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Abstract: Due to technical and budget limitations, there are inevitably some trade-offs in the design
of remote sensing instruments, making it difficult to acquire high spatiotemporal resolution remote
sensing images simultaneously. To address this problem, this paper proposes a new data fusion
model named the deep convolutional spatiotemporal fusion network (DCSTFN), which makes full
use of a convolutional neural network (CNN) to derive high spatiotemporal resolution images from
remotely sensed images with high temporal but low spatial resolution (HTLS) and low temporal but
high spatial resolution (LTHS). The DCSTFN model is composed of three major parts: the expansion
of the HTLS images, the extraction of high frequency components from LTHS images, and the fusion
of extracted features. The inputs of the proposed network include a pair of HTLS and LTHS reference
images from a single day and another HTLS image on the prediction date. Convolution is used
to extract key features from inputs, and deconvolution is employed to expand the size of HTLS
images. The features extracted from HTLS and LTHS images are then fused with the aid of an
equation that accounts for temporal ground coverage changes. The output image on the prediction
day has the spatial resolution of LTHS and temporal resolution of HTLS. Overall, the DCSTFN model
establishes a complex but direct non-linear mapping between the inputs and the output. Experiments
with MODerate Resolution Imaging Spectroradiometer (MODIS) and Landsat Operational Land
Imager (OLI) images show that the proposed CNN-based approach not only achieves state-of-the-art
accuracy, but is also more robust than conventional spatiotemporal fusion algorithms. In addition,
DCSTFN is a faster and less time-consuming method to perform the data fusion with the trained
network, and can potentially be applied to the bulk processing of archived data.

Keywords: spatiotemporal data fusion; convolutional neural network; Landsat; MODIS;
deep learning

1. Introduction

The advances in modern sensor technology have greatly expanded the use of remote sensing
images in scientific research and in many other life activities of humankind [1–3]. However, in practice,
there are always some trade-offs in the design of remote sensing instruments due to technical and
budget limitations. Satellites which image a wider swath width do have a shorter revisiting period,
but this usually decreases the spatial resolution of observed images, and vice versa [4]. Currently, it is
not easy to acquire images that have both high spatial and high temporal resolution [5,6]. For example,
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the widely used Landsat images have enabled a 30-m spatial resolution in the visible and infrared
spectral bands since the Landsat 4 was launched in 1982 [7]. The latest Landsat 8 maintains a 30-m
resolution in most spectral bands, with a long revisiting period of 16 days (the same as Landsat 4,
for data continuity purposes) [7]. Conversely, the MODerate Resolution Imaging Spectroradiometer
(MODIS) instruments acquire data only at spatial resolution of 250 to 1000 m in multiple spectral bands,
but MODIS provides daily coverage of most parts of our planet [8]. For the purpose of long-time series
analysis of high spatial resolution imagery (e.g., vegetation-index-based monitoring of crop condition
and anomalies at field scale [9,10], as well as water resource assessment [11]), a single high spatial
resolution data source usually cannot meet the requirements of frequent temporal coverage. A number
of remote sensing data fusion algorithms have been put forward to address this problem, and research
has shown that generating high spatiotemporal data by fusing high spatial resolution images and high
temporal resolution images from multiple data sources is a practical approach [12,13].

In the remote sensing domain, spatiotemporal data fusion refers to a class of techniques that
merge two or more data sources which share similar spectral ranges to generate high spatiotemporal
time-series data and to derive richer information than a single data source can provide. In most
cases, one data source has high temporal but low spatial resolution (HTLS), while another has
low temporal but high spatial resolution (LTHS). After years of development, the research field of
spatiotemporal data fusion has established certain theories and methods, and some of these methods
have been applied in practical geoscience analysis with respectable accuracy [13–15]. As far as we
have considered, the existing spatiotemporal fusion algorithms can be classified into three categories:
(1) transformation-based; (2) reconstruction-based; and (3) learning-based [16].

The transformation-based methods employ specialized mathematical transforms, such as wavelet
transform [17], to transform data from spatial domain to another domain—typically to a frequency
or frequency-equivalent domain. Clear, high-frequency components are then extracted from the
transformed LTHS images and are merged with HTLS images using elaborately designed fusion
rules. The theoretical basis of this approach is that images in different spaces reveal different types of
features, which allows a well-designed algorithm to catch the desired features from specific spaces via
appropriate transformations.

The reconstruction-based methods generate composite images from weighted sums of spectrally
similar neighboring pixels in the HTLS and LTHS image pairs [16]. At present, most of the
spatiotemporal fusion algorithms fall into this category. The reconstruction-based methods can
be further subdivided into two major groups: one is based on the ground coverage changes of different
temporal images, and another is based on the components of mixed ground material end member
fractions. In the first case, a hypothetical relation is established based on the difference or ratio
deviation between the HTLS and LTHS image pair at the prediction time and a second image pair at
a given reference time. Then, a moving window is employed to scan similar neighboring pixels locally
and determine the weights. The final composite image is generated by a weighted sum of neighboring
pixels in the moving window combined with the hypothetical relation. A typical example is the
spatial and temporal adaptive reflectance fusion model (STARFM) [12]. It uses the differences between
HTLS and LTHS to establish a relation, and searches similar neighboring pixels by spectral difference,
temporal difference, and location distance. Inspired by STARFM, some other enhanced or improved
fusion models have been proposed, such as the spatial and temporal adaptive algorithm for mapping
reflectance change (STAARCH) [18], enhanced STARFM (ESTARFM) [5], and other STARFM-based
models [19]. In general, the main differences among algorithms of this type are in the designs of HTLS
and LTHS relations and in the rules used to determine weights.

The second group attacks the same problem by using spectral unmixing techniques to calculate
the end member fraction of mixed ground materials and replacing the corresponding components
of HTLS at prediction time according to the the unmixed spectral information derived from LTHS
at another given time. Typical examples are the unmixed-based data fusion (UBDF) method [20],
the flexible spatiotemporal data fusion (FSDAF) method [21], and spatial attraction models (SAM) [22].



Remote Sens. 2018, 10, 1066 3 of 16

The learning-based methods have grown considerably in recent years. Their approaches employ
sparse representation or machine learning techniques to extract some abstract features from volumes
of data and then reconstruct the predicted data with the extracted features. The main ideas of the
sparse-representation-based data fusion are based on the working hypothesis that the HTLS and LTHS
data pairs share the same sparse coefficients. By jointly learning a sparse dictionary from the HTLS
and LTHS data pairs, the HTLS images can be reconstructed to high spatial resolution images by
sparse encoding algorithms. A typical example is the sparse-representation-based spatiotemporal
reflectance fusion model (SPSTFM) [23]. Learning-based methods have received increasing attention
and are expected to perform better than the conventional ones because they can gain more information
from prior data.

Generally speaking, the key factors of a successful fusion algorithm always lie in the design
of activity level measurements and fusion rules [24]. Activity level measurements quantify the
information quality contained in raw images [25], and fusion rules describe the process of recognizing
the information. Hand-crafted level measurements and fusion rules are usually designed based on
some mathematical or physical theories. However, the actual data are usually contaminated with
errors and noises, and are not conformant to the theoretical ideal. Although most of the algorithms may
perform well for some data with great quality or with some specific characteristics in some geographical
areas, they may fail with other data and in other areas. In practice, however, it is difficult to acquire
sufficient data without cloud or ice cover for a specific area of interest, so the results of conventional
algorithms turn out to be less accurate. Furthermore, in some areas within a specific time period there is
little LTHS data left once the cloud-covered data are filtered out. That leaves no choice but to extend the
time span between the reference data and prediction data. Unfortunately, this produces output that is
very unreliable. Besides, the conventional methods process the data pair-by-pair, pixel-by-pixel—each
image pair requires a long time to produce the output. In practical cases, where long-time series data
are needed, this processing becomes very time-consuming. In contrast, the learning-based methods
take time in the training process, but cost much less time in the prediction phase.

In this paper, the problems associated with conventional methods are addressed by a deep
learning approach to find a direct non-linear mapping relation between HTLS and LTHS images. Deep
learning is a new branch in machine learning technology, inheriting and extending classical artificial
neural network principles to automatically learn features and relations of data via more additional
hidden processing layers [26,27]. It is widely used in computer vision, natural language processing,
finance, and other areas, and has achieved state-of-the-art results in many fields. The pervasive
application of convolutional neural networks (CNNs) in speech recognition and visual object
recognition and detection has especially drawn significant attention recently [28–30]. The novelty of our
approach is that a deep convolutional spatiotemporal fusion network (DCSTFN) is built by integrating
convolution and deconvolution layers to improve the accuracy and robustness of fusion compared to
conventional algorithms. The activity level measurement and fusion rules are actually learned from
actual datasets and presented by the weights in each layer. In our experiment, Landsat 8 Operational
Land Imager (OLI) and MODIS surface reflectance images are fed into the model to demonstrate
its efficacy. The results show that the proposed DCSTFN method outperforms conventional fusion
methods. Another significant aspect of the proposed CNN-based approach is its generality, which
means it can be applied to various data sources and has enough robustness to handle the quality
variations in input data.

The rest of this paper is organized as follows. Section 2 introduces the whole architecture of the
proposed DCSTFN model. Section 3 describes the experiment details and comparisons with other
classical fusion methods. Discussion and conclusions are presented in Section 4.
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2. Materials and Methods

2.1. CNN Model

In machine learning, CNNs are a class of deep feed-forward neural networks designed and trained
to extract hierarchical high-level features from inputs using multiple convolutional layers [26,31].
Thanks to the use of a convolution operator, CNNs have fewer connections and parameters than
standard feed-forward networks of similar size. In this case, on the one hand, the training time is
greatly reduced, on the other hand, it also substantially improves the accuracy of models in practice [30].
A classic CNN is comprised of one or more convolution layers, a subsampling (or called pooling)
layer, finally followed by one or more fully-connected (or called dense) layers to generate prediction.
The front convolution layers in a CNN are intended to extract low-level features. More complex
high-level features can be automatically extracted by increasing the number of convolution layers.
The pooling layer abstracts the raw features from the previous layer, reduces training parameters, and
prevents the over-fitting of a model.

Deconvolution is another operator that is often employed in CNN models in certain use
scenarios, such as unsupervised learning [32], CNN visualization [33], as well as image segmentation
and reconstruction [34,35]. Since deconvolution also acts as a convolution operator where the
transformation is applied in the opposite direction of a regular convolution, mathematically,
a convolution can be expressed as matrix multiplication and deconvolution is the reverse spatial
transformation expressed as multiplication with the transposed filter matrix [36]. For this reason,
deconvolution in deep learning actually refers to the transposed convolution or backward convolution.

Originally, CNNs were applied to extract high-level features in the image classification and
recognition tasks. Eventually, their applications were extended to the image super-resolution and data
fusion domains with direct mapping between input(s) and output [24,37]. Currently, the applications of
CNNs on image fusion are being actively explored. For example, a deep CNN model was successfully
employed to merge images of the same scene taken with different focal settings to gain more clarity [24].
The accuracy of the pan-sharpening method for panchromatic and multispectral image fusion was
increased by using CNN-based models [38,39]. In addition, CNN models have also been used in
the fusion of multi-spectral and light detection and ranging (LiDAR) data [40]. However, for the
problem of spatiotemporal data fusion, to the best of our knowledge, such studies have not yet been
carried out widely.

2.2. DCSTFN Architecture

Inspired by the existing work in data fusion models, a deep convolutional fusion network was
designed to derive high spatiotemporal resolution remote sensing images. The whole architecture
of the DCSTFN can be divided into three parts: the expansion of the HTLS images, the extraction
of high-frequency components from LTHS images, and the fusion of extracted features, as shown in
Figure 1. The DCSTFN model needs three inputs: the HTLS image at prediction time and an HTLS and
LTHS image pair at a time close to the prediction date for reference. The output is the high-resolution
image on the prediction date. The two HTLS images go through the shared sub-network on the
upper-left. Meanwhile, the reference LTHS image flows past the sub-network on the lower-left. Next,
the extracted features with the same size and dimension are merged together to derive the composite
image. The arrows in Figure 1 stand for hidden processing layers, and the cubes represent the output
tensors (namely multi-dimensional arrays) of each layer. The shape of the cube denotes the size and
dimension of the tensor output from the previous layer in the network. Taking the MODIS and Landsat
OLI data as an example, the MODIS data are resampled from 500 to 480 m, and the Landsat 8 OLI data
remain at 30-m resolution. Thus, the spatial resolution of resampled MODIS data are sixteen times
coarser than Landsat OLI. In the training phase, to reduce memory consumption, images are normally
divided into smaller patches that can be fed into the network. If we assume the size of each MODIS
image patch is 10 × 10, then the size of a Landsat patch is 160 × 160. Although images are divided into
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small patches during training, the input image size for prediction is absolutely not affected once the
training process is completed. Besides, considering the large differences in ground surface reflectance
from different spectral bands, a single image band should fed into the model to train its own weighted
network. The training on the images from different bands will generate different networks under the
common DCSTFN architecture. More details are discussed further below.
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Figure 1. The architecture of the deep convolutional spatiotemporal fusion network (DCSTFN) model.

First, a shared network is used for the HTLS image expansion. This sub-network consists of two
convolution layers, three deconvolution layers, and another convolution layer. The two MODIS images
both go through the sub-network to extract the low-frequency components and meanwhile expand
their input size, respectively. The extracted features will provide the main frame and the background
for the fusion result. In Figure 1, the two parameters of a convolution operator denote the number of
feature maps and the size of the convolution window, respectively. The number of feature maps is
undetermined parameters in a convolution, and the moving window was set to 3 × 3 empirically in
our experiment. A rectified linear unit (ReLU) [41] activation function is used for each convolution or
deconvolution layer in DCSTFN because ReLU is a commonly-used activation in mainstream CNN
models and has achieved excellent results in practice [42]. The deconvolution layers employed in
the shared network can expand the MODIS feature maps to the size of Landsat’s so that the two
data sources have the same dimension and size in the fusion phase. The first two parameters in
a deconvolution operator are the same as the standard convolution, and the last parameter specifies
the stride along the convolution window. The stride of deconvolution in this model is set to 2.
Therefore, three deconvolutions in the shared network will expand the size of MODIS feature maps
eightfold. As shown in Figure 1, the input size of of the shared network for MODIS is 10 × 10 × 1, and
the output size is 80 × 80 × d2.

The second part is the extraction of high-frequency components from LTHS images. This sub-network
is a classical convolution network starting with two convolution layers, followed by a max-pooling layer
that connects with two more convolution layers. The convolution layers are applied to the Landsat image
patches to extract the high spatial frequency information like detailed edges and textures. The pooling layer
is used to filter high-frequency information. There are three undetermined parameters di(i = 0, 1, 2) in the
DCSTFN model, standing for the number of feature maps in three levels of abstraction. These parameters
need to be tested and determined with practical experimentation. From Figure 1, the output size of this
sub-network for Landsat shrinks from 160 × 160 × 1 to 80 × 80 × d2, which is the same as the output size
of the sub-network for MODIS.

The last part is the fusion of extracted feature maps from HTLS and LTHS images. A significant
difference that distinguishes the DCSTFN model from conventional methods is that our fusion process
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is performed on the extracted abstract features, while most of the conventional algorithms conduct the
fusion based on the original spectral signatures. In the preceding two sub-networks, the features from
HTLS and LTHS inputs have coordinated with the same size and dimension. To merge the extracted
features, a hypothetical equation from the STARFM model is adopted here. This equation defines the
temporal ground coverage changes between HTLS and LTHS images from the reference time tk to the
prediction time t0, and it can be formulated as follows:

LTHS(t0) = HTLS(t0) + LTHS(tk)− HTLS(tk). (1)

Following this equation, the MODIS patches for reference at time tk are subtracted from Landsat
patches for reference on the same day, then the differences are added to the MODIS patches for
prediction at time t0. At this point, the high and low spatial frequency information extracted from
Landsat and MODIS is merged. Then, a deconvolution layer is used to restore the merged patches to
the original Landsat data size (160 × 160). Finally, two fully-connected layers are used to fine-tune
the fusion output from the previous layer and reduce the output tensor dimension to restore the
fine resolution image. The number of feature maps for the two full connections are set to d0 and
1 respectively. Notably, the last fully-connected layer is just a linear transformation without any
activation operation.

3. Experiment and Evaluation

3.1. Data Preparation

The data collected for the experiment came from the Landsat 8 OLI level-2 surface reflectance
product, and from the MODIS surface reflectance 8-day L3 global 500 m (MOD09A1) product.
The MODIS daily product naturally has a stronger correlation with the Landsat OLI data of the
very same day than the 8-day’s, and thus using the MODIS daily product should theoretically generate
a better result. The MODIS 8-day composite product was chosen in our experiment because the daily
product has poor data quality, while the 8-day composite product shows much better quality as clouds
have been removed as much as possible, missing data have been repaired, and each pixel contains
the best possible observation during the 8-day composition period. Based on these considerations,
this experiment used the MODIS 8-day product to test our model. In study areas where good-quality
daily data are available, the DCSTFN model is totally applicable for the daily data. The initial
preprocessing steps that must be performed for the image data are: radiometric calibration, geometric
correction, and atmospheric correction. For level-2 products, these processes are done when the data
are published. The two data sources are then reprojected into the same map projection and cropped
to the same extent. In this experiment, each scene of Landsat images was cropped to the size of
4800 × 4800 by removing the “nodata” pixels from their boundaries. MODIS images are reprojected
to the same Universal Transverse Mercator (UTM) projection system used by Landsat. Then, the
MODIS data should be cropped to have the same geographical extent as the Landsat (size of 300× 300).
A detailed data preprocessing flow chart is shown in Figure 2.

The study area was in the south of Guangdong province, China. The coordinates of the selected
area in the Landsat Worldwide Reference System (WRS) were P122R043, P122R044, and P123R044,
respectively. The corresponding coordinate to Landsat coverage in the MODIS Sinusoidal Tile Grid was
h28v06. Images acquired from January 2013 to December 2017 with less than 10% cloud coverage were
collected for this experiment. After the preprocessing, MODIS and Landsat data pairs for reference
and prediction were organized in order. Each data group contained four images: a pair of MODIS
and Landsat on the prediction date, and a pair on a specific date close to the prediction for reference.
The basic rule for data grouping is that the date for reference data should be as close to the prediction
data as possible. Since Guangdong is located in the subtropical zone with a humid climate, the acquired
satellite images were often covered by ample clouds. If the time span between reference and prediction
pairs was longer than two months, we searched the previous or next years to find appropriate reference
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data as close to the prediction data as possible within the same season. The DCSTFN training process is
a type of supervised learning. Three images including Landsat for reference and MODIS for reference
and prediction are entered into the model, and the observed Landsat image for prediction is the
expected output that guides the direction of the training process.

Crop an area 

removing nodata 

pixels

The area of Landsat is 
covered by a single MODIS

Merge multiple 

MODIS images

Crop by the extent 
of Landsat

Landsat

Landsat

MODIS

Start

MODIS

Yes

No

Reprojection to UTM 

Figure 2. The flow chart of data preprocessing. MODIS: MODerate Resolution Imaging
Spectroradiometer; UTM: Universal Transverse Mercator.

3.2. Experiment

The DCSTFN model is implemented using Python programming language and the Keras [43]
deep learning library with TensorFlow [44] as the computation backend. Keras provides simple,
high-level Application Programming Interfaces (APIs) enabling rapid prototyping. There are three
undetermined hyper-parameters di(i = 0, 1, 2) in the DCSTFN model, namely the number of feature
maps in three abstraction levels. If these numbers are too large, the training process will take a long time
doing computation, but if they are too small, the model will not acquire enough knowledge from the
training data. Based on the previous CNN-based applications, the three parameters in our experiment
were set to 32, 64, and 128, respectively. In this case, the learning network had 408,961 trainable weight
parameters in total. The optimization algorithm used for training is called Adam [45], an improved
stochastic gradient descent (SGD) method, and has been widely adopted in CNN training. The initial
learning rate of Adam was set to 10−3, β1 = 0.9, β2 = 0.999, and the decay of the learning rate was set
to 10−5. The loss function used for optimization is mean squared error (MSE), which represents the
average of the squares of deviations between predicted values and true values. To contribute to the
geoscience community, the implementation code and the trained network were released in open-source
format and can be publicly accessed via GitHub (https://github.com/theonegis/rs-data-fusion).

In the training process, eleven image groups from January 2013 to December 2015 were selectively
fed into the DCSTFN model for training, and another six groups from January 2016 to December 2017
were chosen for validation. The validation data do not participate in the training. The size of the
MODIS image patch was cropped to 10 × 10, and the cropping stride was set to 5. In our experiment,

https://github.com/theonegis/rs-data-fusion
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320 patches were fed into the model in each training batch. Usually, a larger batch size tends to
generate better results. This configuration can be adjusted according to the available hardware context.
In the prediction period, an entire image can be entered into the trained network and directly to get
the output—regardless of the image patch size in the training period.

When training the network, a single epoch ingests the entire set of samples. As the number of
epochs increases, the model can be trained more accurately. After entering the three different bands of
data to the DCSTFN model each time, the weights of the network are optimized respectively. Figure 3
shows the evolution of losses during a 50-epoch training period. The line color indicates different
spectral bands, and the line style denotes training and validation periods. Figure 4 uses the coefficient
of determination (R2) to represent the predicted results. The R2 is a statistical measure of how close
the data are fitted to the regression function. It is defined as follows:

R2 = 1 − ∑N
i=1(yi − ŷ)2

∑N
i=1(yi − ȳi)2

, (2)

where yi and ŷi are the observed and predicted values for the ith pixel values, ȳ denotes the mean
of the observed values, and N is the number of pixels. R2 often ranges from 0 to 1, but it might be
negative if the fit is much worse. The closer it is to 1, the better the prediction.

The following conclusions can be drawn from the training process: (1) The losses of the DCSTFN
model did not change significantly after 40 epochs and the network was considered converged;
(2) The images of green spectral band had the smallest losses, closely followed by the red band, and the
images of the near-infrared (NIR) band had the highest losses; (3) The validation losses were slightly
higher than the training losses, and the R2 of the validation data was slightly lower (less than 0.1) than
the training data. This is normal, because the model learned enough features from the training data
but had no knowledge about the validation data. However, a good model should produce an accurate
prediction for unknown data using the knowledge from the existing data; (4) From the perspective of
the coefficient of determination, the DCSTFN model showed the best fitness for red band images in
that the R2 was slightly higher and steadier than the other two. For NIR images, the model did not
perform as well as the other two; (5) Although the NIR band had a higher loss than the other bands,
the R2 for NIR band was just slightly lower than others. This is because the NIR band has a wider value
range than visible bands. Generally, the prediction results for the NIR band matched observations.
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Figure 3. Losses of the DCSTFN model. MSE: mean squared error; NIR: near-infrared.
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Figure 4. Fitness of the DCSTFN model.

3.3. Comparison

To evaluate the proposed DCSTFN model, two conventional algorithms, including STARM and
FSDAF, were compared to the DCSTFN model. STARFM accepts at least one reference image pair,
while FSDAF and DCSTFN need only one reference pair. In our experiments, the input images for
reference were limited to a single pair so that all of the evaluated algorithms had the same number of
inputs. The actual observed Landsat data on the predicted days were used to evaluate the fusion results.
By comparing the prediction results and observed data, some statistical metrics were used to obtain
the final quantified evaluation results. In addition to the aforementioned R2, the root-mean-square
error (RMSE), a common measurement of the differences between actual values and predictions, was
also used. RMSE is defined as follows:

RMSE =

√
∑N

i=1(yi − ŷi)2

N
. (3)

The symbols in this formula have the same meanings as for the calculation of R2. A smaller RMSE
means a better result.

The third index employed to comprehensively evaluate the predictability of the proposed models
is the Kling–Gupta efficiency (KGE) [46]. It is defined as follows:

KGE = 1 −
√
(r − 1)2 + (

σŷ

σy
− 1)2 + (

µŷ

µy
− 1)2, (4)

where r is the correlation coefficient between predicted and observed values, σŷ and σy denote the
standard deviation of the predicted and observed values, and µŷ and µy denote the mean value of the
predicted and observed values. The KGE of an ideal result is 1.

The last is the structural similarity (SSIM) index [47], which is often used to measure the similarity
between the actual and predicted images visually. It is defined as follows:

SSIM =
(2µyµŷ + C1)(2σyŷ + C2)

(µ2
y + µ2

ŷ + C1)(σ2
y + σ2

ŷ + C2)
, (5)
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where σyŷ denotes the covariance between the observed and predicted values, and C1 and C2 are the
constants to enhance the stability of SSIM. The value of SSIM ranges from −1 to 1. The closer it is to 1,
the more similar two images are.

Three scenes of images from the validation dataset were used to perform the evaluation:
(1) prediction on 7 December 2016 with reference on 5 November 2016 in P122R043; (2) prediction
on 23 October 2017 with reference on 7 December 2016 in P122R044; (3) prediction on 1 March 2016
with reference on 16 April 2015 in P123R044. The quantitative evaluations in terms of RMSE, R2, KGE,
and SSIM for the fusion results are listed in Tables 1–3, respectively. The surface reflectance values
in the following were all scaled by 10,000, as with the image pixel values. We can obtain following
information from the tables: (1) For the DCSTFN model, overall the R2 metrics were greater than 0.9
for the three bands; the KGE indices were greater than 0.8; and the SSIM indices were greater than
0.9. (2) Most metrics of DCSTFN were better than conventional methods, but a few were not. For
example, the RMSEs of STARFM were slightly smaller than DCSTFN for some bands in a specific
scene. (3) From the comprehensive evaluation of the prediction model, KGE indices for DCSTFN were
all better than the others and remained stable. From the visual inspection of the output images, SSIM
indices for DCSTFN showed a higher similarity than others. (4) The KGE of STARFM was not stable,
which shows that the input data quality had a great influence on the STARFM algorithm. The poor
KGE may be caused by the fact that there were some “nodata” pixels in the output of STARFM. In
contrast, the DCSTFN was very robust and not very sensitive to the input data quality.

Table 1. The quantitative evaluations for the fusion result on 7 December 2016 in P122R043 (The metrics
of DCSTFN are highlighted). FSDAF: flexible spatiotemporal data fusion; KGE: Kling–Gupta efficiency;
RMSE: root-mean-square error; SSIM: structural similarity; STARFM: spatial and temporal adaptive
reflectance fusion model.

Green Red NIR

DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF

RMSE 65.470 70.350 70.632 58.348 65.158 65.899 58.064 46.020 45.502
R2 0.919 0.906 0.906 0.956 0.945 0.944 0.994 0.997 0.997

KGE 0.879 −0.950 0.667 0.901 −0.551 0.745 0.884 0.706 0.846
SSIM 0.964 0.940 0.936 0.957 0.745 0.925 0.920 0.846 0.890

Table 2. The quantitative evaluations for the fusion result on 23 October 2017 in P122R044.

Green Red NIR

DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF

RMSE 66.112 62.630 61.109 60.435 60.402 60.172 44.885 46.350 45.912
R2 0.971 0.974 0.975 0.984 0.984 0.984 0.998 0.998 0.998

KGE 0.886 0.500 0.721 0.866 0.138 0.780 0.828 0.431 0.847
SSIM 0.909 0.872 0.867 0.880 0.822 0.829 0.809 0.783 0.801

Table 3. The quantitative evaluations for the fusion result on 1 March 2016 in P123R044.

Green Red NIR

DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF DCSTFN STARFM FSDAF

RMSE 60.159 66.696 64.183 61.737 66.488 65.135 49.796 44.160 43.952
R2 0.926 0.909 0.915 0.950 0.942 0.945 0.991 0.993 0.993

KGE 0.870 0.368 0.751 0.858 −0.296 0.749 0.740 −0.182 0.682
SSIM 0.948 0.913 0.907 0.914 0.865 0.866 0.762 0.694 0.718

Figure 5 illustrates the fusion results on 7 December 2016 with reference on 5 November 2016
in P122R043 from different models. The first row presents the overviews of the scene from different
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models, and the second row corresponds to the yellow rectangles in the first row. The images of the
first two rows are standard false color composite. The last row shows the calculated Normalized
Difference Vegetation Index (NDVI) which is an important indicator that is frequently used in remote
sensing analysis to quantify vegetation. From Figure 5, it can be intuitively seen from the first row
that in general the DCSTFN result was slightly closer to the actual observation. The overall image
tone of STARFM and FSDAF appeared darker than the observed image, especially on the upper-left.
Second, there were some “nodata” pixels in the STARFM result because of the poor input data quality,
as shown in the green rectangle, which does not exist in the DCSTFN model. Third, since the input
Landsat image on 5 November 2016 was covered by small amount of clouds in the lower-right
corner corresponding to the orange rectangles, the fusion results were of course contaminated by
clouds. However, the DCSTFN result was the least affected among the three. Fourth, from the
second row, it can be seen that STARFM and FSDAF failed to catch the ground details of the urban
area with heterogeneous features marked with magenta rectangles, but the DCSTFN worked quite
well. Fifth, the NDVI image derived from DCSTFN output was apparently the closest to the actual
observation, and detailed information can be seen clearly. Hence, a conclusion can be safely drawn
from Figure 5 that the DCSTFN model was more robust than conventional methods regardless of
the input data quality, and the results contained more details and showed a higher accuracy. Note
that the existing spatiotemporal fusion algorithms share the disadvantage that the reference data have
a significant impact on the prediction. Because the spatial resolution of the coarse MODIS data need to
be amplified sixteen times to match Landsat’s, much of the information needs to be referred from the
reference data. Inevitably, both the data quality of reference data and the degree of ground changes
between the reference and prediction date can influence the fusion result. Nevertheless, the DCSTFN
model less affected than the other two.

(1) Observed (2) DCSTFN (3) STARFM (4) FSDAF

The overview of the scene

The zoomed-in detail in the yellow rectangle

The NDVI of the zoomed-in detail

Figure 5. Illustration of data fusion results from different models on 7 December 2016 in P122R043.
NDVI: Normalized Difference Vegetation Index.
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Figure 6 shows plots of the observed and predicted surface reflectance. The figure intuitively
demonstrates how the prediction results from different models fit into the actual observation.
The samples come from the the upper-left corner of the whole-scene images in Figure 5 (500× 500). The
color in the plots indicates the density of points. For the visible bands, the R2 of DCSTFN was slightly
larger than STARFM and FDSAF, and points far from the real values were less than the other two,
which means that the prediction error rate of DCSTFN was lower. For the NIR band, the “point cloud”
of DCSTFN was clearly narrower than the other two, which shows a higher correlation. In conclusion,
both statistical metrics and visual inspection of the correlation plots show that the results of DCSTFN
were closer to the actual observations than the other two.

(a)DCSTFN for green band (b) DCSTFN for red band (c) DCSTFN for NIR band

(d) STARFM for green band (e) STARFM for red band (f) STARFM for NIR band

(g) FSDAF for green band (h) FSDAF for red band (i) FSDAF for NIR band

Figure 6. The correlation between observed and predicted surface reflectance on 7 December 2016
in P122R043.

4. Conclusions and Future Work

This paper introduces the deep learning approach into the remote sensing spatiotemporal data
fusion domain and produces a state-of-the-art result. The advantages of our CNN-based fusion
approach are twofold: (1) it can generate series of high spatiotemporal resolution images with high
accuracy and it is more robust and less-sensitive to the input data quality than conventional methods;
and (2) the DCSTFN model can save more time when handling large volumes of data for a long-time
series analysis. Once the network is established, it can be used for the entire dataset. In contrast,
conventional methods are more suitable for tasks where input data are of relatively good quality and
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the data volumes to be processed are not too large. We also made our implementation code and trained
network publicly accessible. Users can train on other areas with their datasets based on our results
without starting from scratch.

We believe that future work with regard to the DCSTFN model should proceed in two directions.
First, some tuning practices from deep learning should be applied to the DCSTFN model to explore
performance improvements. For example, batch normalization [48] can be added into the layers of
the network to reduce overfitting. The idea of a residual network [49] can be introduced into the
DCSTFN model to address the degradation of the deep learning network. Second, a case study of
practical analysis should be conducted to evaluate whether the model can satisfy practical needs.
Moreover, we want to utilize the deep learning approach to explore the possibility of generating high
spatiotemporal resolution images with only a single HTLS image in the prediction period. To the best
of our knowledge, existing spatiotemporal fusion algorithms all need at least one HSLT and HTLS
pair for reference. Inappropriate reference data can greatly influence the accuracy of the fusion result.
However, it is often not easy to find high-quality reference images because of cloud or ice cover in the
study area. For this reason, we want to explore the possibility of using learned prior knowledge from
the HSLT images in the training period and then using the learned features and relational mapping to
derive the fusion result with only one HTLS image on the prediction day. If this is achieved, it will
greatly promote the use of the spatiotemporal fusion method in practical applications.
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Abbreviations

The following abbreviations are used in this manuscript:

MODIS MODerate Resolution Imaging Spectroradiometer
OIL Operational Land Imager
HTLS high temporal but low spatial resolution
LTHS low temporal but high spatial resolution
STARFM spatial and temporal adaptive reflectance fusion model
STAARCH spatial and temporal adaptive algorithm for mapping reflectance change
ESTARFM enhanced spatial and temporal adaptive reflectance fusion model
UBDF unmixed-based data fusion
FSDAF flexible spatiotemporal data fusion
SAM spatial attraction model
SPSTFM sparse-representation-based spatiotemporal reflectance fusion model
CNN convolutional neural network
DCSTFN deep convolutional spatiotemporal fusion network
LiDAR light detection and ranging
ReLU rectified linear unit
UTM Universal Transverse Mercator
SGD stochastic gradient descent
NIR near-infrared
RMSE root-mean-square error
KGE Kling–Gupta efficiency
SSIM structural similarity index
NDVI Normalized Difference Vegetation Index
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