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Abstract: The German National Forest Inventory consists of a systematic grid of permanent sample
plots and provides a reliable evidence-based assessment of the state and the development of
Germany’s forests on national and federal state level in a 10 year interval. However, the data
have yet been scarcely used for estimation on smaller management levels such as forest districts due
to insufficient sample sizes within the area of interests and the implied large estimation errors. In this
study, we present a double-sampling extension to the existing German National Forest Inventory (NFI)
that allows for the application of recently developed design-based small area regression estimators.
We illustrate the implementation of the estimation procedure and evaluate its potential for future
large-scale operational application by the example of timber volume estimation on two small-scale
management levels (45 and 405 forest district units respectively) over the entire area of the federal
German state of Rhineland-Palatinate. An airborne laserscanning (ALS) derived canopy height
model and a tree species classification map based on satellite data were used as auxiliary data in
an ordinary least square regression model to produce the timber volume predictions. The results
support that the suggested double-sampling procedure can substantially increase estimation precision
on both management levels: the two-phase estimators were able to reduce the variance of the
one-phase simple random sampling estimator by 43% and 25% on average for the two management
levels respectively.

Keywords: National Forest Inventory; small area estimation; forest districts; double sampling for
regression within strata; cluster sampling; canopy height model; tree species classification

1. Introduction

The German National Forest Inventory (NFI) provides reliable evidence-based and accurate
information of the current state and the development of Germany’s forest over time. The NFI thereby
has the responsibility to satisfy various information needs including reporting to public and state
forestry administrations, wood-based industries and the public on the national level, as well as to the
Food and Agriculture Organization of the United Nations (FAO) and to the United Nations Framework
Convention on Climate Change (UNFCC) on the international level [1]. The current design of the
German NFI rests solely upon a terrestrial cluster inventory that is carried out at sample locations
systematically distributed over the entire forested area of Germany. In order to cover a large area of
114,191 km2 [2], the sample size has been specifically chosen to satisfy high estimation accuracies for
forest attributes on the national and federal state levels. However, sample sizes often drop dramatically
when entering spatial units below the federal state level. This is particularly true for forest management
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levels such as forest districts for which the estimation uncertainties turn out to be unacceptably large
due to the very limited number of sample plots within these units. For this reason, the German NFI data
have not yet been extensively incorporated into operational planning on forest district management
levels. In most German federal states, management strategies are thus still based on expert judgements
from time-consuming standwise forest inventories (SFI), which are prone to systematic deviations [3]
and do not provide any measure of uncertainty.

Some German federal states, such as Lower Saxony, have approached this problem by establishing
a regional Forest District Inventory (FDI) carried out for forests owned by the state forest enterprise
with a much higher sampling density than used by the NFI in order to scientifically base their
regional management strategies on quantitative and accurate information [4]. However, such FDIs are
cost-intensive and, facing increasing restrictions in budget and staff resources, there has been a need
for more cost-efficient inventory methods [5,6]. One method which has proven to be efficient is double-
or two-phase sampling [7–12]. Double-sampling incorporates less expensive auxiliary information and
can be used to either increase estimation precision under a fixed terrestrial sample size, or maintain
estimation precision under reduced terrestrial sample size.

Double-sampling procedures have already been used in various countries such as Canada [13],
the USA [14], Switzerland [15], Italy [16] and Germany [17]. Recent studies from Grafström et al. [18]
illustrated how to use the auxiliary information to determine optimised balanced terrestrial sample
designs. Double-sampling has also been extended to triple-sampling estimation methods using
auxiliary information derived at two different sampling intensities. An example can be found in von
Lüpke et al. [5] who illustrated an extension of the existing two-phase FDI of Lower Saxony to a
three-phase design that uses updates of past inventory data as additional auxiliary information and
allows for a significant reduction of the terrestrial sample size in intermediate inventories. Another
example is Massey et al. [19] who developed a triple-sampling extension based on the ideas of
Mandallaz [20] for the Swiss NFI that can significantly reduce the increase in estimation uncertainty
caused by the new annual inventory design.

Two-phase and three-phase samplings techniques have also been applied to small area estimation
(SAE). SAE techniques address the situation where the number of samples within a subunit, or small
area (SA), of the entire sampling frame is too small to provide reliable estimates for that unit. A broad
range of SA estimators used in forest inventories [11] originally comes from official statistics. One such
method that is commonly applied is known as indirect estimation [21], where statistical models are
used to convert auxiliary information into predictions of the target variable that is rarely or not
observed in the small area. These models are trained using data from outside the small area in order
to “borrow strength” from areas where information is available. Of numerous applications of SAE
in forestry [22–25], most use unit-level models, i.e., the inventory plot is the unit of the response
variable in the training data used for the model fit. Such unit-level models have been intensively
investigated for timber volume estimation using various remote sensing auxiliary data [26,27]. Other
studies have investigated area-level models, where the auxiliary information is only provided on
the SA level [28]. Some studies have illustrated that even NFI data derived under low sampling
densities can still be used to provide acceptable precision of small area estimates on much smaller
management levels. One example is Breidenbach and Astrup [22] who used data from the Norwegian
NFI to make small area estimation for standing timber volume for 14 municipalities where the number
of NFI samples within these areas were between 1 and 35. The estimation errors under the applied
model-dependent and design-based small area estimators turned to be markedly smaller than under
the standard one-phase estimator. Another example is Magnussen et al. [29] who recently used the
Swiss NFI data to estimate timber volume within 108 Swiss forest districts with sample sizes between
9 and 206. Similar studies using German NFI data for small area estimation have been lacking.

The objective of this study was to investigate whether the application of latest design-based small
area estimation methods allow to use the German NFI data to produce estimates of acceptable precision
on two forest district levels. The methods were tested in the German federal state Rhineland-Palatinate.
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Three types of model-assisted design-based small area regression estimators were used to derive point
and variance estimates of mean standing timber volume for 45 and 405 forest management units on
the two respective district levels. The SA-estimators we considered were the pseudo-small, extended
pseudo-synthetic and the pseudo-synthetic design-based small area estimator suggested by Mandallaz [30]
and Mandallaz et al. [25]. Auxiliary data consisted of a canopy height model (CHM) obtained from
a countrywide airborne laser scanning (ALS) and a tree species classification map to be used for
regression within tree species strata. The estimation precisions were compared to those obtained by
the standard one-phase estimator for cluster sampling under simple random sampling. The chosen
double-sampling estimators were selected for several reasons: (i) the design-based framework relaxes
dependencies on the regression model assumptions which seemed appropriate facing severe quality
restrictions in the ALS data; (ii) the estimators can be used with non-exhaustive, i.e., non wall-to-wall,
auxiliary information; (iii) all estimators are explicitly formulated for cluster sampling which has not
yet been the case for frequently used model-dependent estimators and (iv) the asymptotically unbiased
g-weight variance partially accounts for estimating the regression coefficients on the same sample
used for estimation (internal model approach) and is also robust under heteroscedasticity of the model
residuals. The results from this study were considered to provide valuable information about the
potential of the suggested small area estimation procedure and the incorporated auxiliary information
for future operational large scale application.

2. Terrestrial Sampling Design of the German NFI

The German NFI (Bundeswaldinventur, BWI) is a periodic inventory that is carried out every
10 years over the entire forest area of Germany. The third and most recent inventory (BWI3) was
conducted in 2011 and 2012. While information was originally gathered on a systematic 4 × 4 km
grid, some federal states such as Rhineland-Palatinate have switched to a densified 2 × 2 km grid.
The German NFI uses a cluster sampling design, which means that a sample unit consists of at most
four sample locations (also referred to as sample plots) that are arranged in a square, called cluster, with
a side length of 150 metres. The number of plots per cluster can vary between 1 and 4 depending
on forest/non-forest decisions by the field crews on the individual plot level [31]. In the field survey
of the BWI3, sample trees for timber volume estimation are selected according to the angle count
sampling technique [32]. Angle count sampling is a visual selection procedure conducted via an optical
instrument (Relascope). At a sample point x, a tree is selected as a sample tree if its apparent diameter
at the height of 1.3 m (DBH) and the associated angle αi (in radiant) appears larger than a limit angle α

when viewed through the Relascope [12]. The limit angle α can be expressed by the so-called basal
area factor (BAF), i.e., BAF = 102sin2( α

2 ). Consequently, each tree i is assigned with an individual
radius Ri =

DBHi
2
√

BAF
which is the distance between the tree location and the sample plot center. A tree is

selected if Ri is equal to or smaller than the so-called limiting distance R that results from chosen BAF
(i.e., α). One characteristic of angle count sampling is that a sample plot does no longer has a fixed
radius in which sample trees are selected, but each tree creates its individual radius Ri that is—likewise
the associated inclusion probability—proportional to its basal area. For this reason, the angle count
method is also referred to as variable radius plot sampling and implements the probability proportional
to size (PPS) concept. The BWI3 uses a basal area factor of 4 that is respectively adjusted for sample
trees at the forest boundary by a geometric intersection of the boundary transect with the individual
tree’s inclusion circle [31]. A further inventory threshold for a tree to be recorded is a DBH of at least
7 cm. For each sample tree that is selected by this procedure, the DBH, the absolute tree height, the tree
diameter at 7 m (D7) and the tree species is measured and used to estimate the volume at the tree
level. These volume estimates are based on the application of tree species specific taper curves that are
adjusted to the set of diameters and corresponding height measurements taken from the respective
sample tree [33].
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3. Double Sampling in the Infinite Population Approach
The estimators used in this study have been proposed by [25,30] and derive their mathematical

properties under the so-called infinite population approach. Therefore, we shall first provide a short
introduction into this general estimation framework. We start by assuming that the population P of
trees i ∈ 1, 2, ..., N within a forest of interest F is exactly defined, and each tree i has a response variable
Yi (e.g., its timber volume) that can be used to define the population mean Y (e.g., the average timber
volume per unit area) over F. Since a full census of all tree population individuals is almost never
feasible, Y has to be estimated based on a sample. In the infinite population approach this sample is a
set of points or locations x distributed independently and uniformly over the set of all possible points
in F. Each point x has an associated local density Y(x) (e.g., the timber volume per unit area) whose
spatial distribution is given by a fixed (i.e., non stochastic) piecewise constant function. The population
mean Y is mathematically equivalent to the integral of the local density function surface divided by
the surface area of F, λ(F), i.e., Y = 1

N ∑N
i=1 Yi =

1
λ(F)

∫
F Y(x)dx, and thus the population mean Y

corresponds to a spatial mean. Since the actual local density function is unobserved in its entirety, one
estimates Y by taking a sample s2 consisting of n2 points and measuring each of their respective local
densities. This sampling procedure is often referred to as one-phase sampling (OPS) and s2 is referred
to as the terrestrial inventory. In contrast to the one-phase approach, two-phase or double-sampling
procedures use information from two nested samples (phases). Practically speaking, the terrestrial
inventory s2 is embedded in a large phase s1 comprising n1 sample locations that each provide a set of
explanatory variables described by the column vector ZZZ(x) = (z(x)1, z(x)2, ..., z(x)p)> at each point
x ∈ s1. These explanatory variables are derived from auxiliary information that is available in high
quantity within the forest F. For every x ∈ s1, ZZZ(x) is transformed into a prediction Ŷ(x) of Y(x)
using the choice of some prediction model. The basic idea of this method is to boost the sample size
by providing a large sample of less precise but cheaper predictions of Y(x) in s1 and to correct any
possible model bias, i.e., E(Y(x)− Ŷ(x)), using the subsample of terrestrial inventory units where the
value of Y(x) is observed. In this context, it is also important to note that the response and auxiliary
variables are assumed to be error-free and the resulting errors for the point estimates reflect only the
uncertainty due to sampling.

4. Estimators

4.1. Design-Based One-Phase Estimator for Cluster Sampling (SRS)

The one-phase estimator for cluster sampling (SRS) constitutes the status quo that is currently
applied under the existing one-phase sampling design of the German NFI in order to obtain point
and variance estimates for the mean timber volume of a given estimation unit. In order to provide
all estimators in the infinite population framework and ensure a consistent terminology with the
two-phase estimators in Section 4.2, we will introduce the SRS estimator that is applied in the BWI3
algorithms [34] in the form given in Mandallaz [12] and Mandallaz et al. [35].

In order to calculate the local density Yc(x) at the cluster level, a cluster is defined as consisting of
M sample locations (in the BWI3, we have M = 4) where M− 1 sample locations x2, ..., xM are created
close to the cluster origin x1 by adding a fixed set of spatial vectors e2, ..., eM to x1. The actual number
of plots per cluster, M(x), is a random variable due to the uniform distribution of xl (l = 1, ..., M) in
the forest F and to the forest/non-forest decision for each sample location xl :

M(x) =
M

∑
l=1

IF(xl) where IF(xl) =

{
1 if xl ∈ F

0 if xl 6∈ F
(1)

The local density on cluster level Yc(x), which is in our case the timber volume per hectare, is
then defined as the average of the individual sample plot densities Y(xl):
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Yc(x) =
∑M

l=1 IF(xl)Y(xl)

M(x)
(2)

The local density Y(xl) on individual sample plot level was calculated according to the description
in Mandallaz [12], which can be rewritten for angle-count sampling technique applied in the BWI3.
The general form of Y(x) in Mandallaz [12] is given as the Horwitz-Thompson estimator

Y(xl) = ∑
i∈s2(xl)

Yi
πiλ(F)

(3)

where Yi is in our case the timber volume of the tree i recorded at sample location x in m3. Each tree
has an inclusion probability πi that is well defined as the proportion of its inclusion circle area λ(Ki)

within the forest area λ(F), i.e., via their geometric intersection:

πi =
λ(Ki ∩ F)

λ(F)
(4)

The radius Ri of the tree’s inclusion circle Ki is given by Ri = DBHi/c fi,corr (also referred to
as limiting distance), where c fi,corr is the original counting factor c f corrected for potential boundary
effects at the forest border. In case of angle-count sampling, we can rewrite πi as

πi =
Gi

c fi,corrλ(F)
(5)

Since the intersection area λ(Ki ∩ F)/λ(F) can be expressed using the trees basal area Gi (in m2)
and the corrected counting factor:

λ(Ki ∩ F) =
Gi

c fi,corr
where c fi,corr = c f

λ(Ki)

λ(Ki ∩ F)
(6)

Equation (5) in Equation (3) yields the rewritten form of Y(xl) for angle count sampling that
conforms to the definition used in the BWI3 algorithms [34]:

Y(xl) = ∑
i∈s2(xl)

c fi,corrYi

Gi
= ∑

i∈s2(xl)

nhaiYi (7)

where nhai is the number of trees per hectare represented by tree i. The local densities on cluster level
can then be used to derive the estimated spatial mean ˆ̄Yc and its estimated variance V̂( ˆ̄Yc) for any
given spatial unit for which n2 ≥ 2 (n2 denoting the number of clusters):

ˆ̄Yc =
∑x∈s2

M(x)Yc(x)
∑x∈s2

M(x)
(8a)

V̂( ˆ̄Yc) =
1

n2(n2 − 1) ∑
x∈s2

(M(x)
M̄2

)2
(Yc(x)− ˆ̄Yc)

2 (8b)

with M̄2 =
∑x∈s2

M(x)
n2

.

4.2. Design-Based Small Area Regression Estimators for Cluster Sampling

All three considered small area estimators use ordinary least square (OLS) regression models to
produce predictions of the local density Yc(x) directly on the cluster level c. We consider the internal
model approach, where the estimators take into account that the regression coefficients on the cluster
level were fitted using the same sample used for estimation. To apply this to small area estimation,
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the vector of estimated regression coefficients on the cluster level is found by “borrowing strength”
from the entire terrestrial sample s2 of the current inventory:

β̂ββc,s2
= AAA−1

c,s2

( 1
n2

∑
x∈s2

M(x)Yc(x)ZZZc(x)
)

(9a)

AAAc,s2 =
1
n2

∑
x∈s2

M(x)ZZZc(x)ZZZ>c (x) (9b)

ZZZc(x) is the column vector of explanatory variables on the cluster level, which is calculated
as the weighted average of the explanatory variables ZZZ(xl) on the individual plot levels x1, ..., xl
(Equation (10)). The weight w(xl) is the proportion of the extraction area (support) within the forest F
used to derive the explanatory variables from the raw auxiliary information.

ZZZc(x) =
∑M

l=1 IF(xl)w(xl)ZZZ(xl)

∑M
l=1 IF(xl)w(xl)

(10)

The estimated design-based variance-covariance matrix Σ̂ΣΣβ̂ββc,s2
accounts for the fact that the

regression model is internal and reflects the sampling variability that occurs when estimating the
regression coefficients on the realized sample s2. It is defined as

Σ̂ΣΣβ̂ββc,s2
= AAA−1

c,s2

( 1
n2

2
∑

x∈s2

M2(x)R̂2
c (x)ZZZc(x)ZZZ>c (x)

)
AAA−1

c,s2
(11)

with
R̂c = Yc(x)−ZZZ>c (x)β̂ββc,s2

= Yc(x)− Ŷc(x) (12)

being the empirical model residuals at the cluster level. By construction of OLS, the empirical model

residuals satisfy that they average to zero, i.e.,
∑x∈s2

M(x)R̂c(x)
∑x∈s2

M(x) = 0, if ZZZc(x) contains the intercept term 1.

Because the model is fitted internally, i.e., using the terrestrial sample s2 of the inventory area, this leads
to the important zero mean residual property of the theoretical model residuals over the inventory domain
F, i.e.,

∫
F Rc(x)dx. Mandallaz [30] and Mandallaz et al. [25] used this property particular for the case

of small area estimation to derive better variance estimates based on the g-weight technique adapted
from the works of Särndal et al. [9].

In the following, we will give a short description of each small area estimator and refer
to Mandallaz et al. [25], Mandallaz [30], Mandallaz et al. [35] if the reader requires additional
mathematical details or proofs. The estimators have also been implemented in the open-source
software-package forestinventory [36] in the statistical software R [37] which was used to compute all
estimates in this study.

4.2.1. Pseudo Small Area Estimator (PSMALL)

All point information used for small area estimation is now restricted to that available at the
sample locations s1,G or s2,G in the small area G, with exception of β̂ββc,s2

and Σ̂ΣΣβ̂ββc,s2
which are always

based on the entire sample s2. We thus first define the following quantities on the small area level:



Remote Sens. 2018, 10, 1052 7 of 26

ˆ̄ZZZc,G =
∑x∈s1,G

MG(x)ZZZc,G(x)

∑x∈s1,G
MG(x)

where ZZZc,G(x) =
∑M

l=1 IG(xl)ZZZ(xl)

MG(x)
(13a)

Yc,G(x) =
∑M

l=1 IG(xl)Y(xl)

MG(x)
and Ŷc,G(x) = ˆ̄ZZZ>c,Gβ̂ββc,s2

(13b)

¯̂R2,G =
∑x∈s2,G

MG(x)R̂c,G(x)

∑x∈s2,G
MG(x)

where R̂c,G(x) = Yc,G(x)− Ŷc,G(x) (13c)

Note that the restriction to G,i.e., IG(xl) = {0, 1}, is made on the individual sample plot level
xl , and MG(x) = ∑M

l=1 IG(xl) thus is the number of sample plots per cluster within the small
area. The asymptotically design-unbiased point estimate of PSMALL is then defined according
to Equation (14a). The first term estimates the small area population mean of G by applying the
globally derived regression coefficients to the small area cluster means of the explanatory variables
ˆ̄ZZZc,G. The second term then corrects for a potential bias of the regression model predictions in the
small area G by adding the mean of the empirical residuals ¯̂R2,G in G. This correction is necessary
because the zero mean residual property that holds in F is not guaranteed to hold in small area G
under this construction.

Ŷc,G,PSMALL = ˆ̄ZZZ>c,Gβ̂ββc,s2
+ ¯̂R2,G (14a)

V̂(Ŷc,G,PSMALL) =
ˆ̄ZZZ>c,GΣ̂ΣΣβ̂ββc,s2

ˆ̄ZZZc,G + β̂ββ
>
c,s2

Σ̂ ˆ̄ZZZc,G
β̂ββc,s2

+
1

n2,G(n2,G − 1) ∑
x∈s2,G

(MG(x)
M̄2,G

)2
(R̂c,G(x)− ¯̂R2,G)

2 (14b)

with M̄2,G =
∑x∈s2,G

MG(x)
n2,G

.

The variance-covariance matrix of the auxiliary vector Σ̂ ˆ̄ZZZc,G
is thereby defined as

Σ̂ ˆ̄ZZZc,G
=

1
n1,G(n1,G − 1) ∑

x∈s1,G

(MG(x)
M̄1,G

)2
(ZZZc,G(x)− ˆ̄ZZZc,G)(ZZZc,G(x)− ˆ̄ZZZc,G)

> (15)

with M̄1,G =
∑x∈s1,G

MG(x)
n1,G

.

The estimated design-based variance of Ŷc,G,PSMALL is given by Equation (14b). Basically, the first
term constitutes the variance introduced by the uncertainty in the regression coefficients, whereas
the second term expresses the variance caused by estimating the exact auxiliary mean in G using a
non-exhaustive sample s1,G. The third term is the variance of the model residuals and thus accounts
for the inaccuracies of the model predictions. Note that the first term can also be rewritten using
g-weights [35] (p. 14) which ensures some beneficial calibration of the auxiliary variables to the
first-phase sample.

4.2.2. Pseudo Synthetic Estimator (PSYNTH)

The PSYNTH estimator is commonly applied when no terrestrial sample is available within the
small area G (i.e., n2,G = 0). The point estimate (Equation (16a)) is thus only based on the predictions
generated by applying the globally derived regression coefficients to the small area cluster means
of the explanatory variables ˆ̄ZZZc,G. Note that the bias correction term using the empirical residuals
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(Equation (14a)) can no longer be applied. Conditioned on the realized sample, the PSYNTH estimator
can thus potentially have an unobservable design-based bias.

Ŷc,G,PSYNTH = ˆ̄ZZZ>c,Gβ̂ββc,s2
(16a)

V̂(Ŷc,G,PSYNTH) =
ˆ̄ZZZ>c,GΣ̂ΣΣβ̂ββc,s2

ˆ̄ZZZc,G + β̂ββ
>
c,s2

Σ̂ ˆ̄ZZZc,G
β̂ββc,s2

(16b)

The contribution to the variance by the model residuals in small area G can also no longer be
considered (Equation (16b)). As a result, the synthetic estimator will usually have a smaller variance
than estimators that consider the model residuals, but at the cost of a potential bias. Note that the
PSYNTH estimations are still design-based, but one purely has to rely on the validity of the regression
model within the small area as it is the case in the model-dependent framework.

4.2.3. Extended Pseudo Synthetic Estimator (EXTPSYNTH)

The EXTPSYNTH estimator (Equation (17a,b)) has been proposed by Mandallaz [30] as a
transformed version of the PSMALL estimator that has the form of the PSYNTH estimator but
remains asymptotically design unbiased. It has the advantage that the mean of the empirical model
residuals of the OLS regression model for the entire area F and the small area G are by construction
both zero at the same time, i.e., ¯̂Rc =

¯̂Rc,G = 0. This is realized by extending the auxiliary vector ZZZc(x)
by the indicator variable Ic,G which takes the value 1 if the entire cluster lies within the small area
G and 0 if the entire cluster is outside G, i.e., Ic,G(x) = MG(x)

M(x) . The extended auxiliary vector thus

becomes ZZZ>c (x) = (ZZZ>c (x), Ic,G(x)) and the new regression coefficient using ZZZc(x) instead of ZZZc(x) in
Equation (9a,b) is denoted as θ̂θθs2 . All remaining components are calculated by plugging in ZZZc(x) in
Equation (13a–c). A decomposition of θ̂θθs2 reveals that the residual correction term is now included in
the regression coefficient θ̂θθs2 [35].

Ŷc,G,EXTPSYNTH = ˆ̄ZZZ>c,Gθ̂θθc,s2 (17a)

V̂(Ŷc,G,EXTPSYNTH) =
ˆ̄ZZZ>c,GΣ̂ΣΣθ̂θθc,s2

ˆ̄ZZZc,G + θ̂θθ
>
c,s2

Σ̂ΣΣ ˆ̄ZZZc,G
θ̂θθc,s2 (17b)

However, it is important to note that ¯̂Rc,G = 0 under the extended regression model only holds if
the sample plots x1, ..., xl of a cluster are all either inside our outside the small area, i.e., MG(x) ≡ M(x),
and thus Ic,G(x) = MG(x)

M(x) can only take the values 1 or 0. Mandallaz et al. [35] assumed that the effects
on the estimates should be negligible as the number of occasions where MG(x) < M(x) was considered
to be small in practical implementations. It was thus a further objective of this study to investigate the
actual number of occurrences as well as effects of this phenomenon by comparing the estimates of
EXTPSYNTH to those of PSMALL.

4.3. Measures of Estimation Accuracy

The estimation precision was quantified by the estimation error, which is the ratio of the
standard error and the point estimate (here Ŷ stands for the point estimate produced under the
various estimators):

error[%] =

√
V̂(Ŷ)
Ŷ

× 100 (18)

We further calculated the 95% confidence interval for each estimate. The confidence intervals
were used heuristically for hypothesis testing to determine whether the point estimates of the three
estimators for a given small area were statistically different. The confidence intervals for the SRS
estimator can be obtained as:

CI1−α(
ˆ̄Yc) = ˆ̄Yc ± tn2−1,1− α

2

√
V̂( ˆ̄Yc) (19)
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The confidence intervals for the PSMALL and EXTPSYNTH estimates are calculated as:

CI1−α(Ŷc,G,EXTPSYNTH) = Ŷc,G,EXTPSYNTH ± tn2,G−1,1− α
2

√
V̂(Ŷc,G,EXTPSYNTH) (20a)

CI1−α(Ŷc,G,PSMALL) = Ŷc,G,PSMALL ± tn2,G−1,1− α
2

√
V̂(Ŷc,G,PSMALL) (20b)

For the PSYNTH estimates, the confidence intervals are

CI1−α(Ŷc,G,PSYNTH) = Ŷc,G,PSYNTH ± tn2−p,1− α
2

√
V̂(Ŷc,G,PSYNTH) (21)

with p being the number of parameters used in the regression model including the intercept term.
In order to address the potential benefits of the small area estimators compared with the SRS

approach, we calculated the relative efficiency (RE, Equation (22)) which can be interpreted as the relative
sample size under SRS needed to achieve the variance under the double-sampling (DS) estimators.

RE =
V̂(ŶSRS)

V̂(ŶDS)
(22)

where Ŷ stands for the point estimate produced under the respective estimator.

5. Case Study

5.1. Study Area and Small Area Units

The German federal state Rhineland-Palatinate (RLP) is located in the western part of Germany
and borders Luxembourg, France and Belgium. With 42.3% (appr. 8400 km2) of the entire state area
(19,850 km2) covered by forest, RLP is one of the two states with the highest forest coverage among all
federal states of Germany [2]. The forests of RLP are further characterised by a pronounced diversity in
bioclimatic growing conditions that have strong influence on the local growth dynamics as well as tree
species composition [38] and are further characterised by large variety of forest structures ranging from
characteristic oak coppices (Moselle valley), pure spruce, beech and scots pine forests (i.a. Hunsrück
and Palatinate forest) up to mixed forests comprising variable proportions of oak, larch, spruce, Scots
pine and beech. Around 82% of the forest area in RLP are mixed forest stands and 69% of the forest
area exhibit a multi-layered vertical structure. The forest area of RLP are divided into 3 ownership
classes, i.e., state forest (27%), municipal forest (46%) and privately owned forest (27%). The forest
service of RLP has the legal mandate to sustainably manage the state and municipal forest area (73% of
the entire forest area), including forest planning, harvesting and the sale of wood [39]. For this reason,
the entire forest area has been spatially organised in 3 main hierarchical management units (Figure 1).
On the upper level, RLP has been divided into 45 forest districts (Forstämter, FA), which are further
divided into a total number of 405 sub-districts (Forstreviere, FR). The next level are the forest stands
(104,184 in total) for which expert judgements are conducted by SFIs in a 5 to 10 year period in order
to set up management strategies for the upcoming 10 years. The FAs and FRs constituted the SA units
for which design-based small area estimations of the mean standing timber volume were calculated
by incorporating the available terrestrial inventory data of the BWI3 in the estimators described in
Section 4. The average area of the SA units was 43,777 ha on the FA-level, and 4624 ha on the FR level.
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Figure 1. (Left): Study area with delineated FA forest management units. (Right): Example for each
of the three management units (from top to bottom): FA, FR and forest stand unit overlayed with the
extended double-sampling cluster design. Green: Forest stand polygon layer defining the state and
municipal forest area of this study.

5.2. Terrestrial Sample

Rhineland-Palatinate is covered by a 2 × 2 km inventory grid of the German NFI. In the last
inventory (BWI3) conducted in the year 2011 and 2012, timber volume information was derived
for 2810 clusters (8092 plots) in the field survey. The local timber volume density on the plot and
cluster level for this sample was consequently calculated according to Section 4.1. In the framework
of this survey, the plot center coordinates were re-measured with the differential global satellite
navigation system (DGPS) technique. Knowledge about the exact plot positions were considered
crucial to provide optimal comparability between the terrestrial observations and the information
derived from the auxiliary information. A comparison of the DGPS coordinates with the so-far used
target coordinates revealed that 90% of all horizontal deviations lay in the range of 25 m. A detailed
analysis of horizontal DGPS errors in RLP by Lamprecht et al. [40] indicated that 80% of the plots
should not exceed horizontal DGPS errors of 8 m. For 162 plots, the DGPS coordinates were replaced
by their target coordinates due to missingness or implausible values. The terrestrial sample size n2,G
within the FA units was 46 clusters on average and ranged between 11 and 64. Within the FR units,
n2,G was considerably smaller with an average of 5 clusters and a range between 0 and 13.
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5.3. Extension to Double-Sampling Design

In order to apply the small area estimators (Section 4.2), the existing NFI design was extended to
a double-sampling cluster design by densifying the existing systematic 2 × 2 km grid to a grid size of
500 × 500 m that constituted the large first phase s1 (Figure 1, right). The existing terrestrial phase
s2 was integrated by replacing the target coordinates of the respective s1 clusters by the terrestrially
measured DGPS coordinates. The sampling frame was further restricted to the municipal and state
forest area. The forest/non-forest decision for each plot was thereby made by a spatial intersection of
the plot center coordinates with a polygon layer of the municipal and state forest stand layer provided
by the forest service. Using this stand layer provided the advantage to consistently apply the same
forest/non-forest definition to the entire sample s1 in order to decide about excluding or including a
plot in the sampling frame. The terrestrial sample size n2 was thus reduced to 2055 clusters (5791 plots).
Table 1 provides a short descriptive summary about the volume densities and the main attributes
of the NFI plots located in the state and municipal forest sampling frame. The densification led to
an average sample size n1,G of 759 clusters (range: 246–1022) in the FA units, and 88 clusters (range:
1–194) in the FR units.

Table 1. Descriptive statistics of the forest observed on NFI sample plots located within communal and
state forest area (n2 = 5791).

Variable Mean SD Maximum

Timber Volume (m3/ha) 300.9 195.6 1375.3
Mean DBH (mm) 354.9 137.2 1123.2
Mean height (dm) 239.6 72.4 497.4

Mean stem density per hectare 101 114 1010

5.4. Auxiliary Data

5.4.1. LiDAR Canopy Height Model

A prerequisite for the application of the suggested two-phase small area estimators is the
identification of suitable auxiliary data available over the entire study area. From 2003 to 2013,
the topographic survey institution of RLP conducted an airborne laserscanning acquisition over the
entire federal state during leaf-off conditions in order to derive a countrywide digital terrain model
(DTM) as well as a digital surface model (DSM). For this study, the recorded ALS data was used
to create a canopy height model (CHM) in raster format, providing discrete information about the
canopy surface height of the forest area in a spatial resolution of 5 m (Figure 2, top). The CHM was
calculated as the difference between the digital terrain model and the digital surface model that were
derived by a Delauney interpolation of the ground and first ALS pulses respectively. A more detailed
description of the procedure can be found in Hill et al. [41]. The CHM provided the most valuable
information to be used in the OLS regression model for predicting the timber volume on the plot
and cluster level. However, it should be noted that the prolonged acquisition period of the ALS
campaign led to the possibility of poor temporal alignment with the BWI3 survey, sometimes up to
10 years. In addition, the quality of the CHM varied substantially as ALS technology evolved over the
years. For example, the ALS acquisitions recorded in 2002 and 2003 exhibited particularly poor quality
with about only 0.04 points per m2, whereas more recent datasets contained more than 5 points per
m2. Furthermore, CHM information was not available at 16 sample locations due to sensor failures.
These plots were deleted from the sampling frame and treated as missing at random. This assumption
was considered to be reasonable as the respective sample locations did not systematically exclude
specific forest structures.
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Figure 2. (Left): CHM (top) and tree species classification map (bottom) available on the federal state
level. (Right): Magnified illustration of the supports used to derive the explanatory variables from the
auxiliary data. From top to bottom: CHM, aerial image, tree species classification.

5.4.2. Tree Species Classification Map

Additional auxiliary data was derived from a countrywide satellite-based classification map
predicting the five main tree species [42], i.e., European beech, Sessile and Pedunculate oak, Norway
spruce, Douglas fir and Scots pine (Figure 2, bottom). The tree species map has a grid size of 5 × 5 m
and was calculated from 22 bi-temporal satellite images (SPOT5 and RapidEye) using a spatially
adaptive classification algorithm [43]. As timber volume estimation on the tree level is often based
on species-specific biomass and volume equations, the use of tree species information has often been
stated as a key factor for improving the precision of timber volume estimates [44]. In this respect,
incorporating the tree species map was particularly attractive as it predicts five of the seven tree species
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that are used in the BWI3 taper functions [33] to calculate the timber volume of a sample tree. However,
due to unavailable satellite data, the tree species map excluded one large patch with an area of 415 km2

in the south-west part of RLP covering an entire FA unit consisting of 10 FR units. In 9 additional FR
units, the tree species information was also missing for a subset of the sample locations due to two
additional patches with areas of 76 km2 and 100 km2 respectively in the northern part of RLP. For these
19 FR units, small area estimation was thus restricted to using only the available CHM information in
the regression model. Thus, 411 of 5791 sample locations (approximately 7%) used to fit the regression
model were affected by missing tree species information. A summary of the sample sizes and missing
auxiliary data for both the CHM and the tree species map is provided in Table 2.

Table 2. Sample size for each phase in entire study area. n{1,2},plot: number of plots. n{1,2}: number of
clusters. TSPEC: tree species map information.

Sampling Frame n1,plot n1 n2,plot n2

municipal and state forest 96,854 33,365 5791 2055
missing CHM 18 10 0 0
missing TSPEC 7060 3587 414 385
missing CHM and TSPEC 3 2 0 0
missing CHM or TSPEC 7075 3595 414 385

5.5. Calculation of the Explanatory Variables

5.5.1. Canopy Height Model

The continuous explanatory variables derived from the CHM were the mean canopy height
(meanheight) and the standard deviation (stddev). The quantities were calculated by evaluating the raster
values around each sample location within a circle with a predefined radius of 12 m, i.e., the support.
In order to correct for edge effects at the forest border, the intersection of each support area to the
state and municipal forest area was determined using a polygon mask provided by the state forest
service. The percentage of the support within the forest layer was used as the weight w(xl) introduced
in Equation (10) in order to derive the weighted mean of the explanatory variables on the cluster level.
Neglecting the support adjustment would deteriorate the coherence between explanatory variables
computed at the forest boundary and the corresponding local density that already includes a potential
boundary adjustment, thus introducing unnecessary noise to the model. The boundary adjustment to
the support also makes the sampling frame more consistent for the different data sources (Section 5.3).

The ALS acquisition year (ALSyear) was added as a categorical variable in order to account for the
time lag with the terrestrial survey as well as to help explain the heterogeneity in the data introduced
by the varying ALS quality. In 2008, a sensor error produced particularly poor ALS quality so the year
was divided accordingly into two factor levels, denoted 2008_1 and 2008. Furthermore, in order to
increase the number of observations per factor level the years 2006 and 2007 were pooled together and
the same was done for 2012 and 2013. The result was nine factor levels denoted as 2002, 2003, 2007,
2008_1, 2008, 2009, 2010, 2011 and 2012.

5.5.2. Tree Species Classification Map

The tree species map was used to predict the main tree species at each sample plot which served
as an additional categorical variable treespecies in the regression model. In the first step, one of the five
tree species was assigned to a sample location if 100% of the raster values within the edge-corrected
support were classified as that species. Otherwise, the sample location was assigned the value ’mixed’.
Likewise for the CHM variables, the support radius was 12 m although the use of different support
sizes for each explanatory variable would be in agreement with the two-phase estimators presented
in Section 4.2. The specific setting for the support size and the percentage threshold was found to be
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optimal in order to yield the best possible regression model precision when incorporating the treespecies
variable as an additional predictor. In a second step, the treespecies variable was also passed through
a calibration model in order to reduce the effects of misclassification errors on the regression model
coefficients and to increase model accuracy. The calibration model consisted of a decision tree from a
random forest algorithm [45] that was trained to predict the actual main plot tree species (known for all
terrestrial plots) based on available auxiliary variables. These variables were the predicted treespecies
variable, the mean canopy height and standard deviation of the CHM, as well as the proportion of
coniferous trees estimated from the classification map and the growing region derived from a polygon
map. The algorithm was grown with 2000 trees considering 3 of the predictors for each split. We thus
applied this calibration model to the treespecies variable derived at all sample locations s1. Table 3
gives the classification accuracies [46] of the treespecies variable after calibration. More details on
the processing of the explanatory variables and identification of optimal parameter settings for their
calculation are described in Hill et al. [41].

Table 3. Classification accuracies of the treespecies variable before and after calibration. nre f : number of
terrestrial reference plots. nclass: number of classified plots.

Main Plot Species Producer’s Accuracy [%] User’s Accuracy [%] nre f nclass

Beech 22.3 47.0 883 419
Douglas Fir 24.8 48.7 230 117

Oak 11.1 48.5 289 66
Spruce 53.2 61.1 651 566

Scots Pine 22.9 46.1 179 89
Mixed 84.5 64.5 3152 4127

Overall accuracy: 62.0% 5384 5384

5.6. Regression Model

The model selection process for this study required a substantial time commitment due to
sophisticated challenges such as: (a) the heterogeneity of the remote sensing data; (b) the identification
of the optimal support sizes under angle count sampling and (c) the incorporation of tree species
information. Here, only a summary of the extensive analysis that was performed is provided but the
reader can refer to Hill et al. [41] if more details are desired.

The model with highest adjusted R2 and lowest RMSE was achieved using meanheight, meanheight2,
stddev, ALSyear and treespecies as main effects, and including interaction terms between meanheight
and ALSyear, stddev and ALSyear, meanheight and stddev, and meanheight and treespecies. Summary
information about the adjusted R2, RMSE and RMSE% of the selected models is provided in Table 4.
As the two-phase estimators described in Section 4.2 derive and apply the regression coefficients and
the residuals on the aggregated cluster level, we re-evaluated the model as used in the estimators on
the cluster level (formulas given in Appendix) and found improved model fits compared to the plot
level (adjusted R2 of 0.59 and RMSE of 101.61 m3/ha and 33.6%). Using the ALS acquisition year as a
categorical variable substantially improved the model fit, indicating that it is an effective means in
accounting for the noise in the data caused by ALS quality variations and time-gaps between the ALS
and the terrestrial survey. However, this also led to a highly unbalanced data set when introducing
the treespecies variable as an additional categorical predictor. For this reason, a individual species
modeling within each ALSyear stratum remained infeasible, but might have further improved the
model fit. An additional evaluation of the model’s performance within each ALS acquisition year
stratum revealed that the quality of the model fit substantially varied between the strata (Table 5).
In particular, values above the overall adjusted R2 were higher in ALS acquisition years close to the
terrestrial survey date compared to years with larger time gaps.
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As described in Section 5.4.2, the information of the tree species classification map was missing
within 1 FA and 19 FR units. For these small area units, we applied the regression model without
the treespecies variable (Table 4, reduced model). However, the adjusted R2s of the full and reduced
model were found to be very similar on both the plot and cluster level. This implied that the variance
reduction of the reduced model when applied to the two-phase estimators would likely be comparable
to that of the full model. For this reason, a joint evaluation of the estimation results is performed in
Section 6.

Table 4. Model fit specifications for the two OLS regression models on the cluster level. Interaction
terms are indicated by ’:’. () give the respective values on the plot level.

Model Terms Model R2
adj RMSE RMSE%

meanheight + stddev + meanheight2 + full model 0.58 90.11 29.76
treespecies + ALSyear + (0.48) (139.22) (45.98)

meanheight:treespecies +
meanheight:ALSyear + meanheight:stddev +

stddev:ALSyear

meanheight + stddev + meanheight2 + reduced model 0.55 95.23 31.65
ALSyear + meanheight:ALSyear + (0.45) (144.13) (47.60)

meanheight:stddev + stddev:ALSyear

Table 5. R2, RMSE and RMSE% on the cluster level of the full regression model within ALS acquisition
year strata (ALSyear). AreaALSyear: Area covered by ALS acquisition given in km2. n: sample size of
validation data. () give the respective values on the plot level.

ALSyear AreaALSyear R2 RMSE RMSE% n

2012 2807 0.65 98.52 29.62 156
(0.61) (135.84) (44.87) (408)

2011 4361 0.60 96.89 29.66 354
(0.57) (146.21) (48.29) (883)

2010 4182 0.64 76.38 27.57 420
(0.51) (120.90) (39.93) (1171)

2009 2100 0.53 92.22 33.31 218
(0.42) (133.42) (44.07) (559)

2008 2968 0.61 87.10 32.20 247
(0.48) (130.38) (43.06) (701)

2008_1 2116 0.43 117.99 33.64 157
(0.33) (175.43) (57.94) (394)

2007 3498 0.56 82.43 26.57 135
(0.46) (136.47) (45.08) (418)

2003 602 0.34 85.92 27.31 145
(0.27) (154.48) (51.02) (529)

2002 775 0.52 87.25 27.22 97
(0.44) (141.55) (46.75) (314)

Concerning the treatment of outliers or leverage points, it can be advisable to remove such
observations from the training data set that is used to determine the regression coefficients (Section 4.2)
in order to minimize the residual variance for the entire terrestrial sample. However, it should be
noted that such removal of observations does restrict the calculation of design-unbiased estimation to
the PSMALL estimator, because the residuals still have to be derived for the full terrestrial sample in
order to ensure unbiased estimation. This would no longer be satisfied when using the EXTPSYNTH
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estimator, where the residual correction term is included in the regression coefficient (Section 4.2.3).
For our particular case, we conducted an analysis of influential observations [47] (pp. 160–167) on
the plot level for the full regression model. We calculated the leverage values and found that 10%
of all observations exceeding a predefined critical threshold, i.e., twice the average of the hat matrix
diagonal entries. Further investigation revealed that several leverage points showed unusually large
meanheight values compared to their respective timber volume densities. They tended to occur in ALS
acquisition years with longer time gaps to the terrestrial survey date and were thus more likely caused
by harvesting activities in the sample plot area. Although these areas likely affected by harvest should
clearly not be removed from the sampling frame, it does provide more justification for the inclusion of
the ALSyear variable to mitigate the implied effects.

6. Results

6.1. General Estimation Results

An application of the SRS, PSMALL and EXTPSYNTH estimator was not feasible for 17 of all
405 FR-units due to an insufficient terrestrial sample size of n2,G < 2. We further restricted the
calculation of the PSMALL and EXTPSYNTH estimator to small area units with a minimum terrestrial
sample size of n2,G ≥ 4 to avoid unstable estimates. This affected 65 additional FR units and limited
unbiased two-phase estimations to 321 (79%) of the 405 FR units. Also the PSYNTH estimator could
not be applied for 2 FR-units since n1,G < 2. For better comparison, the descriptive summaries of
point estimates and estimation errors for each estimator presented in Table 6 are always based on the
same population of small area units, i.e., the 321 districts for which unbiased two-phase estimations
were possible.

All estimators could however be applied to all 45 FA units due to substantially larger sample sizes.
The average value and the range of the mean timber volume estimates over the evaluated FA and FR
units turned out to be very similar between all estimators (Table 6). An additional pairwise comparison
of the 95% confidence intervals revealed that the four estimators did in fact not produce statistically
different point estimates for all FA and FR units. This confirmed that the differences between the
estimators are solely found in the precision which they provide for the point estimates.

Table 6. Descriptive summary of point estimates and estimation errors for the volume of growing stock
per area unit [m3/ha] on the two forest district levels. Nu: number of evaluated small area units.

District Level Estimator
Point Estimates Error[%]

Mean Min Max Mean Min Max

FA

SRS (Nu = 45) 300.16 215.91 392.84 6.69 3.87 13.21
PSMALL (Nu = 45) 307.29 209.26 417.10 5.16 3.46 14.33

EXTPSYNTH (Nu = 45) 307.27 209.01 415.02 4.78 3.25 13.88
PSYNTH (Nu = 45) 306.90 223.51 409.92 2.34 1.54 3.95

FR

SRS (Nu = 321) 302.77 99.89 552.87 16.94 2.76 55.51
PSMALL (Nu = 321) 308.15 159.64 568.67 12.24 3.48 44.94

EXTPSYNTH (Nu = 321) 308.38 154.07 544.34 11.34 3.60 40.91
PSYNTH (Nu = 321) 305.56 197.47 444.29 4.13 2.56 18.07

6.2. Estimation Errors

On both small area levels, the design-unbiased estimators PSMALL and EXTPSYNTH led to a
substantial reduction in the estimation error compared to the SRS estimator (Figure 3). On the FA
level, the SRS estimator yielded an estimation error of 6.7% on average compared to 5.2% and 4.8%
under EXTPSYNTH and PSMALL respectively (Table 6). The cumulative error distribution (Figure 3,
left) reveals that under the SRS estimator, errors less than 5% were achieved for 17% of the FA units
(8 of 45). This proportion could be increased to 62% (28 FA units) and 73% (33 FA units) by application
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of the PSMALL and EXTPSYNTH estimator. 95% of all estimates exhibited errors less than 9.5% under
the SRS estimator and less than 6.6% when using PSMALL or EXTPSYNTH. Estimation errors higher
than 10% only appeared twice for each of the three estimators.

Although the estimation errors were substantially larger overall on the FR level compared to the
FA level due to smaller sample sizes, the error reduction from SRS by PSMALL and EXTPSYNTH were
even more pronounced (Figure 3, right). The average error under the SRS estimator was 16.9%, while
it was 11.3% and 12.2% under PSMALL and EXTPSYNTH (Table 6). Errors smaller than 10% were
achieved for 15% of the FR units by the SRS estimator, and for 46% by the PSMALL and EXTPSYNTH
estimator. 95% of the 321 FR units where PSMALL and EXTPSYNTH could be applied exhibited errors
less than 20%. In comparion, the SRS estimates resulted in errors less than 32.3% for 95% of the 321
evaluated FR units.

Figure 3. Cumulative distribution of estimation errors under SRS, PSMALL, EXTPSYNTH and the
PSYNTH estimator. (Left): Results for the 45 FA units. (Right): Results for the 321 FR units.

On both small area levels, the PSYNTH estimator resulted in much smaller estimation errors
compared to PSMALL and EXTPSYNTH. This was as expected, since the PSYNTH variance estimate
does not take the residual variation in each small area unit into account (Section 4.2.2). Compared
to the asymptotically design-unbiased estimators PSMALL and EXTPSYNTH, the estimation errors
produced by PSYNTH thus seem to be too optimistic. One should also recall that the estimates of the
PSYNTH estimator are potentially design-biased.

6.3. Comparison of PSMALL and EXTPSYNTH

Figure 3 reveals that the error distribution of PSMALL and EXTPSYNTH are very similar, with
PSMALL showing marginally higher estimation errors. In order to investigate the differences between
PSMALL and EXTPSYNTH, we compared the g-weight variances of both estimators for all 321 FR
units (Figure 4, left). As obvious, PSMALL yielded slightly larger variances for the vast majority of the
estimates. As addressed in Section 4.2.3, one possible explanation for differences was the effect of one
or more clusters not entirely being included in a small area unit, as this would constitute an assumption
violation of the EXTPSYNTH estimator. This violation was actually observed in 155 of the 321 FR units
(48%). We compared the variances of PSMALL and EXTPSYNTH for all small areas that did not have
the violations using a Wilcoxon Signed-Rank Test [48] on a 5% significance level. This test was also
performed pairwise for groups n2,G ≤ 6, n2,G > 6 and n2,G > 10. The distribution of variances from
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EXTPSYNTH was found to be highly significantly lower than that of PSMALL except for the group of
n2,G > 10. The latter was expected since the variances of both estimators are asymptotically equivalent
under large terrestrial sample sizes n2,G within the small area [35] (pp. 17–18). This was also confirmed
by a visual comparison of the absolute differences in the variances (Figure 4, right) which decreased
with increasing terrestrial sample size. Performing the same comparison for small areas with violations
also revealed the EXTPSYNTH variances to be significantly smaller than the respective PSMALL
variances until sample sizes n2,G > 10. Based on these investigations, it was not possible to determine
whether the differences for sample sizes smaller than 10 were caused by the violations or just reflect
the general tendency of EXTPSYNTH to produce smaller variances than PSMALL under small sample
sizes. However, a visual inspection provided some evidence that the violations created a statistically
significant influence on the EXTPSYNTH variance (Figure 4, left, red diamonds) that makes it appear
to be slightly over-optimistic. For sample sizes of n2,G < 6, a weakly significant difference between the
EXTPSYNTH variances of those small areas with violations and the EXTPSYNTH variances without
violation was also indicated by an unpaired Wilcoxon Rank-Sum Test. However, the differences were
still marginal and a comparison of the confidence intervals of PSMALL and EXTPSYNTH revealed
that the variance differences did not lead to statistically significant point estimates.

Figure 4. (Left): Comparison of the g-weight variance between the PSMALL and the EXTPSYNTH
estimator for the 321 FR units. (Right): Difference in g-weight variance between the PSMALL and the
EXTPSYNTH estimator in dependence of the terrestrial data (n2,G) in the FR unit.

6.4. Variance Reduction Compared to SRS

The variance reduction relative to SRS for PSMALL and EXTPSYNTH are described in Figure 5
and Table 7. A direct comparison of the variances within the small area units revealed that the
application of the design-unbiased estimators (PSMALL, EXTPSYNTH) led to a variance reduction
compared to SRS in all FA units. In 75% of the FA units, the EXTPSYNTH estimator was able to reduce
the variance by up to 54.1%. The reduction in variance can also be expressed in the relative efficiency
values, which were 2.02 on average and ranged between 1.18 and 4.13 on the FA level. On FR level, the
reduction in variance even reached values of 90% and relative efficiencies of 30 (Table 7 and Figure 5).
The PSMALL estimator again yielded slightly lower variance reductions and relative efficiencies due
to the generally smaller variances of the EXTPSYNTH estimator (Section 6.3).
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Figure 5. Cumulative distribution of variance reduction by the PSMALL and EXTPSYNTH compared
to the SRS estimator for the 45 FA and 321 FR units.

Table 7. Descriptive summary of variance reduction compared to SRS and relative efficiencies on the
two forest district levels. Nu: number of evaluated small area units.

District Level Estimator
Variance Reduction [%] Relative Efficiency

Mean Min Max Mean Min Max

FA PSMALL (Nu = 45) 33.51 2.6 72.5 1.74 1.03 3.64
EXTPSYNTH (Nu = 45) 43.30 15.7 75.8 2.03 1.18 4.13

FR PSMALL (Nu = 321) 12.48 −1203.9 96.8 2.54 0.08 31.61
EXTPSYNTH (Nu = 321) 24.75 −892.7 97.0 2.95 0.10 33.70

Cases also occurred on the FR level where one or both two-phase estimators produced larger
variance values than under the SRS estimator. This happened in 19% of the FR units under the
EXTPSYNTH, and in 24% of the FR units under the PSMALL estimator. One possible reason for this
was supposed to be a large residual variance due to a poor performance of the regression model
within the small area unit. In order to investigate this hypothesis, we analyzed the three variance
terms of the PSMALL estimator (Equation (14b)), i.e., the variance introduced by the uncertainty of
the regression coefficients (term 1), the variance caused by estimating the auxiliary means (term 2),
and the variance of the model residuals (term 3). In general, the residual term is expected to make the
largest contribution to the overall variance since it’s sample size is based on n2,G whereas the auxiliary
term and the coefficient term are based on larger sample sizes, i.e., n1,G and n2 respectively. Figure 6
illustrates the share of the overall variance by the residual term of the PSMALL estimator scaled by
the overall percentage reduction or increase of the variance compared to SRS for various small area
sample sizes n2,G. Not surprisingly, the residual term generally constitutes the dominating part of the
PSMALL variance (around 84% on average). It has to be noted that such high residual term dominance
does not necessary indicate that the PSMALL variance will be disproportionately large (Figure 6, right).
However, the vast majority of cases where the PSMALL variance was considerably larger than the
SRS variance occurred where the residual term contributed over 75% to the overall PSMALL variance
(Figure 6, left). Among those cases, the most pronounced were observed under small sample sizes
n2,G < 5. Here, the average increase in variance compared to SRS of those FR units with n2,G = 4 was



Remote Sens. 2018, 10, 1052 20 of 26

272%, compared to 62% for FR units with n2,G > 4. In contrast, the decreases in variance compared
to SRS (Figure 6, right) were much more homogeneous in magnitude and also independent of the
terrestrial sample size. Since n2,G is the same for PSMALL and SRS, these observations imply that in
the problematic small areas, the sum of square residuals for the regression model are likely larger than
the sum of square local densities for the clusters in s2,G. This indicates the presence of outliers with
large residuals, which likely arise when there was forest loss after the ALS scanning but before the
terrestrial survey year.

Figure 6. Share of the overall variance by the residual term of the PSMALL estimator for various
small area sample sizes. Points are scaled by the overall percentage reduction/increase of the variance
compared to SRS.

7. Discussion

7.1. Performance of Estimators

With the objective of extending the use of the German NFI data to additional estimation on
small-scale management levels, we evaluated the performance of design-based small area regression
estimators with respect to their suitability for future operational large scale application. For this reason,
we conducted a case study in the German federal state of Rhineland-Palatinate where we applied the
SRS, the PSMALL and the EXTPSYNTH estimators to produce estimates of the mean timber volume on
two forest management levels over the entire federal state area, comprising 45 and 405 small area units
respectively. In order to assess and compare the performance of the estimators, it was of particular
interest to gather information about the magnitudes of estimation precision they can provide.

Our study showed that on both small area levels, the PSMALL and the EXTPSYNTH estimators
generally led to a substantial reduction in estimation error compared to the standard one-phase
SRS estimator. On the upper management level (FA districts), PSMALL and EXTPSYNTH produced
estimation errors smaller than 5% for 73% of the small areas compared to only 17% under the one-phase
SRS estimator. It could be argued that the majority of the FA units comprised a sample size (46 clusters
on average) that would also have allowed to build an individual prediction model for each FA unit and
apply direct estimation, which can be more efficient. The main reason why this was not considered in
the present study was the large number of parameters that would have to be fitted in the individual
prediction models resulting from the pronounced heterogeneity in the auxiliary data (multiple tree
species and ALS acquisition years in each FA unit). In this case, the strategy to ‘borrow strength’ from
the entire inventory domain was preferred to direct estimation in order to avoid overfitting and the
implied risk of unstable global estimation. Even in case the above mentioned problem of overfitting is
not raised, individual model building for a large number of small area units can be time-consuming
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and small area estimation can be a cost-saving alternative- however, possibly the cost of more efficient
global estimation.

The level of precision of the FA-level could not be achieved on the lower management level
(FR districts) primarily due to substantially smaller terrestrial sample sizes. However, in 95% of the
FR units, the estimation errors could be limited to 20% compared to 40% under SRS. A pairwise
comparison of the confidence intervals revealed that the estimators did not produce significantly
different point estimates. The much smaller estimation errors of the PSYNTH estimator reflected the
fact that it does not try to correct for potential bias in the point estimate which can lead to overly
optimistic estimation errors and confidence intervals. One should thus prefer the unbiased estimates
of PSMALL or EXTPSYNTH whenever their calculation is possible.

For several FR units, it was observed that the PSMALL and the EXTPSYNTH estimator can
occasionally produce larger variances than the SRS estimator. It is important to note that this is in
perfect agreement with the theory of both two-phase estimators and can theoretically appear if the
residual variance in the small area, which generally constitutes the dominating part of the two-phase
variance, turns out to be much higher than the variance of the terrestrial data in the small area.
The empirical findings of our study suggest that such cases can particularly occur if moderate or poor
model fits within a small area are combined with small terrestrial sample sizes (≤5) in the small area.
A closer look on these small areas thus might reveal the reason for the poor prediction performance
and help to improve the model fit. Nonetheless, it should be kept in mind that small terrestrial sample
sizes can also cause the SRS estimator to not reflect the actual variation of the local density within a
small area. In this case, the two-phase variance estimate might be larger but more realistic. Whereas a
visual analysis of aerial images, remote sensing data or stand maps might give some further evidence
for or against this hypothesis, a definite proof is practically infeasible.

We were also able to empirically confirm that the EXTPSYNTH estimator generally produces
slightly smaller variances and estimation errors than the PSMALL estimator. This is most probably
caused by marginally smaller model residuals due to the intercept adjustment to the terrestrial data
in the small area unit, which is primarily a means to ensure the zero mean residual property of the
EXTPSYNTH estimator. However, our analysis indicated that the difference between the two estimators
is negligible for sample sizes ≥10 due to their asymptotic equivalency. We further investigated a
potential impact on the EXTPSYNTH variance caused by the assumption violation that one or more
clusters are not entirely included in the small area unit and found a slight but statistically significant
tendency to be over-optimistic for sample sizes smaller than 6. More empirical evidence must be
gathered before generalizing this as a rule of thumb for the application of the EXTPSYNTH under
cluster sampling. It thus seems recommendable to prefer the EXTPSYNTH to the PSMALL estimator
if its assumptions are not violated since it yields slightly smaller variances under mathematically
soundness. Even if the differences between both estimators were marginal and did not lead to
significantly different point estimates, PSMALL can serve as a safe alternative if the EXTPSYNTH
assumption is violated. Aside from this, calculating both PSMALL and EXTPSYNTH and subsequently
compare their results is always recommended to reveal suspicious deviations.

A commonly raised critic on the proposed design-unbiased estimators are their asymptotic
properties, i.e., the validity of the confidence coverage rates is only ensured if the sample size in a
small area is sufficiently large. Giving a generally valid sample size for the asymptotic validity range
is, unfortunately, infeasible due to the dependency on the heterogeneity of the underlying population
which is per se unknown. However, simulation studies for simple random sampling presented in
Mandallaz et al. [25] suggested that a minimum sample size of 6 within a small area is sufficient
to ensure the nominal coverage rates of the confidence intervals for PSMALL and EXTPSYNTH.
Re-evaluating the same simulation example recently confirmed the same results for cluster sampling.
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7.2. Auxiliary Data

The auxiliary data used in our study were derived from two remote sensing sources, i.e., an ALS
canopy height model and a tree species classification map. Likewise in many similar studies, the ALS
mean canopy height proved to be the explanatory variable with highest predictive power. However,
the large time-gaps of up to 10 years between the ALS acquisition and the terrestrial survey date
caused the substantial introduction of artificial noise in the data. Whereas a post-stratification to the
ALS acquisition years was an effective means to counteract the implied residual inflation, several
leverage points were unambiguously caused by the temporal asynchronicity. Undetectable forest loss
during the gap between the ALS acquisition and the NFI was also likely a cause for high residual
variance in some small area units compared to the terrestrial data variance, which subsequently led to
higher variances than the SRS estimator. As opposed to the ALS data, the availability of a country-wide
tree species classification map has yet been unique among all German federal states. Whereas the
study of Hill et al. [41] already showed that the tree species information was able to improve the
model fit, it has yet not been used to its full potential. One reason for this was the impossibility
of modeling individual tree species within each ALS acquisition year, which would add further
explanatory power. Another reason was the lack of available satellite data for classification in some
parts of the country, which led to missing values in the inventory data and restricted 19 FR units to a
simpler regression model. Promising steps with respect to more up-to-date canopy height information
have already been made, as the topographic survey institution of RLP will from this year on provide
a country-wide canopy height model derived from aerial imagery acquisitions. These campaigns
will in the future be conducted in a two-year period and allow to derive canopy height information
matching the dates of terrestrial forest inventories. A study of Kirchhoefer et al. [49] recently indicated
that similar model performance for German NFI data can be achieved using such imagery-based
canopy height models. Additionally, the improved coverage and repetition rate of the Sentinel-2
satellite [50] will allow to produce annually updated tree species classification maps. We consider
these alternative auxiliary data sources to also solve the problem of missing explanatory variables
at inventory plots. One could also make use of the exhaustive information within the two-phase
estimators by using the true auxiliary means [25,30], which could further decrease estimation errors.
Previous studies of Mandallaz et al. [25] however showed that given a reasonable large sample size of
the first phase, the differences in the estimation error are usually small. With respect to the substantial
improvements in the temporal synchronicity between auxiliary and terrestrial inventory data, we
consider the demonstrated double-sampling approach also to be very efficient for the estimation of
change [51].

8. Conclusions

The study led to two major conclusions: (1) the EXTPSYNTH and PSMALL estimator generally
achieved substantially smaller estimation errors on the two investigated forest district levels compared
to the SRS estimator. Thus, the demonstrated small area estimation procedure constitutes a major
contribution to an additional use of the German NFI data for estimation below the federal state
level. Further close cooperation with the forest authorities is crucial to evaluate whether the achieved
error levels are already sufficient enough in order to support forest planning decisions. A first
study will concentrate on testing the EXTPSYNTH and PSMALL confidence intervals as a validation
source for the stand-wise inventories. (2) Despite the quality restrictions, the ALS data and the tree
species map were found to be well suited to model the mean timber volume on the plot and cluster
level. With the prospect of more frequently updated aerial canopy height models and tree species
maps, the two data sources will become even more attractive to be used as an integral part of future
operational applications. The improving availability of remote sensing data will also allow to extent
the demonstrated estimation procedure to the estimation of change. We consider this to be one of the
next milestones towards a future operational use of the demonstrated small area estimation procedure.
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Appendix A

Appendix A.1. R-Squared on Cluster Level

The R2 on the cluster level is calculated using the number of plots M(x) of each cluster in order to
weight for the varying number of plots on which Yc(x) and Ŷc(x) are based on.

R2 =
∑x∈s2

(
M(x)
M̄2

)2(
Ŷc(x)− ˆ̄Yc

)2

∑x∈s2

(
M(x)
M̄2

)2(
Yc(x)− ˆ̄Yc

)2

Yc(x) and Ŷc(x) are the predicted and observed local densities on the cluster level calculated
according to Equations (2) and (12). ˆ̄Yc is the estimated sample mean corresponding to the weighted
mean over all observed local densities on the cluster level (Equation (8a,b)).

Appendix A.2. RMSE on Cluster Level

The same weights M(x) are also applied to calculate the RMSE on the cluster level. n2 is the
number of clusters used in the modeling frame.

RMSE =

√
1
n2

∑
x∈s2

(M(x)
M̄2

)2(
Ŷc(x)−Yc(x)

)2

The relative or normalized RMSE is calculated by dividing the RMSE by the estimated sample
mean ˆ̄Yc:

RMSE[%] =
RMSE

ˆ̄Yc

Note that the weights M(x)
M̄2
≡ 1 if the number of plots per cluster is constant.
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