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Abstract: Land cover information is vital for research and applications concerning natural resources
and environmental modeling. Accuracy assessment is an important dimension in use and production
of land cover information. GlobeLand30 is a relatively new global land cover information product
with a fine spatial resolution of 30 m and is potentially useful for many applications. This paper
describes the methods for and results from the first country-wide and statistically based accuracy
assessment of GlobeLand30 2010 land cover dataset over China. For this, a total of 8400 validation
sample pixels were collected based on a sampling design featuring two levels of stratification
(ten geographical regions, each with nine or eight land-cover classes). Validation sample data with
reference class labels were acquired from visual interpretation based on Google Earth high-resolution
satellite images. Error matrices for individual regions and entire China were estimated properly
based on the sampling design adopted, with the former aggregated to get the latter through suitable
weighting. Results were obtained, with agreement at a sample pixel defined both as a match between
the map (class) label and either the primary or alternate reference label therein and, more strictly, as a
match between the map label and the primary reference label only. Based on the former definition
of agreement, the overall accuracy of GlobeLand30 2010 land cover for China was assessed to be
84.2%. User’s accuracy and producer’s accuracy were both greater than 80% for cultivated land,
forest, permanent snow and ice, and bareland, with user’s accuracy for water bodies estimated 94.2%
(82.1% for wetland, 79.8% for artificial surface) and producer’s accuracy for grassland estimated
89.0%. These indicate that GlobeLand30 2010 depicts land cover circa 2010 in China quite accurately,
although estimates of accuracy indicators based on the latter definition of agreement were lower
as expected with an estimated national overall accuracy of 81.0%. Regional and class variations in
accuracy were revealed and examined in the light of their associations with land cover distributions
and patterns. Implications for use and production of GlobeLand30 land cover information were
discussed, so were commonality and lack of it between GlobeLand30 and other fine-resolution land
cover products.
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1. Introduction

As Earth observation technologies have evolved, huge amount of remote-sensing image
data covering the whole globe has been acquired. Multi-scale land cover datasets are widely
used in the Earth surface processes research, ecosystem assessments, environmental modeling,
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and sustainable development planning [1–3]. Several global land cover products have been
developed by national and international organizations during the past decades. These include,
for example, the International Geosphere-Biosphere Program Data and Information System’s land
cover (IGBP DISCover) data product (1 km spatial resolution) [4], the University of Maryland (UMD)
land cover maps (1 km resolution) [5], the Global Land Cover 2000 (GLC2000) maps from the European
Commission’s Joint Research Center (JRC) (1 km resolution) [6], the Moderate Resolution Imaging
Spectroradiometer (MODIS) land cover maps (500/1000 m resolution) [7], the GlobCover land cover
maps from European Space Agency (ESA), 2005–2006/2009 (300 m resolution) [8,9], the Climate
Change Initiative Land Cover maps (CCI-LC) from ESA, 2000/2005/2010 (300m resolution) [10],
and the Global Land Cover by National Mapping Organizations (GLCNMO) maps, 2003/2008/2013
(500/1000 m resolution) [11]. Recently, GlobeLand30 land cover datasets have been developed by the
National Geomatics Center of China, based on integration of pixel- and object-based classification
followed by knowledge-based interactive verification of classification results (shortly known as the
POK-based approach) [12]. This product has been available worldwide since September 2014 [12].
In comparison with global land cover products previously developed, GlobeLand30 has the finest
spatial resolution of 30 m and thus can provide information, in greater details, about land cover status
and dynamics.

The importance of accuracy assessment is increasingly recognized. Accuracy assessment helps
map users to evaluate the utility of land cover maps for their intended applications [13]. It also informs
map productions so that map quality may be improved through adopting more robust classifiers,
exploring more informative class-discriminant features, incorporating extra image data or ancillary
data, or a combination of these.

To verify GlobeLand30’s accuracy globally, a preliminary assessment was conducted based on
a two-rank sampling strategy. In first-rank (first-stage) sampling, map sheets were selected globally,
while in second-rank (second-stage) sampling sample data for each land cover type within each of
the selected map sheets were collected [14]. Eighty sample map sheets were selected from a total of
847 map sheets in the first-rank sampling. A total number of 159,874 sample pixels were selected
for the assessment of GlobeLand30 2010. The overall accuracy of the product was estimated about
80.3 ± 0.2% [15].

Regional and country-wide accuracy assessments for GlobeLand30 have also been carried out
by researchers from many countries. Overall accuracies were estimated about 86% for Thessaly,
Greece [16], 87% for Siberia [17], 90% for Kyiv Oblast, Ukraine [18], 78% for Iran [19], 59% for
Kenya [20], 46% for Central Asia [21], 80% for Nepal [22], 92% for land surface water in Greece [23],
and 80% for cropland in three continents with high risk of food insecurity [24]. Validation of
GlobeLand30 was done also through comparisons with existing land cover products in Germany [25],
Italy [26], Portugal [27] and East Africa [28], with rates of agreement ranging from 74% to 93%.

However, there have been few accuracy assessment efforts for GlobeLand30 in China. Below,
we reviewed relevant results from country-wide, thematic (e.g., cropland), and regional assessments,
respectively. To compare and assess seven global land cover datasets (including GlobeLand30) in
China, Yang et al. [29] manually collected five sets of multi-scale validation sample units (VSUs),
with spatial resolution ranging from 600 m × 600 m to 2 km × 2 km. It was found that GlobeLand30
2010 was the most accurate datasets examined, with an overall accuracy of 82.4% reported based
on 1063 validation sample units (with 600 m resolution, implying coarsening for GlobeLand30 and
exclusion of sample units at heterogeneous locations), while the overall accuracies of the other datasets
ranged from 33.9% to 67.2% [29].

Lu et al. [30] compared five global cropland datasets in China for the year 2010. Cropland census
data at the provincial and regional scales were used to evaluate the cropland areas derived from
these datasets, while 5704 validation sample units (including reference data at 2130 test sample units
originally acquired for validating the Finer Resolution Observation and Monitoring of Global Land
Cover (FROM-GLC) dataset by Gong et al. [31]) were utilized to verify locations of cropland parcels.
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The results showed that GlobeLand30 datasets are the most accurate for cropland area estimation,
with an overall accuracy of 79.6%.

Regional accuracy assessments of GlobeLand30 were also undertaken in China. For example,
accuracy assessments of GlobeLand30 2010 in Shaanxi Province and Henan Province indicated overall
accuracies of 80.0% and 81.5%, respectively [32,33].

Clearly, validation results in [30] and [32,33] need to be extended in terms of thematic and
geographic coverages, respectively. For the country-wide assessment reported by Yang et al. [29],
sampling was not probability-based, as admitted. Besides, the assessment was not done in its nominal
(spatial) resolution of 30 m but in a coarsened resolution of 600 m. This country-wide assessment
would be usefully strengthened with respect to statistical soundness and resolution refinement to
enable inter-comparisons between classification accuracies of products with comparable resolution.

We should look for theoretical guidance and good practice examples regarding accuracy
assessment from the literature. For example, the National Land Cover Database (NLCD) series
products (also of 30 m resolution), which were developed by the MultiResolution Land Characteristics
(MRLC) Consortium (www.mrlc.gov), provide consistent land cover information in the United States
from decadal Landsat satellite imagery and other supplementary datasets [34]. Accuracy assessments
were carried out for NLCD land cover following statistical framework and procedures well established
as in [35–39]. To facilitate sustainable research and developments concerning use and production of
GlobeLand30 datasets globally and in China, in particular, country-wide assessments of GlobeLand30
over China should be pursued based on well established procedures of sampling design, response
design, and analyses. This is what this paper seeks to contribute to.

The remainder of the paper is organized as follows. Section 2 describes the methods for accuracy
assessment of GlobeLand30 land cover in China. Section 3 reports accuracy assessment results obtained
for different regions and for entire China. In Section 4, the main results are discussed, with patterns of
misclassifications summarized, followed by conclusion in Section 5.

2. Methods

In GlobeLand30 maps, ten land-cover classes (as defined in Table 1) are depicted across the world
at a nominal pixel resolution of 30 m, in accordance with a hierarchical classification method featuring
pixel classification, object-based post-processing, and knowledge-based interactive verification [15].
In this paper, the accuracy assessment of GlobeLand30 2010 was performed by following the guidance
suggested by leading scientists in the field, such as Stehman et al. [40] and Olofsson et al. [41].
According to these authors, three major components of the accuracy assessment are sampling design,
response design, and analysis, which are described in this section.

In this paper, the spatial units for sampling and analysis concerning accuracy assessment are
pixels. Although there is debate over the most appropriate sample unit for accuracy assessment,
Stehman et al. [42] suggested that using pixels as sample units could avoid many of the complications
that might arise when other spatial support units (e.g., blocks of pixels and polygons) were used.
Use of pixels as units for sampling and analysis is a well-established practice in the validation of NLCD
land cover information [35–39].

2.1. Sampling Design

It may not be feasible to compare GlobeLand30 maps with reference data of complete coverages
even for a county let alone whole China (with 34 provincial administrative regions) pixel by pixel.
Sampling design determines both the cost and statistical rigor of accuracy assessment [43]. By sampling
design, we select certain number of locations at which reference data will be collected. In this
paper, two-level stratified random sampling is adopted. The first level of stratification is based on
partitioning Chinese administrative regions (including the regions of Hong Kong, Macao, and Taiwan,
but with small islands and the seas excluded) into 10 geographical regions (Figure 1). The regional
stratification helps to reduce standard errors in accuracy estimates, facilitate regional reporting of
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accuracy, and provide an indication of how accuracy varies spatially across China. The second level of
stratification is by GlobeLand30 map classes (Table 1 and Figure 1).

Table 1. Classification, codes, and definition of each land cover type of GlobeLand30.

Code Type Definition

10 Cultivated land Land used for agriculture, horticulture and gardens, including paddy
fields, irrigated and dry farmland, vegetable and fruit gardens, etc.

20 Forest Land covered by trees, vegetation covers over 30%, including deciduous
and coniferous forests, and sparse woodland with cover 10–30%, etc.

30 Grassland Land covered by natural grass with cover over 10%, etc.

40 Shrubland Land covered by shrubs with cover over 30%, including deciduous and
evergreen shrubs, and desert steppe with cover over 10%, etc.

50 Wetland
Land covered by wetland plants and water bodies, including inland
marsh, lake marsh, river floodplain wetland, forest/shrub wetland,
peat bogs, mangrove and salt marsh, etc.

60 Water bodies Water bodies in land area, including river, lake, reservoir, fish pond, etc.

70 Tundra
Land covered by lichen, moss, hardy perennial herb and shrubs in the
polar regions, including shrub tundra, herbaceous tundra, wet tundra,
and barren tundra, etc.

80 Artificial Surfaces
Land modified by human activities, including all kinds of habitation,
industrial and mining area, transportation facilities, and interior urban
green zones and water bodies, etc.

90 Bareland Land with vegetation cover lower than 10%, including desert, sandy
fields, Gobi, bare rocks, saline and alkaline land, etc.

100 Permanent snow and ice Lands covered by permanent snow, glacier and icecap.

Figure 1. Regional stratification for GlobeLand30 2010 accuracy assessment over China. The boundaries
of 10 geographic strata are shown in black. The labels “R1–R10” identify the regions used to
geographically stratify sample data (e.g., R1 = Region 1).
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In terms of sample size, each class in each region is allocated 100 sample pixels. The statistical
explanation is that 100 sample pixels per stratum results in an expected standard error of 0.05 for
simple random sampling within a stratum, if the true user’s accuracy is 50% with a confidence level
of 95% [35]. It should be noted that the tundra area in China is almost zero and it was not included
in the validation. In addition, permanent snow and ice is only distributed in R1–R4. Thus, in total,
8400 sample pixels were collected for the accuracy assessment, as shown in Table 2.

Table 2. The regional distributions of the mapped land-cover type (percent of area) for GlobeLand30
2010 over China. The sample size is 100 for all land-cover types in all regions with the exception that
permanent snow and ice is not sampled in R5–R10.

Type R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Cultivated land 5.42 0.36 13.09 28.51 12.01 27.19 45.01 57.69 39.97 43.71
Forest 1.15 8.45 10.46 45.65 11.55 61.22 42.27 16.81 44.63 37.62

Grassland 21.95 64.28 45.96 20.82 47.75 5.79 4.95 15.52 4.42 12.03
Shrubland 0.83 1.95 1.06 2.87 0.83 0.95 0.06 0.07 0.11 0.00
Wetland 0.29 0.18 0.40 0.39 0.52 0.02 0.33 0.31 0.45 1.36

Water bodies 0.64 2.59 1.34 0.60 0.46 2.32 2.79 1.73 4.18 1.51
Artificial Surfaces 0.29 0.03 0.55 0.59 0.77 2.49 4.56 7.81 6.18 3.09

Bareland 67.0 17.75 26.61 0.33 26.17 0.01 0.02 0.06 0.07 0.67
Permanent snow and ice 2.43 4.4 0.50 0.24 0.0 0.0 0.0 0.0 0.0 0.0
Country-wide proportion 17.2 12.68 14.56 11.89 12.08 4.71 5.94 5.55 7.08 8.31

2.2. Response Design

Reference land-cover labels for sample pixels are usually obtained from images of finer resolution.
Online access to reference images is greatly enhanced thanks to Google Earth. GlobeLand30 2010
datasets for China are available in raster format with 54 tiles; the datasets are provided in WGS84
(World Geodetic System 1984) reference system and UTM (Universal Transverse Mercator) projection.
Before selecting sample locations, the datasets need to be re-projected into the Web Mercator projection
used for Google Earth. Other available datasets (e.g., Bing maps, Yahoo maps and color composites of
Landsat images) were used when Google historical images of good quality were not available.

Three experienced interpreters carried out reference data acquisition. All reference data for each
of individual regions were collected by a single interpreter. Interpreters had no a priori knowledge of
map land-cover labels to avoid interpreter bias [36]. In addition to the primary reference land-cover
labels, alternate land-cover labels should also be recorded for sample locations which it would be more
appropriately labeled with both reference labels than any one alone. A nominal level of confidence
was assigned to reference land-cover labels, namely “confident”, “somewhat confident”, and ”not
confident”, as in Wickham et al. [36]. The acquisition dates of Google historical images (used for
determining the reference land-cover classes) and satellite images (used for map production, acquired
by Landsat satellites and the Chinese Environmental and Disaster satellite) were also recorded, since the
satellite images used for GlobeLand30 2010 were not restricted to the year 2010 alone.

After the first round of visual image interpretation, verification of “somewhat confident” and
”not confident” reference class labels was performed by the project manager, who was typically the
most experienced photo-interpreter in the team, to minimize errors in reference data. Consistency in
reference label assignments within the team is also important, but precedence is given to the project
manager’s assignments when label assignments disagree. Especially, great attention should be paid to
“not confident” labels, which are allowed to be re-assigned to “somewhat confident” or “confident”
labels. In this step, ancillary data, such as DEM data, local photos, and Landsat images could be used
to assist image interpretation.

With consideration for positional uncertainty and thematic ambiguity between land-cover map
and reference data, agreement is registered for a sample pixel if the map class matches either the
primary or alternate reference label therein [39]. To examine the effects of surrounding pixels on
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accuracy and to increase the reliability of interpretation, reference land-cover labels in a 3 × 3-pixel
neighborhood centered on each sample pixel were also collected.

2.3. Analysis

By cross-tabulation between map and reference classes at sample pixels, error matrix can be
constructed, allowing for estimating accuracy indicators, such as overall accuracy, user’s accuracy,
and producer’s accuracy [44]. An example error matrix, as shown in Table 3, is constructed from sample
counts, where an element nij represents the number of sample pixels classified as map category i
(i = 1, 2, . . . , k; k being the total number of candidate classes) but actually verified to be reference
category j (j = 1, 2, . . . , k). In Table 3 (and Table 4 below), the rows indicate map classes while the
columns represent reference classes.

Table 3. Error matrix of sample counts, nij.

Class 1 2 . . . k Total

1 n11 n12 . . . n1k n1
2 n21 n22 . . . n2k n2

. . . . . . . . . . . . . . . . . .
k nk1 nk2 . . . nkk nk

Total n·1 n·2 . . . n·k n

Olofsson et al. [45] described a more informative presentation of the error matrix. It is in terms of
unbiased estimators of area proportions in cells (i, j) corresponding to map-reference class label pairs
i and j:

P̂ij = Wi
nij

ni·
(1)

where Wi represents the proportion of the area mapped as category i (in the region under study) and
is calculated as Wi = Am,i÷Atot. Atot is the total area of the region under study and Am,i (subscript
m denotes “mapped”) is the mapped area of category i. An example error matrix populated with
estimated area proportions is shown in Table 4, from which accuracy measures can be computed
(see Equations (2)-(4)).

Table 4. Error matrix of estimated area proportions, P̂ij (Equation (1)).

Class 1 2 . . . k Total

1 P̂11 P̂12 . . . P̂1k P̂1
2 P̂21 P̂22 . . . P̂2k P̂2

. . . . . . . . . . . . . . . . . .
k P̂k1 P̂k2 . . . P̂kk P̂k

Total P̂·1 P̂·2 . . . P̂·k 1

Estimating the proportion of area in each cell of the error matrix using Equation (1) takes into
account the inclusion probabilities of the stratified design. An inclusion probability is defined as the
probability that a particular pixel is included in the sample. Unlike in simple random and systematic
sampling where inclusion probability of each selected pixel is the same (so that accuracy measures may
be computed directly based on Table 3), in stratified random sampling, sample units from different
strata usually have different weights, as sample units from different strata likely have different
inclusion probabilities. Thus, area proportions of the map classes (Wi) must be incorporated in the
stratified estimators of overall and producer’s accuracies to account for different sampling intensities
in different strata.
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Once the area proportions are estimated (Equation (1)) as in Table 4, user’s accuracy (Ûi) and
producer’s accuracy (P̂j) for any category and overall map accuracy (Ô) are estimated directly from
area proportions (Table 4). The estimators are:

Ûi =
P̂ii

P̂i·
(2)

P̂j =
P̂jj

P̂·j
(3)

Ô =
k

∑
j=1

P̂jj (4)

Variance estimators are also necessary for accuracy assessment, which could be applied to calculate
confidence intervals [43]. For stratified random sampling, the estimated variance of overall accuracy is

V(Ô) =
k

∑
i=1

W2
i Ûi(1− Ûi)/(ni· − 1) (5)

As for the estimated variance of user’s and producer’s accuracy, the method described by
Wickham et al. [38] is usually applied. Further detail about variance estimation is provided in
Appendix A.

Equations (1)-(5) are applied for estimating accuracies on the assumption that stratified random
sample data are used. For the study in this paper, a two-level stratified sampling design was
adopted (Section 2.1). Thus, Equations (1)-(5) are not direct applicable for estimating national
accuracies, although they are perfectly suitable for estimating accuracies in individual regions where
map-class-stratified random sampling was applied independently.

To evaluate nationwide accuracies, regional error matrices need to be aggregated to a national
error matrix at first. This is done by summing up corresponding cell values at (i, j) (i.e., area proportions
for map-reference class pair (i, j)) in regional error matrices via proper weights that are individual
regions’ areal proportions in the entire study area. Consider the study here as an example. The ten
regional error matrices were estimated using Equations (1)–(4), as listed in Appendix B. The weights
(Wh in Equation (6)) were the ten regions’ areal proportion relative to the whole study area (Table 2,
the last row, Row “Country-wide proportion”). In terms of a formula, the aggregated proportion for a
particular class pair (i, j) (P̂i,j) is computed as a weighted sum of corresponding proportions in regional
error matrices:

P̂i,j =
H

∑
h=1

Wh P̂i,j|h (6)

where H is the total number of regional strata in the study area (H = 10 for this paper), Wh is region h’s
areal proportion in the whole study area (Wh = Nh/N, with Nh being the population size of region h,
and N being the population size for the whole study area), and P̂i,j|h represents cell (i, j) in region h’s
error matrix. These properly calculated cell values (P̂i,j) constitute the national error matrix. Based on
it, national accuracy indicators are computed using Equations (2)–(4) by inserting properly estimated
P̂i,j values (Equation (6)), as was implemented in this study.

Alternatively, country-wide accuracy estimates can be computed by following the method
described in Wickham et al. [37,38]. It is the so-called combined ratio estimator based on suitably
formulated indicator functions. This method is highly recommendable for computing accuracy
estimates in situations where stratifications are more than one level as in this case study here and
where strata are different from land cover classes for which accuracy indicators need to be estimated
properly [37,46].
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In Appendix A, we provide further detail about how national accuracy indicators are estimated
based on aggregation of regional error matrices and the combined ratio estimator. We also show the
equivalence of these two kinds of methods with explanations and using data from the study reported
in this paper.

3. Results

In this section, we mainly report results of accuracy assessment based on the less strict definition
of agreement (at a sample pixel) as a match between the map label and either the primary or alternate
reference label. Assessment results obtained using the stricter definition of agreement (as a match
between the map label and the primary reference label only) are reported briefly at the end section.

The ten regional error matrices were estimated (using the less strict definition of agreement unless
stated otherwise in the remainder of this section), as shown in Appendix B (Tables A1–A10). Overall
accuracies based on estimated population class area proportions (Equation (4)) are shown in Figure 2
(also shown in Table 5, the last row, Row “Overall”).

Figure 2. Regional overall accuracies for GlobeLand30 2010 over China based on the definition of
agreement as a match between the map class and either the primary or alternate reference class.
Standard errors for the overall accuracies are in parentheses.

The overall accuracies of ten regions range from 76.0% to 90.3%, while standard errors for
estimated overall accuracy range between 1.6% and 2.6%, as shown in Figure 2. Most regions have
overall accuracies over 80%, except for three regions (R4, R6 and R7). Overall accuracies in these three
regions are about 8.6% lower than that of the other seven regions. Geographically, overall accuracies of
northern regions (i.e., R1, R3, R5, and R10) rank the top four, with the three southern regions (R4, R6,
and R7) ranking bottom three, while the rest (R2, R8, and R9) are in the middle. These differences are
related to various factors, such as class composition, classification system, and landscape heterogeneity.
In terms of land cover compositions, land cover classes are unequally distributed across China,
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as shown in Table 2. Based on GlobeLand30 2010 maps, R1–R3 and R5 are dominated by grassland
and bareland, accounting for 89%, 82%, 73%, and 74% of their total areas, respectively. R4 and R6–R10
are dominated by cultivated land and forest, accounting for 74%, 88%, 87%, 74%, 85%, and 81% of
their total areas, respectively. Among them, bareland in R1 occupies as much as 67% of its whole area.
The top three classes with the largest areas in each of the ten regions account for at least 85% of the
corresponding region’s total areas.

Cultivated land, forest, wetland, water bodies, and permanent snow and ice register user’s
accuracies greater than 82%, as shown in Table 5. Grassland and bareland have higher user’s
accuracy in regions where these classes are dominant (R1–R3 and R5), while their user’s accuracies
are much decreased in the other six regions because of class rarity. Shrubland and artificial surfaces,
which account for small area proportions of China (1.0% and 1.8%, respectively), have medium-level
user’s accuracies (Table 5).

Table 5. Regional user’s accuracies for nine land cover classes with standard errors (SE) in parentheses.
Agreement is defined as a match between the map class and either the primary or alternate reference
class (Cultivated land is abbreviated as CuL, Artificial Surfaces is abbreviated as ArS, Permanent snow
and ice is abbreviated as PSI; – means there is no permanent snow and ice in a given region; Column
“National” represents countrywide user’s accuracies).

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 National

CuL 91(3) 64(5) 86(3) 80(4) 93(3) 70(5) 76(4) 88(3) 82(4) 93(3) 84(1)
Forest 68(5) 89(3) 83(4) 83(4) 96(2) 84(4) 85(4) 82(4) 90(3) 94(2) 87(1)

Grassland 88(3) 81(4) 87(3) 54(5) 81(4) 35(5) 41(5) 62(5) 35(5) 54(5) 78(2)
Shrubland 57(5) 68(5) 70(5) 80(4) 59(5) 78(4) 78(4) 67(5) 53(5) 69(5) 70(2)
Wetland 86(3) 85(4) 90(3) 90(3) 90(3) 67(5) 81(4) 85(4) 63(5) 73(4) 82(2)

Water bodies 92(3) 97(2) 97(2) 95(2) 93(3) 87(3) 92(3) 92(3) 95(2) 94(2) 94(1)
ArS 76(4) 59(5) 78(4) 75(4) 80(4) 87(3) 67(5) 81(4) 84(4) 84(4) 80(2)

Bareland 92(3) 81(4) 85(4) 67(5) 95(2) 56(5) 54(5) 37(5) 42(5) 72(5) 90(2)
PSI 87(3) 87(3) 98(1) 81(4) – – – – – – 88(2)

Overall 90(2) 82(3) 86(2) 76(2) 88(2) 77(3) 78(3) 82(2) 84(2) 88(2)

As for producer’s accuracy, cultivated land, forest, water bodies, permanent snow and ice are
usually classified with good accuracy, as shown in Table 6. For regions R1 through R5, grassland is
classified quite accurately as grassland areas occupy more than 20.8% of these regions’ total areas,
while producer’s accuracies for grassland in the other five regions are decreased with reduced
proportions of grassland areas in these regions. Bareland has higher producer’s accuracy in regions
dominant by it (i.e., R1–R3 and R5), while it is more likely misclassified in the other six regions because
of class rarity. Shrubland, wetland, and artificial surfaces, accounting for 3.3% of the total area together,
are poorly classified, with shrubland registering extremely low producer’s accuracy.

Table 6. Regional producer’s accuracies for nine land cover classes with standard errors (SE) in
parentheses. Agreement is defined as a match between the map class and either the primary or
alternate reference class (see Table 5 for meanings of CuL, ArS, PSI, and –, and Column “National”
represents countrywide producer’s accuracies).

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 National

CuL 99(0) 99(0) 98(1) 92(3) 79(6) 91(4) 91(2) 95(1) 94(1) 94(1) 93(1)
Forest 63(16) 88(7) 91(5) 89(2) 96(4) 91(2) 93(2) 83(5) 90(2) 90(2) 90(1)

Grassland 80(5) 93(1) 90(2) 91(5) 97(1) 52(13) 54(13) 75(7) 48(13) 82(8) 89(1)
Shrubland 14(4) 14(3) 14(3) 15(2) 12(4) 7(2) 1(0) 1(0) 1(0) 0(0) 11(1)
Wetland 44(17) 6(3) 20(8) 33(13) 97(2) 2(1) 15(7) 60(12) 56(11) 91(3) 30(5)

Water bodies 100(0) 99(0) 100(0) 64(21) 47(25) 63(14) 72(13) 73(19) 66(9) 93(3) 79(5)
ArS 67(15) 46(11) 52(14) 35(13) 72(14) 58(12) 39(7) 77(9) 78(8) 67(11) 62(4)

Bareland 99(1) 84(6) 92(3) 11(4) 89(4) 1(1) 21(17) 4(4) 31(22) 100(0) 93(1)
PSI 90(8) 95(4) 96(3) 92(3) – – – – – – 93(4)
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Tables 5 and 6 reveal an evident geographic pattern in classification errors related to class
abundance. User’s and producer’s accuracies of grassland and bareland tend to decrease from
west to east. These classes are abundant in the west (R1–R3 and R5) but generally rare in the east
(R4 and R6–R10). Conversely, accuracy for forest tends to decrease from east to west, and this is
correlated with the proportions of forest in the regions concerned. Permanent snow and ice of R1–R4
is well classified since it has unique spectral signature.

To evaluate the nationwide thematic accuracy, a country-wide error matrix of estimated area
proportions was constructed by aggregating the ten regional error matrices using methods described
in Section 2.3, with results shown in Table 7. At the country level, the overall accuracy for GlobeLand30
2010 over China is 84.2%, as shown in Table 7. This estimate of overall accuracy is slightly higher than
the results reported in [29]. Below, we report results of accuracy evaluation obtained following the
procedures above but using the stricter definition of agreement at a sample pixel (as a match between
the map label and the primary reference label only). The results are shown in Appendix C. Specifically,
regional overall accuracies and user’s accuracies are shown in Table A11 (Appendix C), while regional
producer’s accuracies in Table A12. The national error matrix is shown in Table A13. Tables A11–A13
are similar in format to Tables 5–7, respectively, for convenience of comparisons between them.

Consider national accuracy assessment results. As expected, with the stricter definition of
agreement, country-wide overall accuracy is estimated lower at 81.0% (Table A13), reduced by about
3% as opposed to the estimated overall accuracy of 84.2% (Table 7) based on the less strict definition
of agreement. User’s and producer’s accuracies are decreased to differing extents depending on
the specific classes concerned, although there are no differences between either user’s accuracies or
producer’s accuracies for bareland and permanent snow and ice. The most obvious decreases in
accuracies are observed for the class of artificial surface, which registers a user’s accuracy of 70%
(Table A13) (as opposed to 80%, Table 7) and a producer’s accuracy of 53% (Table A13) (as opposed
to 62%, Table 7). Further detail about decreases in accuracies (using the stricter definition of agreement
as opposed to the less strict definition) and their variations in regional, categorical, and national terms
is shown in Tables A11–A13 in Appendix C.

Table 7. The country-wide error matrix, cell entries are expressed as percent of area (see Table 5 for
meanings of CuL, ArS, and PSI). Agreement is defined as a match between the map class and either the
primary or alternate reference class. User’s accuracy (UA) and producer’s accuracy (PA) are reported
with standard errors (SE) in parentheses. Overall accuracy is 84.2% (0.7%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 18 1 0.5 0.6 0.2 0.2 0.7 0.1 0 21.3 84(1)
Forest 0.3 19.3 0.6 1.9 0 0.1 0 0.1 0 22.2 87(1)

Grassland 0.9 1 23.2 2.8 0.5 0.1 0.1 1.1 0 29.6 78(2)
Shrubland 0 0.1 0.2 0.7 0 0 0 0 0 1 70(2)
Wetland 0 0 0 0 0.4 0 0 0 0 0.4 82(2)

Water 0 0 0 0 0.1 1.5 0 0 0 1.6 94(1)
ArS 0.2 0.1 0 0 0 0 1.4 0 0 1.8 80(2)

Bareland 0 0 1.6 0.4 0.1 0 0 18.8 0 20.9 90(2)
PSI 0 0 0.1 0 0 0 0 0 0.9 1.1 88(2)

Total 19.5 21.5 26 6.5 1.2 1.9 2.3 20.2 1 100
PA 93(1) 90(1) 89(1) 11(1) 30(5) 79(5) 62(4) 93(1) 93(4)

4. Discussion

In this section, discussion is based on assessment results obtained with the less strict definition of
agreement (as a match between the map label and either the primary or the alternate reference label at
a sample pixel). It is, however, sensible to be aware of the implications of using a stricter definition
vs. a less strict definition of agreement for accuracy assessment and to appreciate the relevance of the
latter definition of agreement for accuracy validation in a landscape of complexity.
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4.1. Patterns of Misclassification Errors

Error patterns for GlobeLand30 2010 over China are summarized below (in the remainder of the
paper, without causing ambiguity, reference to China will not be made unless necessary): (1) Some
dominant classes are overestimated where there are inclusions, such as the forest and cultivated
land included in artificial surfaces, artificial surfaces and grassland in cultivated land, shrubland
and grassland in forest, grassland and shrubland in bareland. (2) Grassland, shrubland and forest
are difficult to distinguish as their spectral characteristics are often similar. These three classes are
usually mixed in natural environment, making it “look like its surroundings”. (3) Fragmented patches,
such as scattered villages and small blocks of cultivated land in hilly/mountainous areas, are likely
to be omitted and classified as dominant classes in neighborhoods. (4) “Salt and pepper” noise is
common in GlobeLand30 maps. GlobeLand30 has been prescribed minimum mapping unit (MMU)
for each land-cover class and allowable minimum error of omission or commission per scene for
each class. However, there is no restriction to small blocks with size smaller than specified MMU.
There are still many small blocks of shrubland, grassland, bareland, and forest in GlobeLand30 maps.
When sample pixels are located in these small blocks, they are likely to be classified as dominant
classes in neighborhoods. (5) Time lags between map image acquisition dates and the dates for
image interpretation also have effects on reported accuracies, because of the possibility of land-cover
change. The dates of Landsat images used for GlobeLand30 2010 over China range from January to
December (2010), while 89.4% of sample pixels were based on fine resolution images flown from May to
November. Although Land-cover change within the year is relatively rare, misclassifications caused by
time lags are observed (e.g., bareland in summer is misclassified as permanent snow and ice, cultivated
land in non-growing season is misclassified as bareland). (6) Map heterogeneity has the expected
effect of reducing reported agreements between map and reference classes. Land-cover heterogeneity
is defined as the number of land-cover classes occurring in a 3 × 3-pixel window centered on the
sample pixel [47]. A heterogeneity value equal to one is defined as homogeneous (interior pixels),
otherwise heterogeneous (edge pixels) in this paper. Nationwide, 72.6% of the sample pixels are
interior, while the probability of disagreements for edge pixels is 2.3 times that of interior pixels.

4.2. Information for User Community and Product Improvement

Accuracy assessment is a standard component of GlobeLand30 mapping protocol. The overall
accuracy for GlobeLand30 2010 dataset was estimated to be 84.2%, while user’s accuracies for
individual classes (except for shrubland) exceeded 78% (Table 7). This indicates that the GlobeLand30
2010 dataset depicts spatial distributions of different land cover types in China with relatively
great accuracy, given its fine resolution. Regional accuracy assessment results showed variations
in accuracies due to regional differences in landscape patterns, as summarized at the end of Section 3.

Accuracy assessment can also inform and guide future map production. The results of
GlobeLand30 2010 accuracy assessment show greater than 79% producer’s accuracies for all classes
except for shrubland (only 11%), wetland, and artificial surface (Table 7). This suggests that mapping
protocols need to be further developed and refined to better distinguish scattered grassland, shrubland,
and small mixed grass-shrub patches, which are usually misclassified as other classes nearby. In China,
especially southwestern China, spectrally mixed pixels are common in complicated and fragmented
landscape. Although image segmentation and object-based classification techniques developed in
GlobeLand30 data production can suppress “pepper-and-salt” effects in resultant classifications
to some extent, determination of suitable segmentation parameters that are globally applicable is
extremely difficult. Therefore, omission errors (of shrubland) are inevitable, especially in areas with
a complex landscape. As shown in [48,49], scattered classes of small extents are likely misclassified
as dominant classes in neighborhoods. This was similarly observed for wetland and artificial surface
(e.g., human settlements in rural areas dominated by cultivated land). Further work is required to
solve these problems in future global land cover mapping at fine spatial resolution. Regions and
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classes prone to misclassifications (in particular, shrubland in all regions, wetland in R2, R6 and R7,
and artificial surface in R2, R4 and R7; see Table 6) should be given special attention.

4.3. Comparison of GlobeLand30 with Other Related Data Products of 30 m Resolution

In this subsection, we compare GlobeLand30 with two fine-resolution land cover products,
whose Level I thematic resolution (i.e., number of classes) is similar to that of GlobeLand30. One is a
global product, known as FROM-GLC [31], the other is a US national product, NLCD [50], as mentioned
in Section 1.

FROM-GLC contains two levels of land cover classes: 10 Level I classes (i.e., cropland, forest,
grassland, shrubland, water bodies, impervious areas, bare lands, snow and ice, clouds and
unclassified) and 29 Level II classes. It utilized thousands of Landsat images flown from 1981 to
2011 and was generated from fully automated image classification. The overall accuracies (Level I)
range from 54% (maximum likelihood classifier) to 65% (support vector machine, SVM), while its
best overall accuracy (Level II) is 53%. Yu et al. [51] improved FROM-GLC classification results using
MODIS time series image and other auxiliary data, achieving an overall classification accuracy of
67%. In comparison, FROM-GLC is of lower accuracy than GlobeLand30 2010 as the former resulted
from fully automated classification while the latter was enhanced with object-based classification and
knowledge utilization.

As mentioned in Section 1, US NLCD time series land cover products are also of 30 m spatial
resolution and based on Landsat TM images. NLCD 1992 is based primarily on unsupervised image
classification [50], while NLCD 2001, NLCD 2006, and NLCD 2011 are based on more advanced
decision-tree classifiers [52–54]. According to Wickham et al. [35–38] and Stehman et al. [39], overall
accuracies for NLCD 1992, 2001, 2006, and 2011 land cover (Level I, 8 classes, see below) were 80%
(unweighted averages of 10 US regional estimates), 85%, 84%, and 88%, respectively, while those for
level II were 55% (unweighted averages of 10 US regional estimates), 79% , 78%, and 82%, respectively.
In general, user’s accuracies for water, forest, shrubland, agriculture, and high intensity developed
exceeded 80% for most NLCD products. For NLCD 2011 (which is temporally close to GlobeLand30
2010), in particular, producer’s accuracies for all 8 Level I classes (i.e., water, developed, barren, forest,
shrubland, grassland, agriculture, and wetland) were estimated to be greater than 80%, while user’s
accuracies for all Level I classes (except for barren and wetland) were estimated to be greater than
81% [38]. Misclassifications usually occurred in regions with heterogeneous landscape, as also observed
with GlobeLand30 2010.

Clearly, in terms of overall accuracy, GlobeLand30 2010 is slightly inferior to NLCD level I
products (except for NLCD 1992 and NLCD 2006). We take the liberty in assuming approximate
semantic equivalence between the following GlobeLand30 and NLCD classes: “cultivated land” =
“agriculture”, “bareland” = “barren”, and “artificial surface” = “developed”. As for user’s accuracies,
shrubland, grassland, and artificial surface are less accurately classified in GlobeLand30 than in NLCD
2011, while barren and wetland are less accurately classified in NLCD 2011 than in GlobeLand30.
With respect to producer’s accuracies, NLCD 2011 is apparently superior to GlobeLand30, as there
were large omission errors for shrubland, wetland, and artificial surface in the latter.

However, it should be noted that comparisons with FROM-GLC and NLCD were made for Level
I classes above. A total of 15 land cover classes will be mapped in GlobeLand30 2015 which is under
development [55]. Class ambiguity tends to increase as thematic detail of classification increases
(e.g., from 10 classes to 15 classes), and this increasing ambiguity may have a negative impact on
accuracy. For instance, overall accuracies decrease from 84% to 78% for NLCD 2006, when thematic
resolution increases from Level I (8 classes) to Level II (16 classes) [37]. Users and producers should be
aware of the implications of increased thematic resolution for GlobeLand30 2015.



Remote Sens. 2018, 10, 1213 13 of 22

5. Conclusions

Accurate assessment in land cover information is of great importance to research and applications
concerning natural resources and the environment. This paper provides detailed information about
regional vs. national accuracies (overall, user’s, and producer’s) of GlobeLand30 2010 land cover over
China by adopting a two-level stratified random sampling design and furnishing suitable methods for
aggregating regional error matrices to a national one. The national overall accuracy for GlobeLand30
2010 was estimated as 84.2% (with agreement at a sample pixel defined as a match between the map
label and either the primary or the alternate reference label), indicating GlobeLand30’s relatively high
accuracy. The national overall accuracy was estimated 81.0% when defining agreement at a sample
pixel more strictly as a match between the map label and the primary reference label only. However,
areas with heterogeneous landscapes and scattered small patches, in particular, need to be mapped
with improved classification methods in future endeavors, as such areas tend to be labeled with low
accuracies, as revealed in this study. GlobeLand30 production and validation teams will benefit from
the research reported in this paper.
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Appendix A. Some Detail about the Methods for Estimating National Accuracy Indicators and
Their Variance

In this section, error matrices are assumed to be populated with estimated area proportions
unless stated otherwise. As described in Section 2.3, estimates of country-wide accuracy indicators are
computed using Equations (2)–(4) after creating a nationally aggregated error matrix based on proper
weighting using Equation (6). We may call this method a regional error matrix aggregation method.
The combined ratio estimator method described in Wickham et al. [37] is also suitable for computing
estimates of user’s accuracies and producer’s accuracies. Below, both methods are described with
examples, with their equivalence explained and illustrated afterwards. Lastly, formulas for variance
of estimated national accuracy indicators including user’s accuracy (UA), producer’s accuracy (PA),
and overall accuracy (OA) are re-visited.

For the error-matrix-aggregation-based method, the key is to have proper weightings applied to
proportions (P̂i,j|h) in regional error matrices so that values of re-weighted P̂i,j|h become the ratio of the
area mapped as category i in region h to the national total area (N) instead of region h’s total area (Nh).
This can be seen to be the case for what Equation (6) sums:

P̂ij|h−reweighetd = Wh P̂ij|h = WhWi|h
nij

ni·
= Wi,h|H

nij

ni·
(A1)

where Wh is areal proportion of region h in the whole study area (Nh/N), Wi|h is actually Wi in
Equation (1) representing the proportion of the area mapped as category i in region h, nij and ni· are the
same as in Equation (1) (assuming the error matrix of sample counts for region h is similar to Table 3),
and Wi, h|H is the combined weight representing the ratio of the area mapped as category i in region h
over the whole study area (as indicated by H).

Thus, all proportions P̂i,j|h (for map-reference class pairs (i, j)) in regional error matrices are
re-weighted nationally as desired (Equation (A1)). These re-weighted regional error matrices were
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aggregated with their corresponding proportions P̂ij|h−reweighetd summed up, giving rise to the national
error matrix with correct (national) proportions P̂i,j (Equation (6)).

For example, P̂2,2 for forest-forest class pair in the national error matrix (shown in Table 7) is
computed as:

P̂2,2 = (17.2 × 0.8 + 12.68 × 7.5 + 14.56 × 8.7 + 11.89 × 37.9 + 12.08 × 11.1 + 4.71 × 51.4
+ 5.94 × 35.9 + 5.55 × 13.8 + 7.08 × 40.2 + 8.31 × 35.4)/(100 × 100) = 0.193.

After creation of the national error matrix, UA, PA, and OA can be easily computed using
Equations (2)–(4), respectively. For example, based on the national error matrix in Table 7, UA and PA
for forest are:

UA(forest) = P̂2,2/P̂2· = (19.3/100)/(22.2/100) = 0.868, and

PA(forest) = P̂2,2/P̂·2 = (19.3/100)/(21.5/100) = 0.899,

where P̂i· and P̂·j represent row i and column j’s totals in the national error matrix, respectively (i = j = 2
for forest). The estimate for OA is:

OA = (18 + 19.3 + 23.2 + 0.7 + 0.4 + 1.5 + 1.4 + 18.8 + 0.9)/100 = 0.842.

By the combined ratio estimator method, on the other hand, UA and PA are estimated as a ratio R
= Y/X, where Y is the population total of yu and X is the population total of xu (u being a pixel in the
population). yu and xu are indicator functions for pixel u on condition A and condition B, respectively.
For UA of a particular class, say “forest”, condition A is that the map and reference labels are both
forest, while condition B is that map label is forest. For PA of forest, condition A remains the same,
but condition B is that the reference label is forest, as also explained in [38].

The combined ratio estimator for UA or PA is:

R̂ =
Ŷ
X̂

=
∑H

h=1 Nhyh

∑H
h=1 Nhxh

(A2)

where xh is the sample mean of xu in stratum h, yh is the sample mean of yu in stratum h, Nh is the
population size in stratum h, and H is the number of strata in the study area [37]. This ratio estimator
is very general as it can handle sample data with double stratifications (as in this paper) and situations
where there is no one-to-one correspondence between strata and classes for which accuracy indicators
need to be estimated.

In this study, the sample data were collected following a two-level stratification (ten regions,
each with nine or eight land cover classes), as described in Section 2.1. We can treat the sample data as
consisting of 84 strata and calculate R̂ with Equation (A2) (H = 84).

However, given the congruence among regional error matrices and one-one correspondence of
strata and mapped classes in individual regions, simplified use of Equation (A2) is possible on the basis
of regional error matrices. In other words, it is more sensible to view regions in the study as strata to
work with when applying Equation (A2) (i.e., H = 10). Then, for a particular region h, Nh refers to the
region’s areal proportion (i.e., Table 2, bottom row). In addition, given regional error matrices, we can
easily get sample statistics required in Equation (A2). Specifically, xh is class i’s sample proportion
in the region (e.g., row or column i’s totals in the error matrix for region h, P̂i·|h and P̂·i|h depending
on whether UA or PA is concerned), while yh is the proportion of sample pixels of reference class i
classified correctly as class i in the region (e.g., P̂i,i|h in the error matrix for region h).
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For example, using regional error matrices (Tables A1–A10, Appendix B), UA and PA for forest
are computed as:

UA(forest) = ∑10
h=1 Wh P̂2,2|h/ ∑10

h=1 Wh P̂2·|h = [(17.2× 0.8 + 12.68× 7.5 + 14.56× 8.7
+11.89× 37.9 + 12.08× 11.1 + 4.71× 51.4 + 5.94× 35.9 + 5.55× 13.8 + 7.08× 40.2
+8.31× 35.4)/(100× 100)]/[(17.2× 1.2 + 12.68× 8.5 + 14.56× 10.5 + 11.89× 45.7
+12.08× 11.5 + 4.71× 61.2 + 5.94× 42.3 + 5.55× 16.8 + 7.08× 44.6
+8.31× 37.6)/(100× 100)] = 0.868,

PA(forest) = ∑10
h=1 Wh P̂2,2|h/ ∑10

h=1 Wh P̂·2|h = [(17.2× 0.8 + 12.68× 7.5 + 14.56× 8.7
+11.89× 37.9 + 12.08× 11.1 + 4.71× 51.4 + 5.94× 35.9 + 5.55× 13.8 + 7.08× 40.2
+8.31× 35.4)/(100× 100)]/[(17.2× 1.3 + 12.68× 8.5 + 14.56× 9.6 + 11.89× 42.7
+12.08× 11.6 + 4.71× 56.7 + 5.94× 38.8 + 5.55× 16.5 + 7.08× 44.4
+8.31× 39.1)/(100× 100)] = 0.899.

when using Equation (A2) to compute UA and PA above, proportionality between Wh and Nh
(non-zero ones) is implicitly applied.

For estimating national OA, we can apply Equation (A2) but only the numerator part, with
summation over all map classes. Thus, based on regional error matrices (Tables A1–A10, Appendix B)
again, we compute national OA as:

OA = ∑10
h=1 Wh ∑9

i=1 P̂ii|h = [17.2× (4.9 + 0.8 + 19.3 + 0.5 + 0.3 + 0.6 + 0.2 + 61.6 + 2.1)
+12.68× (0.2 + 7.5 + 52.1 + 1.3 + 0.2 + 2.5 + 14.4 + 3.8) + 14.56× (11.3 + 8.7 + 40 + 0.7
+0.4 + 1.3 + 0.4 + 22.6 + 0.5) + 11.89× (22.8 + 37.9 + 11.2 + 2.3 + 0.4 + 0.6 + 0.4 + 0.2
+0.2) + 12.08× (11.2 + 11.1 + 38.7 + 0.5 + 0.5 + 0.4 + 0.6 + 24.8) + 4.71× (19 + 51.4
+2 + 0.7 + 2 + 2.2) + 5.94× (34.2 + 35.9 + 2 + 0.3 + 2.6 + 3.1) + 5.55× (50.8 + 13.8
+9.6 + 0.3 + 1.6 + 6.3) + 7.08× (32.8 + 40.2 + 1.5 + 0.1 + 0.3 + 4 + 5.2)
+8.31× (40.6 + 35.4 + 6.5 + 1 + 1.4 + 2.6 + 0.5)]/(100× 100) = 0.842.

Clearly, estimates for national UA and PA computed from the two methods are identical.
The equivalence between the two methods’ results is not only for forest but for any class i, as it
is established by:

UA(i) =
P̂i,i

P̂i·
= ∑10

h=1 Wh P̂i,i|h/ ∑10
h=1 Wh P̂i·|h (A3)

PA(i) =
P̂i,i

P̂·i
= ∑10

h=1 Wh P̂i,i|h/ ∑10
h=1 Wh P̂·i|h (A4)

where Equation (6) is applied for numerators and denominators, separately.
As for the estimated variance of UA and PA, the method described in [38] is applicable. Specifically,

the estimated variance of the combined ratio estimator is computed as:

V̂(R̂) = (
1

X̂2
)

[
H

∑
h=1

N2
h (1−

nh
Nh

)(s2
yh + R̂2s2

xh − 2R̂sxyh)/nh

]
(A5)

where nh is sample size for stratum h (Nh being population size for stratum h, as previously in Equation
(A2)), H is the number of strata (84 for the study in this paper), s2

yh and s2
xh are the sample variances of

yu and xu for stratum h, and sxyh is the sample covariance of xu and yu in stratum h.
The estimated variance of national OA can be calculated using Equation (5). Adaptation is,

however, required by viewing the country-wide population as consisting of 84 strata (region-class
combinations), for which weights Wi, h|H need to be calculated properly (see Equation (A1) and the
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example for computing OA three lines above in Equation (A3)). In addition, we can compute variance
of national OA using Equation (A6):

V̂(Ô) =
1

N2

H

∑
h=1

Nh(Nh − nh)
s2

h
nh

=
H

∑
h=1

W2
i, h|Hs2

h

nh
−

H

∑
h=1

W2
i, h|Hs2

h

N
(A6)

where s2
h is the sample variances of stratum h, N is the population size (total number of pixels) of

the study area, and H is the number of strata to run the summation (84 for the study in this paper).
We employed Equation (A6) for computing variance of estimated national OA, although we tested
both methods (Equations (5) and (A6)) and obtained identical results.

Appendix B. Regional Error Matrices of Estimated Area Proportions when Defining Agreement
at a Sample Pixel as a Match between the Map Label and Either the Primary or Alternate
Reference Label

Tables A1–A10 show error matrices of estimated area proportions for GlobeLand30 2010 in all
regions (R1–R10). In Tables A1–A10, cultivated land is abbreviated as CuL, artificial surfaces as ArS,
and permanent snow and ice as PSI, – means there is no permanent snow and ice in a given region,
as in Tables 5–7. User’s accuracy (UA) and producer’s accuracy (PA) are reported with standard errors
(SE) in parentheses. These results are based on defining agreement as a match between the map label
and the primary or alternate reference label at sample pixels.

Table A1. The error matrix of estimated area proportions for R1: Overall accuracy is 90.3% (2.0%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 4.9 0 0.2 0.1 0 0 0.1 0.1 0 5.4 91(3)
Forest 0 0.8 0.1 0.2 0 0 0 0 0 1.2 68(5)

Grassland 0 0.4 19.3 1.3 0.2 0 0 0.4 0.2 21.9 88(3)
Shrubland 0 0 0.2 0.5 0 0 0 0.1 0 0.8 57(5)
Wetland 0 0 0 0 0.3 0 0 0 0 0.3 86(3)

Water 0 0 0 0 0 0.6 0 0 0 0.6 92(3)
ArS 0 0 0 0 0 0 0.2 0 0 0.3 76(4)

Bareland 0 0 4 1.3 0 0 0 61.6 0 67 92(3)
PSI 0 0 0.1 0 0 0 0 0.1 2.1 2.4 87(3)

Total 5 1.3 24.1 3.5 0.6 0.6 0.3 62.3 2.4 100
PA 99(0) 63(16) 80(5) 14(4) 44(17) 100(0) 67(15) 99(1) 90(8)

Table A2. The error matrix of estimated area proportions for R2: Overall accuracy is 82.0% (2.7%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 0.2 0 0 0 0 0 0 0 0 0.4 64(5)
Forest 0 7.5 0.5 0.4 0 0 0 0 0 8.5 89(3)

Grassland 0 0.6 52.1 7.1 1.9 0 0 2.6 0 64.3 81(4)
Shrubland 0 0.1 0.4 1.3 0.1 0 0 0 0 2 68(5)
Wetland 0 0 0 0 0.2 0 0 0 0 0.2 85(4)

Water 0 0 0 0 0.1 2.5 0 0 0 2.6 97(2)
ArS 0 0 0 0 0 0 0 0 0 0 59(5)

Bareland 0 0.2 2.7 0.2 0.2 0 0 14.4 0.2 17.8 81(4)
PSI 0 0.1 0.3 0.1 0 0 0 0.1 3.8 4.4 87(3)

Total 0.2 8.5 55.9 9.2 2.4 2.5 0 17.1 4 100
PA 99(0) 88(7) 93(1) 14(3) 6(3) 99(0) 46(11) 84(6) 95(4)
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Table A3. The error matrix of estimated area proportions for R3: Overall accuracy is 85.9% (2.0%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 11.3 0.4 0.7 0.4 0 0 0.4 0 0 13.1 86(3)
Forest 0.1 8.7 0.6 1 0 0 0 0 0 10.5 83(4)

Grassland 0 0.5 40 2.8 0.9 0 0 1.8 0 46 87(3)
Shrubland 0 0 0.2 0.7 0 0 0 0 0 1.1 70(5)
Wetland 0 0 0 0 0.4 0 0 0 0 0.4 90(3)

Water 0 0 0 0 0 1.3 0 0 0 1.3 97(2)
ArS 0.1 0 0 0 0 0 0.4 0 0 0.6 78(4)

Bareland 0 0 2.9 0.5 0.5 0 0 22.6 0 26.6 85(4)
PSI 0 0 0 0 0 0 0 0 0.5 0.5 98(1)

Total 11.5 9.6 44.4 5.5 1.9 1.3 0.8 24.5 0.5 100
PA 98(1) 91(5) 90(2) 14(3) 20(8) 100(0) 52(14) 92(3) 96(3)

Table A4. The error matrix of estimated area proportions for R4: Overall accuracy is 76.0% (2.3%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 22.8 2.6 0 2 0.3 0.3 0.6 0 0 28.5 80(4)
Forest 0.5 37.9 0.9 5.5 0 0 0 0.9 0 45.7 83(4)

Grassland 1.2 1.9 11.2 5 0.4 0 0.2 0.8 0 20.8 54(5)
Shrubland 0.1 0.3 0.1 2.3 0 0 0 0 0 2.9 80(4)
Wetland 0 0 0 0 0.4 0 0 0 0 0.4 90(3)

Water 0 0 0 0 0 0.6 0 0 0 0.6 95(2)
ArS 0.1 0 0 0 0 0 0.4 0 0 0.6 75(4)

Bareland 0 0 0 0 0 0 0 0.2 0 0.3 67(5)
PSI 0 0 0 0 0 0 0 0 0.2 0.2 81(4)

Total 24.7 42.7 12.4 14.8 1.1 0.9 1.3 2 0.2 100
PA 92(3) 89(2) 91(5) 15(2) 33(13) 64(21) 35(13) 11(4) 92(3)

Table A5. The error matrix of estimated area proportions for R5: Overall accuracy is 87.7% (2.0%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 11.2 0 0.2 0.2 0 0 0.2 0.1 – 12 93(3)
Forest 0 11.1 0.1 0.3 0 0 0 0 – 11.5 96(2)

Grassland 2.9 0.5 38.7 2.4 0 0.5 0 2.9 – 47.8 81(4)
Shrubland 0.1 0 0.2 0.5 0 0 0 0 – 0.8 59(5)
Wetland 0 0 0 0 0.5 0 0 0 – 0.5 90(3)

Water 0 0 0 0 0 0.4 0 0 – 0.5 93(3)
ArS 0.1 0 0 0 0 0 0.6 0 – 0.8 80(4)

Bareland 0 0 0.8 0.5 0 0 0 24.8 – 26.1 95(2)
PSI – – – – – – – – – – –

Total 14.2 11.6 40.1 4 0.5 0.9 0.9 27.9 – 100
PA 79(6) 96(4) 97(1) 12(4) 97(2) 47(25) 72(14) 89(4) –

Table A6. The error matrix of estimated area proportions for R6: Overall accuracy is 77.4% (2.6%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 19 3.8 0.5 1.4 0.8 0.5 0.5 0.5 – 27.2 70(5)
Forest 1.2 51.4 1.2 6.1 0 0.6 0.6 0 – 61.2 84(4)

Grassland 0.5 1.3 2 1.6 0 0 0.3 0 – 5.8 35(5)
Shrubland 0 0.1 0 0.7 0 0 0 0 – 1 78(4)
Wetland 0 0 0 0 0 0 0 0 – 0 67(5)

Water 0 0 0.1 0 0.1 2 0 0 – 2.3 87(3)
ArS 0.1 0.1 0 0.1 0 0 2.2 0 – 2.5 87(3)

Bareland 0 0 0 0 0 0 0 0 – 0 56(5)
PSI – – – – – – – – – – –

Total 21 56.7 3.9 9.9 0.9 3.2 3.7 0.5 – 100
PA 91(4) 91(2) 52(13) 7(2) 2(1) 63(14) 58(12) 1(1) –
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Table A7. The error matrix of estimated area proportions for R7: Overall accuracy is 78.1% (2.5%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 34.2 1.8 0 2.3 1.4 0.9 4.5 0 – 45 76(4)
Forest 1.3 35.9 1.7 3.4 0 0 0 0 – 42.3 85(4)

Grassland 0.7 0.8 2 1 0 0 0.2 0 – 5 41(5)
Shrubland 0 0 0 0 0 0 0 0 – 0.1 78(4)
Wetland 0 0 0 0 0.3 0.1 0 0 – 0.3 81(4)

Water 0.1 0 0 0 0.1 2.6 0 0 – 2.8 92(3)
ArS 1.2 0.2 0 0 0 0 3.1 0 – 4.6 67(5)

Bareland 0 0 0 0 0 0 0 0 – 0 54(5)
PSI – – – – – – – – – – –

Total 37.6 38.8 3.7 6.7 1.7 3.6 7.8 0.1 – 100
PA 91(2) 93(2) 54(13) 1(0) 15(7) 72(13) 39(7) 21(17) –

Table A8. The error matrix of estimated area proportions for R8: Overall accuracy is 82.4% (2.2%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 50.8 1.7 2.3 0 0 0.6 1.7 0.6 – 57.7 88(3)
Forest 0.7 13.8 0.7 1.7 0 0 0 0 – 16.8 82(4)

Grassland 1.7 0.6 9.6 3.4 0 0 0.2 0 – 15.5 62(5)
Shrubland 0 0 0 0 0 0 0 0 – 0.1 67(5)
Wetland 0 0 0 0 0.3 0 0 0 – 0.3 85(4)

Water 0 0 0 0 0.1 1.6 0 0 – 1.7 92(3)
ArS 0.5 0.4 0.2 0.2 0.1 0 6.3 0 – 7.8 81(4)

Bareland 0 0 0 0 0 0 0 0 – 0.1 37(5)
PSI – – – – – – – – – – –

Total 53.7 16.5 12.8 5.4 0.4 2.2 8.2 0.6 – 100
PA 95(1) 83(5) 75(7) 1(0) 60(12) 73(19) 77(9) 4(4) –

Table A9. The error matrix of estimated area proportions for R9: Overall accuracy is 84.0% (2.1%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 32.8 3.2 1.2 0.4 0 1.2 1.2 0 – 40 82(4)
Forest 0.4 40.2 0.4 3.1 0 0.4 0 0 – 44.6 90(3)

Grassland 0.8 0.8 1.5 0.7 0.1 0.2 0.2 0 – 4.4 35(5)
Shrubland 0 0 0 0.1 0 0 0 0 – 0.1 53(5)
Wetland 0 0 0 0 0.3 0.1 0 0 – 0.5 63(5)

Water 0.1 0 0 0 0.1 4 0 0 – 4.2 95(2)
ArS 0.7 0.2 0 0 0 0.1 5.2 0.1 – 6.2 84(4)

Bareland 0 0 0 0 0 0 0 0 – 0.1 42(5)
PSI – – – – – – – – – – –

Total 34.9 44.4 3.2 4.3 0.5 6 6.6 0.1 – 100
PA 94(1) 90(2) 48(13) 1(0) 56(11) 66(9) 78(8) 31(22) –

Table A10. The error matrix of estimated area proportions for R10: Overall accuracy is 88.0% (1.6%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 40.6 0.4 0.9 0.9 0 0 0.9 0 – 43.7 93(3)
Forest 0 35.4 0.4 1.9 0 0 0 0 – 37.6 94(2)

Grassland 1.9 3.2 6.5 0 0 0 0.4 0 – 12 54(5)
Shrubland 0 0 0 0 0 0 0 0 – 0 69(5)
Wetland 0.3 0 0 0 1 0.1 0 0 – 1.4 73(4)

Water 0 0 0 0 0.1 1.4 0 0 – 1.5 94(2)
ArS 0.4 0.1 0 0 0 0 2.6 0 – 3.1 84(4)

Bareland 0 0 0.1 0 0 0 0 0.5 – 0.7 72(5)
PSI – – – – – – – – – – –

Total 43.3 39.1 7.9 2.8 1.1 1.5 3.9 0.5 – 100
PA 94(1) 90(2) 82(8) 0(0) 91(3) 93(3) 67(11) 100(0) –
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Appendix C. Regional and National Accuracy Estimates Obtained when Defining Agreement as
a Match between the Map Label and the Primary Reference Label Only

On the other hand, Tables A11 and A12 show regional user’s and producer’s accuracies for nine
land cover classes with standard errors (SE) in parentheses when agreement is defined as a match of
map class labels with the primary reference class label only. In Tables A11 and A12, Column “National”
represents countrywide user’s or producer’s accuracies as in Tables 5 and 6, respectively. National
accuracy indicators were computed based on the nationwide error matrix obtained by properly
aggregating the ten regional error matrices. As shown in Table A13, country-wide overall accuracy is
81.0%, reduced by about 3.2% compared to that obtained with a more relaxed definition of agreement
as a match of map labels with the primary or alternate reference label.

Table A11. Regional user’s accuracies for nine land cover classes with standard errors (SE) in
parentheses when agreement is defined as a match with the primary label.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 National

CuL 86(3) 58(5) 77(4) 69(5) 90(3) 63(5) 70(5) 87(3) 72(5) 91(3) 78(1)
Forest 65(5) 86(3) 76(4) 77(4) 94(2) 81(4) 82(4) 78(4) 86(3) 91(3) 83(1)

Grassland 88(3) 80(4) 86(3) 51(5) 77(4) 25(4) 32(5) 55(5) 29(5) 45(5) 76(2)
Shrubland 56(5) 64(5) 67(5) 69(5) 54(5) 69(5) 70(5) 57(5) 43(5) 57(5) 64(2)
Wetland 85(4) 83(4) 86(3) 90(3) 88(3) 58(5) 80(4) 79(4) 58(5) 70(5) 79(2)

Water bodies 90(3) 97(2) 92(3) 87(3) 89(3) 86(3) 88(3) 91(3) 93(3) 91(3) 92(1)
ArS 63(5) 50(5) 63(5) 67(5) 67(5) 75(4) 58(5) 78(4) 73(4) 71(5) 70(2)

Bareland 92(3) 81(4) 84(4) 59(5) 95(2) 50(5) 53(5) 29(5) 41(5) 67(5) 90(2)
PSI 87(3) 87(3) 98(1) 80(4) – – – – – – 88(2)

Overall 90(2) 81(3) 83(2) 69(3) 85(2) 73(3) 73(3) 80(2) 77(2) 84(2)

Table A12. Regional producer’s accuracies for nine land cover classes with standard errors (SE) in
parentheses when agreement is defined as a match with the primary label.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 National

CuL 98(0) 98(0) 96(1) 86(4) 75(6) 89(4) 87(2) 94(1) 91(2) 91(2) 89(1)
Forest 52(12) 87(7) 88(5) 83(3) 87(6) 89(2) 90(3) 79(6) 88(2) 87(2) 86(1)

Grassland 80(5) 93(1) 88(2) 83(6) 95(1) 31(9) 48(12) 73(8) 33(9) 79(9) 87(1)
Shrubland 13(4) 13(3) 11(2) 13(2) 10(3) 6(1) 1(0) 1(0) 1(0) 0(0) 9(1)
Wetland 42(16) 6(3) 18(7) 32(12) 93(2) 2(1) 15(6) 58(12) 45(9) 89(3) 28(5)

Water bodies 99(1) 77(15) 98(1) 62(21) 46(24) 63(14) 63(12) 72(19) 58(8) 72(14) 70(5)
ArS 62(16) 38(10) 31(9) 19(6) 68(15) 46(10) 34(6) 76(10) 71(9) 64(12) 53(4)

Bareland 99(1) 84(6) 92(3) 9(3) 89(4) 1(1) 30(21) 3(3) 5(4) 100(0) 93(1)
PSI 90(8) 95(4) 96(3) 84(4) – – – – – – 93(4)

Table A13. The country-wide error matrix; cell entries are expressed as percent of area (see Table 5
for meanings of CuL, ArS, and PSI). Agreement is defined as a match between the map label and the
primary reference label. User’s accuracy (UA) and producer’s accuracy (PA) are reported with standard
errors (SE) in parentheses. Overall accuracy is 81.0% (0.8%).

CuL Forest Grassland Shrubland Wetland Water ArS Bareland PSI Total UA

CuL 16.7 1.5 0.6 1 0.2 0.3 1 0.1 0 21.3 78(1)
Forest 0.6 18.4 0.8 2.2 0 0.1 0 0.1 0 22.2 83(1)

Grassland 1 1.2 22.5 3 0.5 0.2 0.1 1.1 0 29.6 76(2)
Shrubland 0 0.1 0.2 0.7 0 0 0 0 0 1 64(2)
Wetland 0 0 0 0 0.3 0 0 0 0 0.4 79(2)

Water 0 0 0 0 0.1 1.4 0 0 0 1.6 92(1)
ArS 0.3 0.1 0 0 0 0 1.3 0 0 1.8 70(2)

Bareland 0 0 1.6 0.4 0.1 0 0 18.7 0 20.9 90(2)
PSI 0 0 0.1 0 0 0 0 0 0.9 1.1 88(2)

Total 18.7 21.3 25.8 7.3 1.2 2 2.4 20.2 1 100
PA 89(1) 86(1) 87(1) 9(1) 28(5) 70(5) 53(4) 93(1) 93(4)
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