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Abstract: Flooding is extremely dangerous when a river overflows to inundate an urban area.
From 1995 to 2016, North Korea (NK) experienced extensive damage to life and property almost
every year due to a levee breach resulting from typhoons and heavy rainfall during the summer
monsoon season. Recently, Hoeryeong City (2016) experienced heavy rain during Typhoon Lionrock,
and the resulting flood killed and injured many people (68,900) and destroyed numerous buildings
and settlements (11,600). The NK state media described it as the most significant national disaster
since 1945. Thus, almost all annual repeat occurrences of floods in NK have had a severe impact,
which makes it necessary to figure out the extent of floods to restore the damaged environment.
However, this is difficult due to inaccessibility. Under such a situation, optical remote sensing
(RS) data and radar RS data along with a logistic regression were utilized in this study to develop
modeling for flood-damaged area delineation. High-resolution web-based satellite imagery was also
interpreted to confirm the results of the study.
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1. Introduction

Flooding is extremely dangerous when a river overflows to inundate an urban area. North Korea
(NK) has suffered flood damage almost every year since 1995, so the region has come to be known
as a natural disaster zone [1]. In particular, in 1995, 2007, and 2012, flash floods wreaked havoc
on crop fields, human settlements, and infrastructure, thereby killing or displacing thousands of
people. In these three years, the rate of deaths and injuries was 5.2 million, 900,000 and 298,000,
respectively, and the number of destroyed buildings and settlements was 98,000, 240,000 and 87,000,
respectively [1]. More recently, Raseon City (2015) and Hoeryeong City (2016) experienced typhoons
(Goni and Lionrock, respectively) with heavy rainfall. Both areas are in North Hamgyeong Province,
and the resulting floods killed and injured many people (11,000; 68,900) and destroyed numerous
buildings and settlements (1000; 11,600) [2,3]. In particular, NK state media described the 2016 flood at
Hoeryeong City as the biggest national disaster since 1945. Thus, it is necessary to develop a way to
delineate Flood Damaged Areas (FDAs) in NK. However, it is difficult to conduct field investigations
due to political divisions.

Under such a situation, remote sensing (RS) data can be used to delineate FDAs in NK. Several
researchers have used optical RS data to assess floodplain delineations [4-9] and radar RS data, which is
more immune to the presence of clouds, to detect flood inundations [8,10-14]. With these technologies,
flooding can be monitored in inaccessible areas by ensuring repetitive coverage of the area of concern,
especially before and after a disaster event.
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A few studies have been conducted on NK flooding using RS data. Okamoto et al. [15] estimated
the economic loss of a 1995 flood in terms of rice production in NK using optical RS data. Kim et al. [16]
used Normalized Difference Vegetation Index (NDVI) values to elucidate the impact of the flood on
the crop recovery conditions in agricultural areas in post-flood Japanese Earth Resources Satellite
(JERS)-1 Optical Sensor (OPS) imagery. They also used JERS-1 Synthetic Aperture Radar (SAR) data as
reference data to evaluate flooded crop fields in a classified land-cover map. However, they did not
use satellite images taken near the day of the flood occurrence. Lim and Lee [17] found that the largest
portion of NK flooding occurred in rice paddies with a low elevation. They also found that floods
occur in NK even though the precipitation is similar to South Korea (SK), which does not experience
floods. However, radar RS data were not used due to its unavailability.

Although radar RS data provides the benefits of data collection regardless of weather conditions,
it is limited insofar as radar only recognizes a distributed target [10]. Thus, it is necessary to
complement this data with water flow simulations using a Geographic Information System (GIS)
to delineate the FDAs more accurately. Prior studies have used RS data and GIS integration models to
detect and predict FDAs [8,10-12,14,18]. These models can be used in areas without field hydrologic
data [14]. Therefore, they can be applied to study FDAs in otherwise-inaccessible areas of NK.

Recently, machine-learning techniques have been used for flood modeling and prediction.
The popular methods in natural hazard modeling are Artificial Neural Networks (ANNs) [19-22],
the Analytical Hierarchy Process (AHP) [23-27], Frequency Ratio (FR) [28-36], and Logistic Regression
(LR) [8,14,30,34,37-39].

The LR model in GIS processing in this study is frequently used because of its straightforward and
understandable concepts [28,33,39]. In addition, LR can explain the role of factors and it shows a strong
prediction ability when compared to other machine-learning techniques [37]. Pradhan [8] progressed
flood susceptible mapping and risk area delineation using LR, GIS and RS within Kelantan River in
Malaysia. He used RADARSAT data for RS, and topographical map, geological map, hydrological map,
Global Positioning System (GPS) data, land cover map, geological map, precipitation data, and Digital
Elevation Model (DEM) for GIS data. His results showed that delineated flood prone areas can be
performed at 1:25,000 scale which is comparable to some conventional flood hazard map scales. Chubey
and Hathout [14] developed a geomatics-based approach for flood prediction method. They integrated
RADARSAT and GIS modelling for estimating future Red River flood risk. They used LR with the
following five independent variables: elevation; proximity to rivers and streams; proximity to roads;
proximity to railways; and distance from already-flooded land. They insist that the methodology used
in this research would be easily transferable to other areas, and may provide the basis for a viable
alternative to conventional hydrologic-based flood prediction approaches. Nandi, Mandal, Wilson
and Smith [38] progressed flood hazard mapping in Jamaica using principal component analysis and
LR. They used fourteen factors, and of these factors, seven explained 65% of the variation in the data:
elevation, slope angle, slope aspect, flow accumulation, a topographic wetness index, proximity to a
stream network, and hydro-stratigraphic units.

Previously, modeling methods that used LR were tested for FDA delineation in an NK
environment, finding limited value in this study. During heavy rainfall, debris flows occurred on
terraced crop fields [40,41]. It is assumed that terraced crop fields in mountainous regions caused
some errors. Therefore, based on these considerations we developed an FDA delineation model using
multiple RS data with LR for heterogeneous mountainous regions in NK, where this model reflects the
characteristics of the North Korean topography and identifies the critical factors for the NK flooding
model. Ultimately, the study sought to provide basic information to mitigate flood risks in NK.
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2. Materials and Methods

2.1. Study Area

The study area is Hoeryeong City (42°26'N, 129°45'E) in northern NK. It is adjacent to the Tumen
River, which flows between Hoeryeong City and the Jilin Province in China. Being a border city, it is a
traffic trade center of North Hamgyeong Province in NK. Since NK’s great famines of the 1990s, food
and other necessities have been imported from China by trade or smuggling. In addition, Hoeryeong
City is a distribution and information communication channel in a closed NK society. Accordingly,
there are many NK refugees in SK from the North Hamgyeong Province in NK, and most of these
refugees are from Hoeryeong City (about 2000, 10%) [42]. Historically, Hoeryeong City has also been
an important military hub area for national defense due to its location [43]. Its main industries are
mining machinery and paper milling [44]. The study area is typically mountainous, with an elevation
ranging from 210 m to 1450 m (Figure 1a). Hoeryeong City is surrounded by mountainous areas
with an altitude of approximately 1000 m, and this excludes the Tumen River and adjacent villages,
which are relatively low flat areas.

In terms of topography, the southeast portion of the Hoeryeong Basin is surrounded by mountains
and the northwest is open to the Tumen River. The geology consists of Paleozoic sedimentary rock and
granitic rock layers in the southeastern mountainous area whose elevation is equal to 500 m or more.
The lower region of Hoeryeong City is composed of tertiary sedimentary rock layers. This region is
used for agriculture since it is highly weathered and has relatively low elevations [45].

The study area has a continental climate with four distinct seasons: spring (March-May), summer
(June-August), fall (September-November), and winter (December-February). The summer is hot and
humid due to moist air coming from the Pacific Ocean. More than 60% of the annual precipitation
occurs in the summer due to the East Asian monsoon winds [46]. The winter is dry and cold due to air
masses coming from Siberia [47]. The annual mean precipitation and mean temperature from 1979 to
2016 were 1077 mm (£184 mm) and 3.8 °C (£0.8 °C), respectively (Figure 1b). Annual precipitation
and temperature data were provided in the form of Climate Forecast System (CFS) Reanalysis data
through Climate Engine ( http://clim-engine.appspot.com/) by the National Weather Service (NWS)
at the National Oceanic and Atmospheric Administration (NOAA) and the National Centers for
Environmental Prediction (NCEP).

On 30 August 2016, the area experienced torrential rains brought by Typhoon Lionrock, which
overflowed the Tumen River and brought huge amounts of water into the plains at least once.
Consequently, North Korean state media distributed photographs of damage related to our study
area. As previously mentioned, the media described the flood as the biggest national disaster since
1945, and casualties reached several hundred, including those dead and missing. Some 68,900 people
had lost their homes, and there were also reports that “about 11,600 houses were destroyed, and that
some 29,800 other houses suffered huge damage” [2]. Figure 2 shows images of the flood damage in
Hoeryeong City.
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Figure 1. Elevation map and annual precipitation and annual mean temperature in the study area.
(a) Elevation map (unit: m), (b) annual precipitation (mm) and annual mean temperature (°C).

Figure 2. Flood damage in Hoeryeong City in August of 2016 ( http://kp.one.un.org/content/unct
/dprk/en/home/emergency-response/floods-2016.html, http://www.bbc.com/news/world-asia-
37335857).

2.2. Database Established

GIS databases were created to implement this research (Table 1). To delineate the FDA, Flood
Inundated Areas (FIAs) were first derived using Sentinel-1 Single Look Complex (SLC) data obtained
during pre-and post-flood instances. Radar data were obtained from the European Space Agency
(ESA) Sentinels Scientific Data Hub ( https://scihub.copernicus.eu/dhus/#/home). Then, digital
topographic data of NK provided by the South Korean National Geographic Information Institute
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(NGII) were used to produce a digital elevation map, slope gradient map, landform map, a map of
the Distance from the Nearest Stream (DNS), a flow accumulation map, and a flow direction map.
They were used together with FIAs to delineate FDAs using binary LR. This model was made using
the R software. A land use map was produced using Landsat 8 data gathered on 28 May 2016, obtained
from the United States Geological Survey (USGS) Landsat homepage ( http:/ /earthexplorer.usgs.gov/).
Level 1T data were processed using radiometric and geometric corrections. To confirm the results of
the study, high-resolution Google Earth images were used. They were derived from GeoEye-1 data,
which have 1.65 m spatial resolution, and they were taken on 16 October 2015, before flooding and on
15 September 2016, fourteen days after flooding.

Table 1. Databases in this study. DNS: distance from the nearest stream, ESA: European space agency,
GIS: geographic information system, NGII: national geographic information institute, RS: remote
sensing, USGS: United States geological survey.

Data Period or Year Spatial Resolution Source
. Landsat 8 28 May 2016 30m USGS
Optical 16 October 2015
RS GeoEye-1 15 September 2016 1.65m Google Earth
. 6 August 2016 .
Radar Sentinel-1 30 August 2016 Range 5 m Azimuth 20 m ESA
Elevation map
Slope map
GIS DINS map 1:25,000 NGl

Landform map
Flow accumulation map
Flow direction map

Digital topographic data

2.3. Study Methods

This study consists of two parts. First, an LR model based on GIS was used to delineate FDAs
and spatial characteristics of the FDAs were investigated. In the model, the FIA maps derived from
the radar backscattering coefficient difference, elevation map, slope map, DNS map, land use map,
landform map, flow accumulation map and flow direction map were used. After that, study results
were confirmed via comparison with Google Earth images taken after the typhoon (Figure 3).

Sentinel-1 1:25,000 Landsat8 Google Earth high
SLC Digital map Level 1T resolution imagery
P —
masking
—— misclassified UNRCDPRK report
pixels

Elevation, slope,
DNS, landform, land cover
flow accumulation, classification

flow direction

FIA delineation

FDA delineation using Study res_ull
machine learning confirmation

To derive conclusion

Figure 3. Flow chart of this study. DNS: distance from the nearest stream, FDA: flood damaged area,
FIA: flood inundated area, SLC: single look complex, UNRCDPRK: United Nations resident coordinator
for Democratic People’s Republic of Korea.
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Delineation of Flood Damaged Areas

Delineation of FDAs consists of three parts. The first is FIA delineation from radar data and the
second part is to generate an elevation map, slope map, DNS map, landform map, flow accumulation
map and flow direction map from digital topographic data provided by NGII. In addition, land cover
classification was performed to generate a land use map. The third part is FDA delineation using LR,
which integrates the above data to generate FDA maps in this study.

First, FIA maps from radar processing were derived by comparing the backscattering coefficient of
the Sentinel-1 data. The backscattering coefficient of a radar data is sensitive to floods; therefore, it can
be used to determine the extent of flooding. Giacomelli, Mancini and Rosso [10] assessed flooded areas
from ERS-1 PRI data with DEM data in Northern Italy. Their density-slicing method result showed
that SAR data are sufficient for delineating flood areas. Brivio, Colombo, Maggi and Tomasoni [12]
proposed an integration method for RS data and GIS to accurately map flooded areas in Regione
Piemonte, Italy. They used ERS-1 SAR data and DEM data with visual interpretation, and thresholding
techniques. Their proposed procedure was suitable for mapping flooded areas, even when satellite
data were acquired some days after the event.

Before comparing backscattering coefficients, Sentinel-1 SLC data needs to be processed. Sentinel-1
SLC data has burst images, so a de-burst step was needed. Then, speckle filtering and terrain correction
should be processed. All of these were processed using SNAP v. 3.0 by ESA, and ENVI 5.3.1.

There was only a VV (vertical transmit and vertical receive) polarization image of Hoeryeong
City. Therefore, a VV polarization image was used for Hoeryeong City. To derive the backscattering
coefficient, radar images should be converted to a decibel (dB) scale using logarithmic formation
(Equation (1)).

%4 = 10 x log10(Intensityyy) 1)

here, 0¥ is the backscattering coefficient in a dB scale, and Intensity_VV is the original intensity value
of the VV polarization image. To delineate FIAs, a backscattering coefficient difference (Ac”) map was
derived by the following;:

Ac® = anfter flood — Uobefore flood 2)

where Ac? is the backscattering coefficient difference, ‘Toafter flood 18 the backscattering coefficient after a
flood, and O'Obefore flood 18 the backscattering coefficient before a flood.

The Ac® image was reclassified by the standard deviation. A standard deviation of-2 sigma or
less was reclassified as an FIA. The slope map was then used to mask misclassified pixels in FIAs.
Flooding occurred in SK in areas with a slope below 4° [48]. Since the topography of NK is similar to
that of SK, areas with a slope of 4 degrees or more were masked.

However, this map could not represent FDAs clearly because SAR data can only recognize a
distributed target [10]. Thus, the second part is to generate an elevation map, slope map, DNS
map, landform map, flow accumulation map and flow direction map using digital topographic data
from NGII. NK floods occur not only in the mainstream of river waterways, but also in middle- and
upper-stream trajectories. Thus, the nearest-feature method of GRASS GIS 7.0.3 was used to delineate
the nearest stream orders of FDAs and thereby determine whether flooding occurs in the mainstream
or its branches. This information can be used to establish an improvement scheme [17]. The DEM was
used to determine the stream order according to Hack’s stream ordering method [49,50] using GRASS
GIS 7.0.3. The mainstream was classified as number 1, and all tributaries were classified sequentially
using subsequent numbers (2, 3, and so on). To produce a DNS map, virtual points were generated for
every pixel in the study area. After that, the distances between virtual points and the nearest stream
were calculated using the “Near” function in ArcGIS. Then, point data were converted to grid data to
generate a DNS map. Flow accumulation and flow direction maps were produced using Arc Hydro
Tools 10.3 in ArcGIS.

A landform map was produced using Geomorphon [51]. It was used as an input variable in an
LR model to investigate the landform of the FDAs. Tak [52] generated a landform map of the Korean
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Peninsula using Geomorphon. This system classifies landforms into 10 classes by determining cell
patterns in relation to height comparisons between center cells and surrounding cells (Figure 4) [51].
The system calculates zenith and nadir angles to determine the correct principal compass directions
among the eight possible directions. In this study, the landform map of NK was produced from
1:25,000 digital topographic maps from NGII using GRASS GIS 7.0.3.

%ﬂat q% shoulder ﬁé spu

ridge

N

&
ﬁ{bfootslope ﬁéhollow

7 i

Figure 4. Landform classes in the Geomorphon model [51].

To investigate the land use of the FDAs, a land use map was derived using the land cover
classification with Landsat 8 data using ISODATA. The classification result accuracy was assessed
using reference data which were selected by visual interpretation of the high-resolution Google Earth
images. The land use map has four classes based on the Korea National Environment Information
Network System’s (KNEINS) land cover classification scheme: crop field, forest, urban, and water.
The classification result showed 98.7% in overall accuracy with a Kappa coefficient of 0.97, indicating a
satisfactory level of accuracy.

Lastly, an FDA delineation model was developed using an LR model. Ten models were tested to
select the best model for FDA delineation. Model 1 used only an elevation map for modeling. Model 2
used a slope map, model 3 used elevation and slope maps, and model 4 used slope and DNS maps.
Model 5 used elevation, slope and DNS maps, model 6 used elevation, slope, DNS and land use
maps, and model 7 used elevation, slope, DNS and landform maps. Model 8 used elevation, slope,
DNS, land use and landform maps, model 9 used elevation, slope, DNS, land use, landform and flow
accumulation maps, and model 10 used elevation, slope, DNS, land use, landform, flow accumulation
and flow direction maps (Figure 5). The R software was used to delineate FDAs.

v |
Input Model 1 - Elevation map
Model 2 - Slope map
l Model 3 - Elevation and slope maps
Model 4 - Slope and DNS maps
Logistic Model 5 — Elevation, slope and DNS maps
Regression Model 6 - Elevation, slope, DNS and land use maps
l Model 7 - Elevation, slope, DNS and landform maps
Model 8 - Elevation, slope, DNS, land use and landform maps
Validation & Model 9 — Model8 and flow accumulation map
Comparison Model 10 — Model9 and flow direction map
I i
v
Model . . -
- — The selected model shows essential variables for prediction.
selection

Figure 5. Algorithmic flow diagram of logistic regression.
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The LR equation is as follows:

ln(lfl) =a+ B1x1+ faxz2 + ... + Bpxp 3)
where p is the dependent variable (i.e., the probability that the event happened), « is the intercept, x; ...
xp are the independent variables, and f; ... B are the coefficients of the independent variables.

The coefficients are estimated using maximum likelihood estimation. The equation is as follows:

n

InL =1(Bo,p1) = Y, (yilnp(xi>ﬂo,ﬁ1 +(1-y)ln (1 - p(Xi)ﬁo,ﬁ1>) @

i=1

to find By, B1 that maximize the logarithmic likelihood of Equation (4), the partial derivative of
Equation 4 is taken with respect to By, f1, and the By, f1 values that make it 0 are determined.

Independent variables were added to the model one at a time, using a statistical method to
reduce the Akaike’s Information Criterion (AIC). AIC was developed by Akaike [53]. The AIC ranges
from 0 to oo, with smaller values indicating a better fit. AIC is often used to compare models across
different samples. The model with the smaller AIC is considered the better fitting model. In this
step, an elevation map, slope map, DNS map, landform map, land use map, flow accumulation map,
and flow direction map were used in ten combinations to find the best-fitting model. After running
several tests in this step, the most explainable independent variables (maps) were selected for the
model of best fit. In addition, McFadden’s R? [54] was calculated in order to test the goodness of fit.
It can be viewed as a corresponding indictor of R? of the linear regression model. Receiver Operating
Characteristic (ROC) curve was used to assess the predictive ability of the model. The ROC curve was
generated by plotting the true positive rate against the false positive rate at various threshold settings.
If a model has an Area Under the Curve (AUC) closer to 1 and is greater than 0.5, this indicates that
the model has good predictive ability [55]. In addition, the binomial deviance was compared between
ten models to select the best-fitting model. The binomial deviance is as follows [56]:

o2 () a-mn(i3)

if y; = fi; for all future observations, the D value is zero. If y; # fi; is always true, the value of D is
infinite. Therefore, the smaller the D, the more accurate the model [56-60].

3. Results and Discussion

3.1. Flood Damaged Area Delineation

An FIA map was derived using radar processing. Backscattering coefficient values were decreased
at sites A and B of Hoeryeong City. The average difference of the backscattering coefficient was
—2.9 dB for site A and —5.2 dB for site B. These results provide clear evidence that the difference in
the backscattering coefficients can be used to derive FIA maps. Therefore, it was used to produce FIA
maps in this study.

FIA maps from radar processing and GIS data were integrated through a binary LR analysis to
generate the FDA maps in this study. Model 7 exhibited the best fit for the data, with a low AIC (2722)
and the lowest binomial deviance (820.23). In addition, model 7 showed the highest McFadden’s R?
(0.67) and AUC (0.97) among the ten models in the study area. This model had an AUC value of 0.97,
indicating a good predictive ability (Table 2). After running several tests, the elevation map, slope
map, DNS map and landform map were selected as independent variables in the LR.
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Table 2. Logistic regression model comparison. AIC: Akaike’s information criterion, AUC: area
under curve.

Model No. AIC  McFadden’s R2 AUC Binomial Deviance

Model 1 5594 0.27 0.87 1860.31
Model 2 3635 0.55 0.94 1118.90
Model 3 3452 0.58 0.96 1028.13
Model 4 3542 0.56 0.95 1089.82
Model 5 3408 0.58 0.96 1022.68
Model 6 3391 0.58 0.96 1016.07
Model 7 2722 0.67 0.97 820.23
Model 8 2705 0.67 0.97 821.65
Model 9 2706 0.67 0.97 821.94
Model 10 2705 0.67 0.97 822.93

Table 3 shows the LR coefficient for each variable. As shown in Table 3, the elevation, slope, and
DNS have negative values. In addition, peak, ridge, and spur have large negative values. These are
areas where common sense floods do not occur. This means that the developed model can reflect
terrain properties when predicting FDAs.

Table 3. Logistic regression coefficients.

Coefficients of Logistic Regression

(Intercept) 2.840
ELEVATION —4.254 x 1074
SLOPE —0.325
DNS —6.535 x 1074
LANDFORM@Flat 0
LANDFORM@Peak —18.170
LANDFORM®@Ridge —4.598
LANDFORM@Shoulder —0.024
LANDFORM@Spur —3.164
LANDFORME@Slope —1.540
LANDFORM@Hollow —-1.315
LANDFORM®@Footslope 0.115
LANDFORME@Valley —0.025
LANDFORM®@Pit 0.017

Based on the model, coefficient values were applied to produce FDA maps. The equation is
as follows:

1
" 1+ ¢ (2840—4.254e—04[ELEVATION] —0.325[SLOPE] —6 535e —04[DNS] + LANDFORM( ) ©®)

where P is the spatial probability of a flood occurrence, ELEVATION is the elevation map, SLOPE is
the slope map, DNS is the map of the distance from the nearest stream and LANDFORM¢ denotes the
LR coefficient values listed in Table 3.

Finally, the result of the LR was generated in the range between 0 to 1 (100%). To select a threshold
value, values from 0.5 to 0.9 were tested and compared with FIAs. After that, a threshold value of 0.7
showed the highest concordance rate by 89.1%. Therefore, this value was used to delineate the FDAs.
Figure 6 shows an FDA map derived for the study area.
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Figure 6. Flood-damaged area map of the study area.

In this study, an FDA map from 30, August 2016, had an area of 106.63 km? (7.81%) inundated
in Hoeryeong City. The largest amount of flooding occurred in crop fields, followed by forests,
and urbanized areas. The area of the crop field inundation was of 74.71 km?, and the area of the forest
and urban inundation was 19.25 km? and 12.67 km?, respectively. However, 57.95% of the entire urban
area was flooded the most while 31.96% of crop fields and 1.78% of forest areas were inundated.

When we look at the landform of the FDAs, the flooding occurred mostly in flat areas (55.04 km?,
51.62%) followed by a valley (25.15 km?, 23.59%), footslope (20.07 km?, 18.82%), shoulder (3.20 km?,
3.00%), pit (1.14 km?, 1.07%), hollow (1.08 km?, 1.01%), and slope (0.95 km?, 0.89%). This result shows
that the developed model reflected terrain properties when deriving the flooded area. However,
when the DNS and landform were not used for predictions, the result showed some FDAs on unlikely
landforms (e.g., hollows, spurs, peaks). During heavy rainfall, debris flows occurred on a terraced crop
field [40,41] and this phenomenon can affect the backscattering coefficients of SAR data. Thus, floods
can be detected on ridges, spurs or peaks. It is assumed that the terraced crop field on the mountainous
region caused some errors. To correct these errors, we used the DNS and landform map to delineate
FDAs in this study. In addition, we reduced some errors. The landform was found to be an important
factor in delineating FDAs using a logical expression in the study area, which is different from other
study results [8,14,38].

In Hoeryeong City, the FDAs near stream orders 1, 2, 3, 4, 5, 6, and 7 accounted for 5.44 km?
(5.11%), 34.19 km? (32.06%), 25.83 km? (24.22%), 20.26 km? (19.00%), 16.41 km? (15.39%), 3.66 km?
(3.43%), and 0.85 km? (0.80%) of the inundation, respectively. The inundations occurred mainly in a
lower-order stream (1 and 2; 37.17%) and middle-order stream (3, 4 and 5; 58.61%). Therefore, it is
once again confirmed that the DNS is an important factor in delineating FDAs in NK [17].

Water was assumed to flow over the banks of the main river or lower stream in flat areas, and it
was assumed that streambeds in the middle-stream channels in valleys and footslope areas were
elevated by erosion materials transported from terraced crop fields [40,41,61].

After the collapse of the Soviet Union in 1989, NK could not receive food support from them.
To solve the food shortage, the NK government began deforestation of steep slopes to make room
for farms that would enhance agricultural output. In a 2004 report released by the South Korean
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government [62], 7.9% (972,000 ha) of NK’s total area (12,298,000 ha) was classified as deforested (i.e., as
terraced crop fields). This condition makes land structures vulnerable to flooding and landslides in the
summer monsoon season because land use changes can affect the occurrence of floods [63-66].

The riverbank drainage capacity was assumed to have been reduced due to the rise in the riverbed
elevation, resulting from sediment carried and then deposited by heavy rainfall in NK monsoon
events [40,42]. In 2016, the study area also experienced levee breaches that contributed to extreme
flooding damage.

Based on all these findings (1) increased sediment deposits derived from upper streams
contributed to a rise in riverbeds and a decrease in drainage capacity, and (2) levee breaches resulted
in extreme flood damage within the study area. Thus, the transformation of mountain and hill forests
to terraced crop fields in NK over the past years (Figure 7) has increased the risk of flood disasters.

Figure 7. Terraced crop fields in North Korea (Source: http://www.forest.go.kr/newkfsweb /html/Ht
mlPage.do?pg=/partic/partic_1104_con02. html&mn=KFS_02_08_06_03_04).

3.2. Study Result Confirmation

To confirm the study results, the developed FDA delineation model was tested using the 1993
Paju City flood site in SK. A flood map of Paju City was provided by Water Resources Management
Information System (WAMIS). There was a typhoon with heavy rainfall in Paju City; it caused a levee
breach and 7.47 km? of the test site were inundated [67]. Table 4 shows a comparison of the results
from the FDA map from this study model and the flood map from WAMIS. Table 4 shows that the
developed model had more than 88.5% overall accuracy with a Kappa coefficient of 0.8, indicating that
the model has reasonable FDA delineation accuracy. As shown in the table, the model has reasonable
FDA delineation accuracy.

Table 4. Comparison of results from flood map model and official flood map.

Observed Model Flood (km?)  No Flood (km?)  Total (km?)  User Accuracy (%)
Flood (km?) 6.88 0.86 7.74 89.0
No flood (km?) 0.59 422 4.81 87.8
Total (km?) 7.47 5.08 12.55
Producer accuracy (%) 92.2 83.2
Kappa: 0.8

Overall accuracy: 88.5
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High-resolution Google Earth images helped the authors overcome the limitations of not having
any field observations. In the past, researchers have used aerial photographs to delineate FIAs or to
confirm the results of their study [12,68]. Recently, high-resolution satellite imagery has been used
as ground reference data [69]. To confirm the results of the study, a visual interpretation image was
produced using high-resolution Google Earth images taken on 15 September 2016, fourteen days
after flooding. It was overlaid with the FDA map derived from the model in this study (Figure 8).
White lines show the FDA boundary visually interpreted by the authors, and the black lines show the
FDA boundary from the study model. The comparison shows that 92.6% of both FDA maps are the
same (Table 5).

Legend

FDAs_Visual interpretation

[ Foa_model

Figure 8. FDA map confirmation through a visual interpretation using Google Earth image.

Table 5. Comparison of FDA maps for verification via Google Earth image.

Area of FDA-Visual Interpretation Area of FDA-Model =~ Matching Ratio
35.5 km? 38.3 km? 92.6%

Figure 9 shows pre- and post-flood conditions around the main stream in the study area. Buildings
were destroyed (Figure 9 Circle A) and crop fields were inundated (Figure 9 Circle B). According to the
United Nations Resident Coordinator for Democratic people’s Republic of Korea (UNRCDPRK) team
report, the level of the Tumen River rose between 6 and 12 meters on 30 August 2016 [61]. As illustrated
in Figure 9, the river overflowed the levee (Circle C), causing a breach (Circle D). It is presumed that
the levee breach resulted from the increased riverbed elevation caused by the deposition of erosion
materials coming from terraced crop fields.
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Post flood

2016.09.

Figure 9. High-resolution Google Earth images of the study area.

The UNRCDPRK team reported that 2700 houses were directly affected by the flood [61] in the
survey area of Hoeryeong City. Our estimation of inundated housing units in the corresponding
area showed that 2577 houses were directly affected, yielding a 95.4% compatibility rate with the
field observation proffered by the UNRCDPRK team (Table 6). For the entirety of Hoeryeong City,
the NK government announced that over 10,000 households were damaged (Figure 10) while our study
estimated that 10,726 households were damaged (Table 6). Building data were derived by digital maps
of NK provided by NGII. The maps were produced by visual interpretation using high-resolution
satellite data. These comparisons demonstrate the validity of the study results.

Table 6. Comparison of damaged buildings in the study area.

UNCDPRK Report NK Government Study Results
Part of Hoeryeong City 2700 (UNCDPRK) 2577
Hoeryeong City >10,000 (NK) 10,726

Figure 10. Flood-damaged residential houses in the study area (source: http://kp.one.un.org/conten
t/unct/dprk/en/home/emergency-response/floods-2016.html).
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4. Conclusions

This research investigated FDA mapping of Hoeryeong City, NK using multiple RS data and an
LR machine-learning model. The results of the study were confirmed by a comparison with a visual
interpretation of high-resolution web-based satellite images. The following conclusions were derived
from this study:

(1) On 30 August 2016, an area of 106.63 km? (7.81%) in Hoeryeong City was inundated. Most floods
occurred in flat areas adjacent to lower- and middle-order streams.

(2) The DNS map and landform map developed in the model in this study are important factors for
delineating FDAs because these two factors reflect NK topography, which is a heterogeneous
mountainous region.

(3) High-resolution web-based satellite imagery can be used as ground-truth data in inaccessible regions.

In conclusion, erosion materials coming from terraced crop fields during heavy rainfall were
deposited in streambeds, increasing the elevation of the riverbed, reducing the stream drainage capacity,
and causing levee breaches. The totality of these effects resulted in serious floods. Accordingly, the NK
government should develop stream-drainage improvement measures to prevent flood damages caused
by terraced crop fields and priority recovery areas need to be assessed to restore FDAs.
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