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S1. Land surface model 

The LSM of CLVDAS, EcoHydro-SiB solves vertical interlayer flows using the one-dimensional 

Richards equation. Capillary suction and hydraulic conductivity are calculated by the van 

Genuchten’s water retention model [1]. Transpiration is estimated by the photosynthesis-

conductance model of Simple Biosphere model version 2 (SiB2) [2] which simultaneously calculates 

transpiration and net primary production (carbon assimilation). The other fluxes are also estimated 

using the parameterizations of SiB2. No groundwater module is included in EcoHydro-SiB. 

EcoHydro-SiB can explicitly solve carbon balance. EcoHydro-SiB simulates carbon-pool 

dynamics by the following equations:  
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where leafC , stemC , and rootC  are the carbon pools of leaves (photosynthetically active part), 

stems (photosynthetically inactive part), and roots, respectively [g/m2]. leafa , stema , and 

roota  are the carbon allocation fractions of leaves, stems, and roots, respectively, and 

1=++ rootstemleaf aaa . NPP is the net primary production (mol m−2 s−1) estimated by the SiB2 

photosynthesis-conductance model, and leafd , stemd , and rootd  are the normal turnover rates 

of leaves, stems, and roots, respectively.   and   are the water- and temperature-related 

stress factors for leaves, respectively. The carbon allocation fractions are the function of 
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water-related stress and light availability and are calculated by a parameterization proposed 

by [3]. The water-related stress factor is calculated from the vertical distribution of soil 

moisture: 
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where T (i) is the Soil Moisture Index (SMI) of the i-th soil layer, i  is the volumetric soil 

moisture of the i-th soil layer, w  is the wilting point, and o  is the point of stress onset. 

To obtain w  and o , we specify the corresponding suction pressure values and inversely 

solve the van Genuchten’s water retention model. TOT  is calculated by aggregating the SMI 

in the soil layers, weighted by the root biomass fraction, Y, which is estimated using the 

empirical relationship found by [4] (equation 6). N is the number of soil layers and iz  is 

the depth of each soil layer. Y(d) is the cumulative root fraction from the surface to depth d 

(cm) and B is the empirical parameter. max  is the maximum stress loss. Since the water-

related stress factor affects the carbon pool dynamics, our simulated root-zone soil moisture 

is strongly related to vegetation dynamics. This parameterization of water-related stress was 

proposed by [5]. In EcoHydro-SiB, the empirical linear relationship between a carbon pool 

of leaves and LAI suggested by [6] is used: 

leafCSLALAI = ,                                  (8) 

where SLA is the specific leaf area which indicates leaf thickness (m2/kg). 
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S2. Radiative transfer model 

To directly assimilate brightness temperature observations into a LSM instead of assimilating 

derived soil moisture and vegetation products, a RTM is needed to convert the land surface condition 

to microwave brightness temperature. The input data of the RTM are surface soil moisture, surface 

soil temperature, and LAI, which is calculated by EcoHydro-SiB. 

The microwave radiative transfer of a land surface and a vegetation canopy is calculated by the 

tau-omega model proposed by [7]: 
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where fp

bT ,  is the brightness temperature at radiometer level (note that we can neglect 

atmospheric contribution), fp

bsT ,  is the brightness temperature at ground level and 

sfp

fp
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, −= , sT  and cT  are the physical land surface temperature and canopy 

temperature, respectively, c  is the single scattering albedo of the canopy, fpR ,  is the 

reflectivity of the land surface, and subscripts p and f reveal the polarization (vertical or 

horizontal), and the frequency, respectively. The first, second, and third terms on the right-

hand side of (9) describe the emission from the land surface attenuated by the canopy, the 

emission from the canopy, and the emission from the canopy reflected by the land surface, 

respectively. The reflectivity of the land surface is the function of surface soil moisture and 

calculated by an Advanced Integral Equation Model (AIEM) with the incorporation of a 

shadowing effect [8]. c  is the vegetation optical depth (VOD), which is calculated using: 






cos

' VWCb
x

c

c = ,                                                     (10) 

where 'b  is the vegetation parameter which is independent of wavelength ( c ), x is a 

parameter which depends on wavelength (in shorter wavelength, microwave is easier to be 

attenuated by vegetation water) and   is the incident angle. VWC is the vegetation water 

content. VWC can be directly related to LAI using the function proposed by [9]: 

1)/exp( −= yLAIVWC   (11) 
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with the empirical parameter y. Equations (8-11) relate vegetation dynamics calculated by 

Ecohydro-SiB to microwave brightness temperature. The RTM has been validated by in-situ 

observation experiments [8,10,11]. 

S3. Data assimilation 

The PF is an ensemble data assimilation method. Ensemble data assimilation is a Monte Carlo 

estimation of Bayes’ theorem: 

)|()|()|( 1:1:1 − tttttt yxpxypyxp                                       (12) 

where )|( :1 tt yxp  is the probability of the model state x at time t, given all observations up 

to time t. In the PF, the two factors in the right hand side of (12) are obtained by an ensemble 

calculation of a numerical model f: 
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where Ne is the ensemble size, ix  is the realization of the model state provided by the 

ensemble member (or particle) i,, ()  is the Direc delta function. The function g is the 

potential function. In this study, the Gaussian distribution of observation errors is assumed 

and the conditional probability can be estimated as the following equation: 
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where   is an observation error and h is an observation operator which projects the model 

state onto the observation space. In CLVDAS, the RTM works as the observation operator. 

Please note that we show the conditional probability in the case that a single observation is 

assimilated for brevity. If there are multiple observations to be assimilated, which is the case 

of this study,   should be replaced with a variance-covariance error matrix. 
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In CLVDAS, the sampling-importance-resampling filter (e.g., [12,13,14,15]) is used to do the 

analysis update of equation (12). This type of PF is widely applied to a LSM and a hydrological model 

(e.g., [12,16]). First, particles which are far from observations are rejected in the analysis step. We 

calculate the probability of the selections (survival rate )( i

tS xP ) for each particle. The survival rate 

of the particle i is defined as (Remy et al. 2012): 
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where A is the set which includes all prior particles. We select survived particles according 

to their survival rates. 

Resampling particles is needed to replace rejected particles. Resampling is applied by copying 

the surviving particles based on the weights of the particles: 
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where i

tw  is the weight of the particle i and S is the set which includes the surviving particles. 

The weights are calculated only for the surviving particles and 


=
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step, the posterior given by (12) is approximated as: 
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The surviving particles are resampled according to their weights using multinomial draws until 

the original number of particles is recovered. After the resampling, we add the fluctuations to soil 

moisture in all soil layers and LAI of the particles to maintain the diversity of the particles. Perturbing 

particles contributes to preventing the filter degeneracy, in which all but one particles have extremely 

small weights. Please note that the resampling step inevitably breaks water balance in the LSM, which 

is the case of most of conventional data assimilation methods, such as ensemble Kalman filter and 

variational methods. Uncertainty in model parameters and meteorological forcings is not considered 

in our PF framework. 

In CLVDAS, the model state vector for PF, 
i

tx  has soil moisture in all soil layers, biomass pools 

(including LAI), and temperature. Although satellite microwave remote sensing can observe only 

surface soil moisture ( 1 ) and vegetation dynamics (LAI), we can adjust the unobservable variables 

in 
i

tx  (i.e. subsurface soil moisture) by the PF. Using the correlations between vegetation dynamics 

and subsurface soil moisture sampled by particles, CLVDAS can improve the skill of EcoHydro-SiB 

to simulate subsurface soil moisture which is not directly observed by satellites [17]. 
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