yield from rice canopy reflectance approximately one month prior to
harvest (average DTH = −30.7 days) which could be useful information not only for famers but also
for rice processing industries to quantify rice supply and market prices. Moreover, the wavebands
selected with ISE-PLS in the booting stage could be tested by Sentinel-2 or other sensors from space.
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These wavebands could also be evaluated in a rain-fed rice field by HS sensors or multi-spectral
cameras onboard an unmanned aerial vehicle (UAV). Thus, the models and methods should be further
examined with multi-year data sets.
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