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Abstract: Vulnerability assessment is one of the prerequisites for risk analysis in disaster management.
Vulnerability to earthquakes, especially in urban areas, has increased over the years due to
the presence of complex urban structures and rapid development. Urban vulnerability is a result
of human behavior which describes the extent of susceptibility or resilience of social, economic,
and physical assets to natural disasters. The main aim of this paper is to develop a new hybrid
framework using Analytic Network Process (ANP) and Artificial Neural Network (ANN) models
for constructing a composite social, economic, environmental, and physical vulnerability index.
This index was then applied to Tabriz City, which is a seismic-prone province in the northwestern
part of Iran with recurring devastating earthquakes and consequent heavy casualties and damages.
A Geographical Information Systems (GIS) analysis was used to identify and evaluate quantitative
vulnerability indicators for generating an earthquake vulnerability map. The classified and
standardized indicators were subsequently weighed and ranked using an ANP model to construct
the training database. Then, standardized maps coupled with the training site maps were presented as
input to a Multilayer Perceptron (MLP) neural network for producing an Earthquake Vulnerability Map
(EVM). Finally, an EVM was produced for Tabriz City and the level of vulnerability in various zones was
obtained. South and southeast regions of Tabriz City indicate low to moderate vulnerability, while some
zones of the northeastern tract are under critical vulnerability conditions. Furthermore, the impact
of the vulnerability of Tabriz City on population during an earthquake was included in this analysis
for risk estimation. A comparison of the result produced by EVM and the Population Vulnerability
(PV) of Tabriz City corroborated the validity of the results obtained by ANP-ANN. The findings of
this paper are useful for decision-makers and government authorities to obtain a better knowledge of
a city’s vulnerability dimensions, and to adopt preparedness strategies in the future for Tabriz City.
The developed hybrid framework of ANP and ANN Models can easily be replicated and applied to
other urban regions around the world for sustainability and environmental management.

Keywords: urban vulnerability; Remote Sensing; Analytic Network Process (ANP); earthquake
vulnerability map; GIS
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1. Introduction

Research studies on worldwide change of environment and sustainability sciences have found
vulnerability as the main concern [1–10]. The urban vulnerability is a result of human behavior which
describes the extent of susceptibility or resilience of social, economic, and physical assets to the natural
disasters [11–13]. Urban vulnerability to earthquakes has increased over the years due to the presence
of complex urban structures and uncontrolled urban growth. The main causes of high vulnerability
of cities to earthquakes are due to many factors e.g., uncontrolled urban growth in highly seismic
areas, improper disaster management, high exposure to indicators of risk, vulnerable buildings and
infrastructures, rising urbanization and population growth, incising wealth measures, and the high
vulnerability of modern communities and technologies [14–18].

Earthquake vulnerability assessment methods generally focus on magnitude prediction [19–28]
and structural and geological engineering aspects [29–36]. However, apart from their devastating effects
on built-up areas, earthquakes can have significant impacts on economic degradation, social structure,
and the cultural heritage of an urban area. To effectively utilize a strong evaluation method for
an earthquake vulnerability assessment, it is necessary to incorporate some important vulnerability
components of an urban area, such as socio-economic, environmental and physical components.

The comprehension and preparation of urban vulnerability due to earthquakes take into account
a wide scale of vulnerability aspects that could be managed by developing an integrated approach.
The Artificial Neural Networks (ANN) [37,38] can provide computational models to assess earthquake
vulnerability due to uncertainty being an inherent nature of earthquake phenomena. ANN systems
work consecutively to process information of interconnected units that respond to inputs through
variables, such as weights, threshold, and mathematical transfer functions [37]. Each unit processes
input from other units, and then sends signals to another unit in the link. This makes ANNs very
suitable for dealing with problems which require large sets of data, and have complex nonlinear
relations with many different alternatives. ANN can also determine complicated patterns in sets of
data which computational formulas are unable to solve [38–42]. Furthermore, it provides reliable
predictions even on noisy and uncertain data [40,41]. Therefore, ANN has the capacity to produce
classified vulnerability maps arising from complex interactions with high accuracy. To develop
an ANN structure based on selected research indicators, it needs to be trained. An appropriate choice
of training parameters is necessary for training ANN [42–44]. The single most imperative limitation of
an ANN lies in its efficiency, which relies heavily on the training algorithm and network architecture.
Regrettably, to date, no guidelines exist to define both features of the network. It is feasible to find
the ideal and optimal network just by utilizing a trial and error procedure [45–49].

The Analytic Network Process (ANP) is a tool capable of Multi-Criteria Decision Making
(MCDM), which takes into account of the complex relationships between indicators [45]. ANP
consists of a network of criteria and sub-criteria that controls communication, and a network of
effects among the elements and clusters [50]. It is a popular MCDM method, which is used to
evaluate the key risk factors and potential risk, regulate risk level and consequences, as well as
analyze variables and preferences of a decision [51]. The lack of an integrated model with all effective
parameters for such assessments limits the possibility of policy-making and decision-making toward
earthquake vulnerability assessment and disaster risk reduction. This paper is a response to this
need, and proposes an integrated model for the seismic vulnerability assessment of Tabriz City
based on an integrated model. Therefore, it is vital to consider an integrated urban earthquake
vulnerability assessment framework. Due to the non-availability of earthquake records from 1780,
and the lack of enough sampling and databases at sites, the proposed method in this research
employs a new training strategy. The purpose of applying an ANP model in this study is to create
a suitable training database for the Artificial Neural Network (ANN). Therefore, the combination of ANP
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and ANN Models for the assessment of urban vulnerability to earthquake hazards can solve complex
problems of selecting suitable training sites in earthquake vulnerability assessments, and adequately
consider all the relationships among the factors and indicators. The proposed framework will account
for the vulnerability of urban environment using a holistic approach at the municipality zone scale.
Therefore, the ANN- ANP based method presented here meets the requirements of earthquake prediction.
This is because current approaches for vulnerability assessment are difficult to implement in countries like
Iran. This paper employs a new hybrid framework of ANP and ANN models for constructing a composite
social, economic, environmental, and physical vulnerability index. The developed model was applied to
a real case study from Tabriz City, which is situated in the northwestern Iran (Figure 1).

Tabriz City is a seismic-prone province with recurring devastating earthquakes which have resulted
in heavy casualties and damages. It is one of the high-risk zones for future earthquakes in Iran due to
its geographical location and geological structural features. Historical studies have shown that Tabriz
has been devastated by several destructive earthquakes (Table 1). In view of that, there is a need to
generate a local and national assessment framework at the municipal scale. Unfortunately, none of
the descriptions by which these events are known is sufficiently detailed to allow an accurate
assessment of destruction and ground deformation. According to a probabilistic and deterministic
assessment, seismologists believe that a strong earthquake might occur in Tabriz in the near future [52].
Therefore, hazard mitigation assessment is necessary to decrease the damage severity.

The main objectives of this paper are: (1) to develop a hybrid ANP-ANN model in geographic
information system (GIS); (2) to assess four main dimensions of earthquake vulnerability such as
social, economic, environmental, and physical an Earthquake Vulnerability Map (EVM) for Tabriz City;
and (3) to compare the results with data provided by Population Vulnerability (PV) with an aim to
reduce the impact of an earthquake by determining and categorizing the most vulnerable zones.

2. Related Research

Comprehensive implementation of the ANP-ANN model has not been reported in urban
vulnerability assessment for earthquakes. However, some of the current studies in related fields are
summarized as follows. To date, there is no general agreement among researchers on how to build
earthquake-forecasting models [53]. Hence, different kinds of approaches to extracting knowledge have
been proposed over the last decade. Mili, Hosseini and Izadkhah [54] developed a holistic model for
assessing earthquake risk and determining priorities for risk reduction and management in urban
fabrics. The developed model estimates the earthquake risk at each urban zone based on hazard,
vulnerability, and response capacity. Additionally, a new indicator called “Integrated Earthquake
Safety Index, IESI” is introduced to address the safety level of urban fabrics in relation to earthquakes,
and assess the impacts of applicable interventions on risk. The proposed model is then applied in
two districts of Tehran, having different physical and socio-economic characteristics, to evaluate
the safety level for earthquakes. For this purpose, the contributing elements in hazard, vulnerability,
and response capacity have been assessed based on local conditions, and the IESI is determined for each
urban zone. In addition, the applicability of the model to address potential improvement measures
has also been evaluated. Development of an integrated model for seismic vulnerability assessment
of residential buildings to Mahabad City, Iran was performed by Bahadori et al. [55]. This paper
proposes an integrated model for the seismic vulnerability assessment of residential buildings based
on the analytical hierarchy process (AHP) in geographic information system (GIS). The methodology
integrates five main group-parameters—geotechnical and seismological, social, distance to dangerous
facilities, and access to vital facilities—with their related sub-parameters. To evaluate the practicability
and applicability of the newly developed model, it was used for Mahabad city, Iran. The obtained
vulnerabilities for the city were mapped in GIS, and the same were visualized in the 3D city model for
residential buildings.

In a separate paper, Zhang et al. [56] applied a rough set to construct an evaluation model of social
vulnerability based on catastrophe progression. Following the in-depth literature, an assessment model
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of social vulnerability to the earthquake disaster in Sichuan Province, China, based on the catastrophe
progression method, was established. A rough set attribute reduction method was adopted to eliminate
irrelevant social vulnerability indicators and optimize the proposed model. Finally, a catastrophe
progression method for social vulnerability to earthquake disaster was developed to overcome
the subjectivity of the index weight assignment of social vulnerability indicators in the currently-used
social vulnerability assessment method. The application of the method to Sichuan Province indicates
large regional differences in terms of social vulnerability to earthquake disasters. Karimzadeh et al., [57]
followed an indirect method to produce a Vs30 map of Iran from geological and topographical data.
The outputs indicate that the hybrid Vs30 map has better performance than a single topography-based
Vs30 map. The amplitude map, derived from Vs30 and geology maps, is then used for seismic
microzonation of Tabriz City, and the extent of geographical distribution of damage for a possible
deterministic scenario was investigated through considering different fragility curves to describe
the damaging behavior of ordinary building types in the city. A variety of data to identify the most
vulnerable areas in Bucharest for the earthquake was investigated by [58]. Socio-economic data from
censuses in 2002 and 2011 were used to generate an overall spatial vulnerability index, while other
variables such as earthquake scenarios and distance to resilience-enhancing points in space (e.g., parks,
fire stations, etc.), helped to fine-tune the analysis and offered a comprehensive picture of where
vulnerability hotspots could be found in an urban environment. The top three most vulnerable hotspots
are analyzed, and two underlying reasons for their vulnerability are proposed and discussed in more
detail, namely, education and connectedness. They applied uncertainty and sensitivity analyses to assess
the stability of the results for vulnerability hotspots. The general outcome of the research is an increase in
the overall socioeconomic vulnerability in the city in spite of the upward economic trend in the period of
time under analysis.

More recently, Zebardast [59] presented the development of a hybrid factor analysis and analytic
network process model for aggregating vulnerability indicators into a composite index of social
vulnerability (SV) to earthquake hazards. The objective of the study was to construct a hybrid FA
and ANP (F’ANP) model for social vulnerability assessment and apply it at the county level in
Iran. In another paper, Pradhan [60] used remote sensing and a GIS and ANN model to propose
a landslide hazard and risk analysis method. GIS and image processing tools were used to assemble
a spatial database from topographical, geological and satellite images data. Panakkat and Adeli [61]
predicted earthquake time and location in Southern California, this time using an improved version
of the recurrent neural network. In particular, they computed several sets of earthquakes regarding
the latitude and longitude of the epicentral location, as well as time of occurrence of the following
earthquake. A probabilistic neural network was also tested.

3. Materials and Methods

3.1. Study Area Characteristic

Tabriz City, with a population of more than 1.5 million people and consisting of nine regions,
is located in the northwestern part of Iran (Figure 1). It is the second largest city of Iran in terms
of land area, and encompasses about 25 km2 area of old texture. The North Tabriz Fault (NTF) is
the most noticeable tectonic structure in the vicinity of Tabriz City (Figures 2 and 3) [62]. It encircles
an area of extreme deformation. The seismicity is situated between a couple of fold-and-thrust belts
of the Caucasus to the north and the Zagros Mountains to the south, covering a distance of 150 km
in the Northwest-Southeast direction in the Northwest of Iran [63,64]. Although the NTF has been
seismically inactive over the past few decades, it has historically generated large surface-rupture
earthquakes (Table 1).

In the last 65 years, three large earthquakes have ruptured the NTF system and adjacent
reverse faults from southeast to northwest region. These earthquakes are the Shebli earthquake,
Tabriz earthquake, and the Marand-Mishu earthquake. In 1721, the Shebli earthquake (M∼7.3) occurred
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on the south-eastern NTF with a surface rupture length of more than 35 km. The Tabriz earthquake
(M∼7.4) occurred in 1780 on the north-western NTF, with surface rupture length of 42 km. Marand-Mishu
earthquake (M∼6.3) occurred in 1786 on the Mishu reverse fault and the Sufian segment [65].

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 34 

 

the south-eastern NTF with a surface rupture length of more than 35 km. The Tabriz earthquake 
(M∼7.4) occurred in 1780 on the north-western NTF, with surface rupture length of 42 km. Marand-
Mishu earthquake (M∼6.3) occurred in 1786 on the Mishu reverse fault and the Sufian segment [65]. 

 
Figure 1. The geographic location of Tabriz City in the NW of Iran. 

 
Figure 2. Three-dimensional perspectives of Tabriz area (black lines) and the position of the North 
Tabriz Fault (NTF) (red lines). Image generated using SPOT 5 satellite images and digital elevation 
model (DEM). 

Figure 1. The geographic location of Tabriz City in the NW of Iran.

Remote Sens. 2018, 10, x FOR PEER REVIEW  5 of 34 

 

the south-eastern NTF with a surface rupture length of more than 35 km. The Tabriz earthquake 
(M∼7.4) occurred in 1780 on the north-western NTF, with surface rupture length of 42 km. Marand-
Mishu earthquake (M∼6.3) occurred in 1786 on the Mishu reverse fault and the Sufian segment [65]. 

 
Figure 1. The geographic location of Tabriz City in the NW of Iran. 

 
Figure 2. Three-dimensional perspectives of Tabriz area (black lines) and the position of the North 
Tabriz Fault (NTF) (red lines). Image generated using SPOT 5 satellite images and digital elevation 
model (DEM). 

Figure 2. Three-dimensional perspectives of Tabriz area (black lines) and the position of the North Tabriz
Fault (NTF) (red lines). Image generated using SPOT 5 satellite images and digital elevation model (DEM).



Remote Sens. 2018, 10, 975 6 of 34
Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 34 

 

 

Figure 3. Geology Map of Tabriz City. Legend: Mmg2 = Interlayer of greenish grey marl associated 
with interlayer of gypsum- bring sandy marl; Msc5 = Interbedded red conglomerate with sandstone 
and red marl; Msm4 = Sandstone and red marl; Pldt = Diatomic and fish interbedded with fine 
particles sediment; Plqc = Interlayer of semi-hard conglomerate associated with sandstone and 
pumice; Plqc = Interlayer of semi-hard conglomerate associated with sandstone and pumice. Qal = 
Quaternary alluvium; Qt2 = Young terrace and alluvium deposits [62]. 

Table 1. List of historical earthquakes of Tabriz up to 1900 AD (Source A: [63] and B: [65]). 

Number Year Fatalities Source Description 
1 634 - B  
2 694 - B  
3 746 - B  
4 838 - B  
5 849 - B  
6 858 - B-A Half of the town was destroyed 
7 868 - B  
8 949 - B  
9 1020 - B  
10 1040 - B  
11 1042 40,000 A-B Most of the important structures were destroyed. 
12 1272 - B Many houses were destroyed in Tabriz. 

13 1273 250 A 
18 aftershocks occurred in the first 24 h. Aftershocks continued for 4 
months. 

14 1314 - B  
15 1345 - A No destruction occurred. 

16 1441 - B 
This event was probably related to Wan-Nimroud earthquake that had 
been associated with volcanic activity. 

17 1527 - B  
18 1633 - B  
19 1640 - B  

20 1641 1200 A-B 
The earthquake happened between Tabriz and Urmia Lake. Osko, 
Khosrowshah, and Dehkharghan were destroyed. 

21 1668 - B Tabriz and some parts of Caucasus were destroyed. 
22 1717 700 A Midnight earthquake destroyed more than 4000 houses. 

23 1721 - A-B 
Many houses and monuments were destroyed. Rapture length reached 
to more than 55 km (between Tykmehdash and Tabriz) A lot of damages 
occurred in the area between Shebli and Gharebaba. 

24 1727 70,000 A-B  

Figure 3. Geology Map of Tabriz City. Legend: Mmg2 = Interlayer of greenish grey marl associated
with interlayer of gypsum- bring sandy marl; Msc5 = Interbedded red conglomerate with sandstone
and red marl; Msm4 = Sandstone and red marl; Pldt = Diatomic and fish interbedded with
fine particles sediment; Plqc = Interlayer of semi-hard conglomerate associated with sandstone
and pumice; Plqc = Interlayer of semi-hard conglomerate associated with sandstone and pumice.
Qal = Quaternary alluvium; Qt2 = Young terrace and alluvium deposits [62].

Table 1. List of historical earthquakes of Tabriz up to 1900 AD (Source A: [63] and B: [65]).

Number Year Fatalities Source Description

1 634 - B
2 694 - B
3 746 - B
4 838 - B
5 849 - B
6 858 - B-A Half of the town was destroyed
7 868 - B
8 949 - B
9 1020 - B

10 1040 - B
11 1042 40,000 A-B Most of the important structures were destroyed.
12 1272 - B Many houses were destroyed in Tabriz.

13 1273 250 A 18 aftershocks occurred in the first 24 h. Aftershocks continued for 4
months.

14 1314 - B
15 1345 - A No destruction occurred.

16 1441 - B This event was probably related to Wan-Nimroud earthquake that
had been associated with volcanic activity.

17 1527 - B
18 1633 - B
19 1640 - B

20 1641 1200 A-B The earthquake happened between Tabriz and Urmia Lake. Osko,
Khosrowshah, and Dehkharghan were destroyed.

21 1668 - B Tabriz and some parts of Caucasus were destroyed.
22 1717 700 A Midnight earthquake destroyed more than 4000 houses.

23 1721 - A-B
Many houses and monuments were destroyed. Rapture length
reached to more than 55 km (between Tykmehdash and Tabriz) A lot
of damages occurred in the area between Shebli and Gharebaba.

24 1727 70,000 A-B
25 1779 100,000 B
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Table 1. Cont.

Number Year Fatalities Source Description

28 1843 - A-B A series of earthquakes of different intensities have been recorded
by Khanikov.

29 1870 - B An earthquake shook Tabriz City.
30 1896 - B An earthquake was felt in Tabriz.
31 1896 - B An earthquake was felt in Tabriz.

3.2. Data Acquisition, Classification and Standardization

Vulnerability maps are difficult to produce without taking into account of the criteria and
indicators, which cause the heterogeneity of the study area [66]. This is the most vital part of the overall
approach, which ensures that the selected criteria and the indicators are adequate to reflect the overall
vulnerability of urban areas in Tabriz City. Selecting indicators is an extremely time-consuming part
of the method, because it consists of constructing and preparing a GIS spatial database that will later
be used during earthquake vulnerability analyses and served as input to urban earthquake scenarios.
There are several criteria and indicators employed for urban vulnerability assessments (See Table 2).
According to the purpose of the study, data collection was conducted based on the indicators derived
from the literature and an expert questionnaire survey. As mentioned in Table 2 of this study,
44 indicators associated with urban vulnerability to earthquake hazard in Tabriz City were presented.
The academic staff of the department of geography and urban planning (Tabriz’s University) were
chosen as experts for this study. The experts were asked to rank the importance and relevance of
discovered vulnerability indicators associated with urban vulnerability to the earthquake in Tabriz City
from the most important to the least [67]. As a result, 20 indicators were highlighted as vulnerability
indicators associated with urban vulnerability to the earthquake in Tabriz City. The importance index
of the individual indicators was calculated based on Equation (1), the range of relative importance
index (RII) is from zero to one, and indicators with RII of less than 0.50 are removed from the research.

Relative Importance Index:

(RII) =

5
∑
i

Wi

A ∗ N
(1)

where,

W: Weight given by respondents to each factor and range between 1 and 5,
A: Maximum weight, in this case, A = 5,
N: Number of respondents.

As shown, 24 indicators which had obtained the Relative Importance Index (RII) with
values of less than 0.50 were obtained; the rest were emphasized as almost equally important
(RII ≥ 0.50). As highlighted [68–70], those indicators with less than 0.5 are considered unimportant.
Therefore, they cannot be considered for analysis.

Mathematical methods for data classification based on equal intervals, manual or natural breaks,
or statistical consideration, are default processes in GIS software [71]. The manual classifier method
has been applied to classify the values into five different vulnerability classes. Initially, for this purpose,
the classification of all required layers based on the density of buildings, residential building, buildings
floors, materials, quality of buildings, age of buildings, commercial buildings, and the number of literate
people, employed people, unemployed people, population, household and size of building blocks,
is required. The logic of these factors is similar to a bigger density leading to a greater vulnerability.
The other metric of classification is the distance to the area such as road network, faults, danger centers,
relief centers, and open spaces. With the exception of the slope that is represented in percent and geology,
all the features of the layers were divided into five classes. To calculate density, a kernel density function
was used. To calculate distance, a Euclidean function with a cell size of 10 m (pixel size 10 × 10 m) was
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applied in the Arc GIS environment (version 10.3). However, to calculate slope, a Digital Elevation Model
(DEM) (generated from contours on 1:50,000 topographical maps) was used, and classification was based
on the percentage. A geology map was evaluated by expert judgment and based on the features of
texture, stone type, stone material, soil type, water permeability, and also the presence of faults and
fractures. All twenty indicators (quantities and qualities) (see Table 3) were converted to raster format
in the Arc GIS environment by using the feature to raster, vector to raster and/or polygon to raster.

Table 2. Summary of the aforementioned and relevant literature according to the main indicators
which influence urban earthquake vulnerability.

Criteria Indicators- Description Scholars

Physical

1. Building Density
2. Residential Density
3. Distance to road network
4. Distance to open space
5. Distance to police stations
6. Size of building block density
7. Building’s floor density
8. Quality of buildings density
9. Distance to relief centers
10. Distance to Danger centers
11. Buildings’ Materials density
12. Age of building density
13. Commercial building density

[72–82]

Environmental

14. Percent of Slope
15. Features of geology
16. Average acceleration values for medium magnitude earthquake
17. Aspect
18. Drainage
19. Distance to fault

[82–85]

Social

20. Population density
21. Percent of population under 6 years old
22. Household density
23. Percent of population over 65 years old
24. Literate People density
25. Ratio of widows in female population
26. Women with many children
27. Percent population with health insurance coverage
28. Percent of the population with telephone access
29. Percent females participating in labor force
30. Percent of housing units with bathroom
31. Percent of housing units with kitchen
32. Percent of population with disability
33. Percent of population who are migrants
34. Dentist per 100,000 population
35. Specialist physician per 100,000 population
36. Hospital beds per 100,000 population
37. Dwelling population density on census unit

[86–93]

Economic

38. Employed People density
39. Unemployed people density
40. Degree of occupancy per room
41. Room area per person
42. private residences with more than 5 rooms
43. Percent of homeownership
44. Per capita household income

[93–95]



Remote Sens. 2018, 10, 975 9 of 34

Table 3. Selected Criteria and Indicators for Vulnerability Assessment in this Study.

Criteria Indicators-Description Abbreviation Scale Source Scholars

Physical

Building Density BD 1.2500 4

[96–105]

Residential Density RD 1.2500 4
Distance to the road network DRN 1.2500 1

Distance to open space DOS 1.2500 1
Size of building block density 4

Building’s floor density SBBD 1.2500 4
Quality of buildings density BFD 1.2500 5

Distance to relief centers QBD 1.2500 1
Distance to Danger centers DRC 1.2500 1

Buildings’ Materials density DDC 1.2500 4
Age of building density BMD 1.2500 4

Commercial building density ABD 1.2500 4
CBD 1.2500 4

Environmental
Percent of Slope PS - 6

[105,106]Features of geology PG 1.100,000 2
Distance to fault DF 1.100,000 1

Social
Population density PD 1.10,000 3

[107–110]Household density HD 1.10,000 3
Literate People density LPD 1.10,000 3

Economic
Employed People density EPD 1.2500 3

[108–112]Unemployed people density UPD 1.2500 3

1. Consulting engineering of Tehran Padil. http://www.tehranpadir.com, 2. Iranian Geological organization.
http://www.gsi.ir/, 3. Census Center of IRAN. http://www.amar.org.ir/, 4. Department of road and Urbanity
(East Azerbaijan Province). http://ea-mrud.ir/, 5. The municipality of Tabriz City. http://www.tabriz.ir,
6. DEM 30 m Aster. http://earthexplorer.usgs.gov/.

Each of indicators holds a definite range scale value; hence, it needs to be standardized.
Standardization is a procedure to determine membership value according to the usage of each criterion.
Thus, all the twenty indicators were standardized at this stage. Suitable weights based on importance in
the earthquake hazard vulnerability were given, namely very unfavorable, unfavorable, moderate, favorable and
very favorable. Figure 4 shows the standardized input layers derived from the GIS procedure for
the indicators used in this study for Tabriz City.
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3.2.1. Description of the Selected Indicators

Environmental Indicators

Geology of Tabriz: The city of Tabriz is geologically composed of red marl along with young
alluvial barracks and ridge sandstones. The red marls comprise of an alternation of green, gray and
red marls with the inner layers of sandy, gypseous and saltine marls. However, the contemporary
alluvial consists of clastic granule sediments with layers of diatom fish. In addition, the semi-rigid
conglomerate consists of layers of sandstones, puns, pyroclastic rocks, basic and ultra-basic stones,
and red conglomerate with an alternation of sandstone and red marl [97].

Percent of slope: Based on its position the city of Tabriz is ideally located on lands with less
than 5% gradient. Consequently, large northern parts of the city include marginal zones with high
population density located on lands with gradients higher than 5%. Similarly, the southern regions
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do not show favourable conditions in terms of the gradient. However, better conditions exist due to
the relatively large distance from fault lines, low population and structural density [83].

Distance to fault: One of the most important measures to prevent the devastating effects of
earthquakes is to avoid high risk zones. Therefore, the choice of location is a very crucial step in
designing buildings or planning for settlements in seismic prone areas. The importance of site location
is a vital approach to risk assessment and hence high risk areas should be avoided [106].

Social Indicators

The population density: During the decades (1976–2011), the population density in the north,
north-east (Baghmisheh and Roshdieh) and north-west (Eram town) has increased. In other words,
increasing population density has unfortunately occurred toward the North Tabriz Fault (NTF).
Therefore, significant sections of the population are surrounded by major and minor fault branches.
This indicates that zones 1, 4 and 5 are located in the remote earthquake prone areas, whereas zones 2
and 3 show better circumstances [108].

Household density: Household vulnerability assessments are typically used by scientists and
policy makers to ascertain the potential impacts of environmental change in particular places, and plan
effective responses during crises. Therefore assessing the vulnerability of household population density
to earthquake is crucial. This is because high household density increases vulnerability particularly
when disparities exist between households and residential building size [88,110].

Literate people density: Literacy itself cannot reduce or increase the vulnerability caused by
an earthquake. However, higher literacy levels can raise awareness about hazard and improve
response to official alarms in crises periods in communities. Furthermore, education can potentially
enhance knowledge and perception of risks and appropriate responses during disasters [107].

Economic Indicators

Employed people density: The highest density of employed people on the average was observed
in zones 1, 4 and 5, despite the unsuitable condition to fault line, undesirable demographics and texture
of urban housing. Hence, it can be inferred that full time employment does not guarantee desirable
conditions in the zones examined despite the significance of income. However, only household job
status is considered sufficient due to the lack of income statistics of households [93].

Unemployed density: Socio-economic conditions have significant impact on vulnerability.
Hence, research on economic vulnerability principally highlight income (or lack of) as key characteristic
of the differential aspects of disasters. Furthermore, low-income groups are typically more exposed to
obstacles during the response, recovery, and reconstruction phase of disasters [111,112].

Physical Indicators

Building density: One of the most important policies undertaken under the second five-year plan
for socio-economic and cultural development in Iran aims to lower building construction density in
cities. As a result, land allocation for the housing sector particularly in low-density regions will be
abridged. This based on the consideration those factors such as urban population growth, high cost of
urban infrastructures and lands constraints for future expansion in cities influence density [38].

Residential buildings density: Land use and nighttime population density are important
considerations for vulnerability studies. In other words, during an earthquake, the highest number of
casualties occur at night. Therefore, the characteristic features of this type of uses are greatly important
as presented in this research. Consequently, an increase in the number of residential units means
reduction of other uses such as open spaces for circulation and escape. Therefore, reducing density
and providing spaces for free movement will reduce vulnerability [75–101].

Commercial buildings density: Commercial spaces are important both from an economic and
physical perspective. Therefore, such spaces are considered standards for assessing economic
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prosperity. In contrast, over increasing density in such spaces will increase vulnerability during
earthquakes [99].

Distance to relief centers: The proximity to relief centers is an important factor during and after
the disaster (crisis). This issue is more critical to discussions on vulnerability caused by earthquakes since
most deaths from burial under building debris or indirectly through fire outbreaks. However, the survival
of casualties can be greatly enhanced by provision of adequate rescue and relief structures such as
hospitals, medical centers and firefighting stations [38,97,98].

Distance to danger centers: The earthquakes can lead to accidents such as fire, landslide,
explosion of fuel tanks and dams breaking among others. Therefore, proximity to high-risk areas such
as fuel tanks, water tanks, gas stations, have tremendous impacts on vulnerability [101].

Distance to open space: The location and distribution of open spaces can greatly reduce potential
vulnerability. Earthquakes typically damage low quality structures in a short period. Consequently,
buildings with fully occupied residents are more vulnerable compared to occupants in open spaces [80].

Distance to street network: The network of streets is also an important factor in disaster management.
Furthermore, classification of the network of streets by width is more important than the performance
system of the network in the context of vulnerability to earthquakes. In the micro-zonation scheme of
Tabriz, which was prepared by consultant engineers of Tehran-Padir, the city’s streets are divided into
two namely; first-grade street (collecting) and distributing streets) [38,97,98].

Quality of buildings density: The quality of newly constructed, repaired or destroyed buildings is
a major indicator for vulnerability assessment. Based on this, parts of zones 2 ,3, 4 and northern parts
of the city comprising zones 1 and 5 also showed unfavourable conditions [77].

Buildings materials density: The seismic resistance of buildings plays a key role in protection
against earthquakes. Most earthquake casualties are due to the rupture and collapse of buildings.
In addition, the destruction of buildings during earthquakes may also be due man-made phenomena
such as economic stagnations and social collapses [98,99].

Age of buildings density: In general, the age of buildings cannot indicate the quality regardless of
the materials used as observed using the methodology of the Kernel model. By increasing the values
obtained more undesirable conditions can be expected. Consequently, zones l and 5 are located in
relatively worse conditions. In addition, zone 4 has similar conditions with only slight connivance.
However, other areas have relatively favourable conditions except in a few cases [103].

Buildings floor density: The vulnerability of buildings increases with increase in the height
and number of floors. At present, it is noteworthy to state that despite advancements in building
technology, higher altitude does not diminish vulnerability. In any case, the number of floors on
buildings is also an important factor in seismic vulnerability [78,105].

Size of buildings density: The geometry of land and its properties need to be comprehensively
assessed during evaluation and segmentation of lands. The effect of building specifications directly
influence structure performance, construction characteristics, and road networks vital for vulnerability
index evaluation. In assessing earthquake vulnerability, the size and geometrical shape of the lands
scheme are crucial. Typically, vulnerability is lower for parcels of land with large but regular shapes
and sizes [74–76].

3.3. Transferring Layers to IDRISI Software

In this step, all the standardized layers produced in the previous stage were transferred to the IDRISI
environment. The most important point in this stage was to consider the similar extent of all layers.
For this purpose, raster calculator was used, and similar display was considered for all the layers.
Then, all of the maps with identical extents were entered into IDRISI software in the ENVI format.
The development of a hybrid ANP-ANN model requires a number of stages, as shown in Figure 5.
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3.4. Analytic Network Process (ANP) Approach

Analytical Network Process (ANP) [113] is a more general form and extension of
the Analytical Hierarchy Process (AHP) developed by [114–117]. ANP represents hierarchical
relationships, whereas AHP is based on a hierarchical structure. In practice, numerous decision issues
are hard to form into a hierarchical structure, as they include interaction dependence with a bottom-up
approach. ANP was applied to handle dependence among criteria and alternatives without assuming that
they were independent [118]. The approach of ANP feedback results in the substitution of hierarchies with
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networks. It also accentuates inter-dependent relationships among different criteria for decisions [119].
The ANP analysis can be represented in four steps (A to D), and is described in the next section.

3.4.1. Step A: ANP Model Construction and Problem Structuring

A problem should be well presented and divided into a set network of logical systems.
Consequently, a framework that represents the network can be specified according to the decision
maker’s opinion using appropriate methods.

3.4.2. Step B: Paired Comparisons

In ANP, like AHP, the problem is defined in terms of clusters and decision elements within them
at multiple levels of abstraction. For example, in this study, the first cluster is the goal (e.g., creating
vulnerability index), and the second is the dimensions or criteria (with elements of social, economic,
environmental and physical). The third cluster is the indicators (containing the twenty selected
indicators). A comparison among the pairs of decision elements in each cluster is made with respect to
their significance for the control criterion. Also, inter-dependencies among cluster indicators are also
inspected pair-wise. Hence, as [115] suggested, eigenvectors can represent the measure of elements’
influences on each other; relative significance is measured on a scale of 1 to 9, where the former bound
represents equal significance and the latter shows extreme significance. This measure is based on one
indicator, a row component in the matrix, over the other, a column component in the matrix [115].
A mutual value was set for the purpose of reverse comparison, illustrating the significance of the (ith)
element as associated with the (jth) element. Similar to AHP, the pair-wise comparison values are
assigned in the comparison matrix, and a local priority vector was gained from the eigenvector,
computed with the following formula:

AW = λmaxW (2)

Matrix A is a pair-wise comparison matrix whose largest eigenvalue is denoted as λmax.
W demonstrates the eigenvector. Eigenvector X of a consistency matrix A can be determined using:

(A − λmaxI)X = 0 (3)

The λmax value is an important validation parameter in ANP. This measure serves as a reference
index for evaluating estimated vector using the information by finding the Consistency Ratio (CR).

CI =
(λmax − n)

n − 1
(4)

Consistency index (CI) is used as a measure of pair-wise matrix consistency. Accepted Value of
consistency, (CR), must be less than 0.1.

CR =
CI
RI

(5)

For similar order reciprocal matrices of any random entries, RI represents the average consistency
index. The estimate is acceptable if CR ≤ 0.1; if not, until this range of this measure is not achieved,
a new comparison matrix is sought repeatedly.

3.4.3. Step C: Super Matrix Calculation

Pair-wise comparison assists to calculate the super matrix, which is partitioned according to
clusters and their elements. The super matrix consisting of N clusters is presented as follows (Figure 6):
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where, Ck represents kth cluster (k = 1, 2 . . . n) where the number of items in each kth cluster
is mk. These items are denoted as ek1, ek2 . . . ekmk. Identical pair-wise comparisons are used to find
the priority vector, where each column is the priority vector denoted as (Wij). It indicates the elements’
significance in ith cluster with respect to an element in cluster j [120–122].

3.4.4. Step D: Selection

These step goals are used to assess each indicator in order to choose the most suitable one for
final decision making. The selection criterion is the weights of alternatives which can be obtained from
the synthesized super matrix.

3.5. Artificial Neural Network

The Artificial Neural Network (ANN), a computational model, has the ability to conclude
non-linear associations among variables in input and output datasets. It is founded on a learning route
(training; calibration) and is able to provide estimated values of output variables for input data [123,124].
The simplest conceptual definition of an artificial neural network is a model whose output is some
linear or non-linear combination of the inputs [124]. The mathematical interpretation of ANN is well
explained by many researchers [113,125]. In brief, ANN consists of layers of a number of neurons
or nodes that transform input data into output. The most popular type of ANN is the multilayer
Perceptron (MLP) network. An MLP is made up of three layers, including input, hidden and output
layers, and the area between them [124]. Figure 7 shows the architecture of MLP used in this analysis.
Data from different sources, such as thematic sources, feed into the input layer in which the neurons
exist. The neurons rely on the quantity of input data sources. This input data is vigorously processed
in the hidden layers, and initial output layers and so on. Trial and error determines what will be the
number of hidden layers and how many neurons each will have [125–129]. A number of output layer
neurons is determined by the application and shown by the type of class analysis. Each hidden neuron
interacts with the weighted inputs, which it gained from the earlier input layers’ linked neurons [129].
After determining the weighted sum of inputs to each hidden neuron, a transfer function is used to find
the initiation at the current neuron. Figure 6 illustrates the signal flow from inputs i.e., x1 . . . xn and
unidirectional nature, as shown by arrows. Similarly, output signal flow (0) of the neuron is also shown
with the flow direction. The neuron output signal 0 is given by the following relationship:

0 = f (net) = f
(
∑n

j=1 wjxj

)
(6)
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where, Wj is the weight vector and the function f (net) is referred to as an activation (transfer) function.
The variable net is defined as a scalar net product of the weight and input vectors,

net = wTx = w1x1 + . . . + wnxn (7)

where, T is the transpose of a matrix, and, in the simplest case, the output value 0 is computed as:

0 = f (net) =

{
1 if wTx ≥ θ

0 otherwise

where, θ is called the threshold level; and this type of node is called a linear threshold unit [129].
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4. Results

4.1. Applying ANP for Training Site

Figure 8 presents the established network where the first cluster depicts the overall objective
of the study that is the social, economic, environmental, and physical vulnerability index creation.
The second cluster elements are the four major dimensions of vulnerability. The third level clusters
are the primary indicators of the four dimensions of vulnerability. After a network is established,
the pair-wise comparison is carried out among the decision elements of the network in accordance with
the experts’ opinion. Then a super matrix is formed. The first super matrix for the proposed network has
three levels:
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where, the vector W21 shows the effect of goal on V dimensions. The matrix, W32 denotes the influence
of dimensions of vulnerability on the indicators of vulnerability, and the matrix W33 signifies the inner
dependence (interdependence) between the V indicators. The method of calculating the corresponding
local priority vector or [W21] is illustrated in Table 4. The indicators selected for the study are given
by the limit super matrix that provides a meaningful influential weight for each of the 20 indicators,
including social, economic, natural, and physical. These weights, or WANPj, are the elements in super
matrix that belong to the goal column. These elements were normalized and are shown in Table 5.

Table 4. The pair-wise comparison between various dimensions of vulnerability.

Criteria Environmental Physical Social Economic [W21]

Environmental 1 0.89 1.38 1.15 0.24
Physical 1.11 1 1.55 1.29 0.61

Social 0.72 0.64 1 0.83 0.08
Economic 0.86 0.77 1.19 1 0.07

Table 5. The relative importance of vulnerability indicators.

Vulnerability Dimension Indicators Ideal Normalized

Social
PD 0.496 0.0511

HHD 0.337 0.0347
LPD 0.088 0.0091

Economic
EMD 0.373 0.0384
UEPD 0.120 0.0124
CBD 0.040 0.0042

Physical

DRN 0.443 0.0456
DDC 0.494 0.0509
DRC 0.380 0.0392
DOS 0.494 0.0509
RD 0.842 0.0867
BD 0.710 0.0731

ABD 0.368 0.0379
BMD QBD 0.781 0.0804

SBBD 0.295 0.0304
B 0.390 0.0402

BFD 0.661 0.0681

Environmental
DF 1 0.1029
FG 0.797 0.0821
PS 0.598 0.0616
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4.2. Calculating Vulnerability Index Score for Training Site

There are two sets of data, namely the “training set” and “test set”, which are necessary to
perform ANN analyses. The “training set” is utilized by the learning algorithm to create a suitable
set of network weights, precisely illustrating the links between input and output. Its performance
is then verified on the “test set” of data with recognized results, something not presented before to
the network. Preparing suitable data for the training site plays an important role in the accuracy
of the obtained vulnerability map. Actually, the first step of neural networks’ training consists of
collection, analysis, selection, and pre-processing of the training data. To effectively achieve this
objective, suitable parameter selection should be done in the training phase.

Due to the non-availability of earthquake records from 1780 and lack of enough sampling and
databases at sites, the proposed method in this research employs a new training strategy. As explained
in the previous section, the purpose of applying the ANP model in this study is to create a suitable
training database for the neural network. To achieve this aim, 70% of those indicators with the highest
weight driven from ANP model (Table 4) were transferred to Arc GIS to create the base map (Figure 9).
Thereafter, 250 points were selected randomly from the base map to produce a final training site map,
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and were subsequently used during the training phase of the feedforward Multilayer Perceptron (MLP)
model, and also to measure the accuracy of the trained network. After being standardized, the obtained
training map, along with 20 layers maps, are transferred to IDRISI software as the input and of neural
network after converting the format.
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4.3. Applying Multi-Layer Perceptron (MLP) Network for Earthquake Vulnerability Map (EVM)

MLP classifies the remotely-sensed imagery using the back propagation (BP) algorithm.
The calculation is based on information from training data. MLP performs a non-parametric regression
analysis between input variables and one dependent variable, which is represented by one output neuron
in the network [130].

To model the urban vulnerability to earthquake hazard in Tabriz City, the MLP was run in hard
classification mode (threshold transfer function for output neurons), using IDRISI Selva software
(Version 17.1) (Clark Labs, Clark University 950 Main St., Worcester, MA, USA). According to the research
goal, we used classification option for the output. The 20 input layers were then specified and their
names entered in the grid. The mask image contains Boolean values containing 1s in all cells and 0s
elsewhere. For training data, the raster file containing the weights of the selected (14 indicators) values
were entered. The training process reduces the error between ANN output and the real data by adjusting
the weights according to the BP algorithm [131]. For each class in the training data, the number of
training and testing sample sizes are randomly divided. The actual number of pixels used for training
and testing is also determined by the ratio between the numbers specified for the maximum training
and testing pixels. Using the same values for each entry, it divides the pixels at a 1:1 ratio. In general,
it is specified as hundreds to thousands, rather than a large number of pixels per category. In this study,
an average of 500 pixels per class was used for training and testing. The training pixels are used in
training, and the testing pixels are used to validate the results. The network topology includes 1 hidden
layer with 7 nodes, 20 input layer nodes and 5 output layer nodes (Table 6).
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Table 6. Network, data and training parameters used for ANP-ANN for vulnerability map in the IDRISI
Selva software.

Group Parameter Value

Input specifications Avrg. training pixels per class 500
Avrg. testing pixels per class 500

Network topology

Hidden layers 1
Nodes 10

Input Layers Node 20
Output Layer Nodes 5

Training parameter

Automatic training Yes
Dynamic learning rate Yes

Start Learning rate 0.001
End learning rate 0.0006
Momentum factor 0.5

Stopping criteria
RMS 0.1534

Iterations 10000
Accuracy rate 90.00

The number of input layers is identified through the number of images, and the number of outputs
is the training data categories in the training file. The next several steps deal with training parameters,
and the critical part is the learning rate, which is a positive constant that controls adjustment done to
the connection weights. Automatic training and dynamic learning rate were used; automatic training
adjusts the learning rate during training. With the use of dynamic learning, starting and ending
learning rates must be entered. Entered learning rates and momentum factors are 0.001, 0.0001, and 0.5
respectively. Small learning rates tend to increase the time in the training phase, and large training rates
produce poor results with fluctuating adjustments. The momentum factor is used in this study to speed
up the convergence procedure. Adjustments can be made with the criteria to terminate the procedure.
The acceptable error is measured through root mean square (RMS) associated with the learning of
the network.

The extracted RMS in this study is 0.1534, which is acceptable per IDRISI default values,
which is 0.5. When an acceptable error is defined as very small, the convergence is hard to obtain.
Thus additional iterations may lead to over-training. Specified iterations were (10,000) at which the
training procedure was terminated (Table 6). Lastly, the sampling specifications of the training
and testing data determined the accuracy rate per category. According to this analysis, ANN
recorded 90.01% overall accuracy with testing data. In the final step of ANN analysis, the earthquake
vulnerability map (EVM) was prepared by using the trained and tested ANN model and applying it to
the derivative data sets, and subsequently, the EVM of the study area was produced.

After producing the EVM from the ANP-ANN method, the resultant map was transferred to
GIS environment. Then, the raster map was converted to vector format and dissolve function was
processed to calculate the vulnerability of Tabriz City (Table 7). Tabriz has been broadly classified into
five zones, including very high, high, moderate, low, and very low classes concerning the occurrence
of future earthquakes. The results indicate that 1.19% of the total area is found to be highly vulnerable.
High, moderate, and low vulnerable zones represent 5.60%, 34.11%, and 52.74% of the area, respectively
(see Table 7). Very low vulnerability was recorded for 6.35% of the total study area. By adding
municipality zones map to EVM of Tabriz City, the level of vulnerability in various zones was obtained
(Figure 10 and Table 8). The seismic vulnerability of nine zones of Tabriz indicates that most parts of this
city are located in low and medium damage ranges. However, some parts of Tabriz fall in seismically
moderate to high hazard areas. South and southeast regions of Tabriz City are in low to moderate
vulnerability conditions, whereas some parts of the zones 1, 4, and 5 in the northeastern part are under
critical vulnerability conditions (Figure 10).
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Zone 5 is classified as highly vulnerable, having 16.14 % very high and 14.26% high vulnerability
areas. Zone 4 is the second most vulnerable zone, with 1.08% and 25.75% in very high and high
vulnerability categories, respectively. Finally, zone 1 with 5.74% very high and 9.80% high vulnerability
classes is the third most critical area in Tabriz City (see Table 8). On the other hand, zone 7 with 67.55%
low and 3.65% very low vulnerability exhibit the lowest vulnerable zone. Zone 3 with 58.20% low and
22.10% very low vulnerability is the second lowest vulnerable zone. After that, zone 2, with 68.30%
and 10.14% in low and very low vulnerability classes, is categorized as third lowest vulnerable zone
(see Table 8).

Table 7. The level of vulnerability in Tabriz City according to ANP-ANN model.

Vulnerability Area (km2) Hectares Percentage (%)

Very High 3.05 305.35 1.19
High 14.33 1433.05 5.60

Moderate 87.29 8729.49 34.11
Low 134.96 13,496.37 52.74

Very Low 16.25 1625.14 6.35
Total 255.894 25,589.40 100.00
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Table 8. The level of the vulnerability of municipality zones according to ANP-ANN model.

Zone Vulnerability Area (km2) Hectares Percentage (%) Zone Vulnerability Area (km2) Hectares Percentage (%)

1 Very High 1.177 177.99 5.74 2 Very High 0.167 16.79 0.44
1 High 3.04 304.13 9.80 2 High 2.22 222.38 5.80
1 Moderate 7.20 720.69 23.23 2 Moderate 5.87 587.55 15.32
1 Low 17.97 1797.46 57.94 2 Low 26.19 2619.24 68.30
1 Very Low 1.01 101.99 3.29 2 Very Low 3.88 388.92 10.14

Sum 31.02 3102.26 100.00 Sum 38.34 3834.88 100.00

Zone Vulnerability Area (km2) Hectares Percentage Zone Vulnerability Area (km2) Hectares Percentage

3 Very High 0.05 5.15 0.14 4 Very High 0.29 29.72 1.08
3 High 1.22 122.99 3.29 4 High 7.06 706.21 25.57
3 Moderate 6.09 609.03 16.28 4 Moderate 9.86 986.83 35.73
3 Low 21.77 2177.86 58.20 4 Low 9.92 992.85 35.94
3 Very Low 8.26 826.83 22.10 4 Very Low 0.46 46.59 1.69

Sum 37.41 3741.85 100.00 Sum 27.62 2762.20 100.00

Zone Vulnerability Area (km2) Hectares Percentage Zone Vulnerability Area (km2) Hectares Percentage

5 Very High 0.75 75.70 16.14 6 High 0.10 10.48 2.56
5 High 0.66 66.87 14.26 6 Moderate 1.69 169.41 41.41
5 Moderate 1.26 126.62 27.00 6 Low 2.24 224.57 54.90
5 Low 1.99 199.52 42.54 6 Very Low 0.04 4.61 1.13
5 Very Low 0.002 0.27 0.06 Sum 4.09 409.07 100.00

Sum 4.68 468.97 100.00

Zone Vulnerability Area (km2) Hectares Percentage Zone Vulnerability Area (km2) Hectares Percentage

7 Moderate 10.88 1088.19 28.80 8 Moderate 15.21 1521.90 43.68
7 Low 25.52 2552.61 67.55 8 Low 18.47 1847.70 53.04
7 Very Low 1.37 137.96 3.65 8 Very Low 1.14 114.30 3.28

Sum 37.78 3778.76 100.00 Sum 34.83 3483.91 100.00

Zone Vulnerability Area (km2) Hectares Percentage

9 Moderate 29.17 2917.45 72.86
9 Low 10.84 1084.37 27.08
9 Very Low 0.02 2.13 0.05

Sum 40.03 4003.95 100.00
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Merely knowing the size and area of the vulnerable zones cannot indicate the impact level
of the probable event. Hence, population data of the municipality zones of Tabriz City was used
for assessing the impact of the vulnerability. Therefore, the amount of population vulnerability
(PV) in various zones of Tabriz City was obtained, as illustrated in Figure 11. Table 8 shows
the comparative vulnerability of the zones in Tabriz City based on the data provided by EVM and
population vulnerability (PV). The most vulnerable zones are clustered in zones 5, 4, and 1 of Tabriz City,
respectively. Overall, these three zones are considered as highly vulnerable areas; the main reason is their
geographical location along the North Tabriz Fault (NTF). In addition, there is a high percentage of the
marginal settlement, informal settlements, and old textures in these zones. The dominance of residential
density compared to the other land uses (30% of the total land uses) and the highest density of population
(lowest education and income) are other factors in these highly vulnerable areas. Particularly, the north
of zone 1 is a critical vulnerable area to future earthquake hazards.
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The most dominant type of structure in the city of Tabriz is masonry brick buildings, distributed
from high to low, in zones 5, 4 and 1, respectively. Over 50% of buildings in zones 5 and 1 are made
of masonry bricks, and most of them have been constructed without considering seismic regulations.
Therefore, a particular plan is required to reconstruct buildings in these areas. The number of
high-quality steel and concrete buildings in Tabriz City is low. The largest number of steel and concrete
buildings can be found in zone 5, and most of these buildings have a low quality of construction without
observing the requirements of the standard. Therefore, it is necessary to comply with the requirements
of the construction standards or new buildings. In terms of geotechnical and seismological parameters,
zones 5 and 1 face inappropriate situations. Owing to a combination of factors, including the high level
of PGA, the possibility of high slope, and proximity to seismic faults (NTF), these zones are susceptible
to seismic damage. Overlapping EVM with PV indicates that the lowest vulnerable zones are found in
zones 7, 3, and 2 of Tabriz City (see Table 9).
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Table 9. Assessment of Population Vulnerability (PV) in Tabriz City according to ANP-ANN model.

Zone Vulnerability Households Population Percentage Zone Vulnerability Households Population Percentage

1 Very High 18,409 73,291 19.97 2 Very High 2130 8524 2.83
1 High 23,054 86,647 23.61 2 High 13,642 50,333 16.73
1 Moderate 25,874 92,800 25.28 2 Moderate 6884 40,226 13.37
1 Low 30,862 111,987 30.51 2 Low 52,006 159,478 52.99
1 Very Low 640 2333 0.64 2 Very Low 7548 42,382 14.08

SUM 98,839 367,058 100.00 SUM 82,210 300,943 100.00

Zone Vulnerability Households Population Percentage Zone Vulnerability Households Population Percentage

3 Very High 470 1929 0.72 4 Very High 2647 10,553 3.30
3 High 9583 33,376 12.50 4 High 51,908 185,501 58.06
3 Moderate 14,695 47,415 17.76 4 Moderate 17,562 69,485 21.75
3 Low 48,256 143,159 53.63 4 Low 13,416 52,047 16.29
3 Very Low 1408 41,080 15.39 4 Very Low 508 1892 0.59

SUM 74,376 266,959 100.00 SUM 86,041 319,478 100.00

Zone Vulnerability Households Population Percentage Zone Vulnerability Households Population Percentage

5 Very High 7436 31,441 35.99 6 High 358 1132 3.82
5 High 5351 22,755 26.05 6 Moderate 6391 20,718 69.84
5 Moderate 4768 19,860 22.74 6 Low 2233 7816 26.35
5 Low 3298 13,294 15.22 SUM 8982 29,666 100.00

SUM 20,853 87,350 100.00 82,210 300,943

Zone Vulnerability Households Population Percentage Zone Vulnerability Households Population Percentage

7 Moderate 132 1570 8.58 8 Moderate 90 488 66.67
7 Low 4803 13,822 75.58 8 Low 32 145 19.81
7 Very Low 62 2896 15.84 8 Very Low 18 89 12.16

SUM 4997 18,288 100.00 SUM 140 732 100.00

Zone Vulnerability Households Population Percentage

9 Moderate 2022 7586 100.00
SUM 2022 7586 100.00
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4.4. Investigating the Accuracy of the Obtained Results

Model validation was performed in order to examine the validity of the developed earthquake
vulnerability assessment and the overall vulnerability of the Tabriz City at municipality zones.
A well-constructed model should represent the domain of interest fairly accurately. It should be noted
that there is a probability that such accuracy may not be achieved with the standardized/classified data.
However, it is preferable that the mentioned domain is acquired in the output of the model because it
represents a flexibility of the model and its compatibility with a human perspective, which was proved
in this study.

Accordingly, to validate the hybrid ANP-ANN model findings, EVM results were compared with
the results obtained by PV. Scatter-plots were applied for the results obtained from both methods
(Figures 12 and 13). These scatter-plots indicate that there is a strong positive relationship between
the most vulnerable zones (including zones 5, 4 and 1) and lowest vulnerable zones (including zones
2, 3 and 7) of the EVM and PV. Additionally, Spearman correlation coefficients between the most and
lowest vulnerable zones were calculated. Tables 10 and 11 show the statistical results for both outputs.
A correlation coefficient of 0.976 and 0.940 (statistically significant at 0.01 levels) between most and
lowest vulnerable zones indicates that both outputs are compatible with the level of vulnerability in
the identified zones.
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Table 10. Correlation between the EVM and PV for the most vulnerable zones.

VAR00002 VAR00003

VAR00002
Pearson Correlation 1 0.976 **

Sig. (2-tailed) 0.001
N 6 6

VAR00003
Pearson Correlation 0.976 ** 1

Sig. (2-tailed) 0.001
N 6 6

** Correlation is significant at the 0.01 level (2-tailed).

Table 11. Correlation between the EVM and PV for the least vulnerable zones.

VAR00001 VAR00002

VAR00001
Pearson Correlation 1 0.940 **

Sig. (2-tailed) 0.005
N 6 6

VAR00002
Pearson Correlation 0.940 ** 1

Sig. (2-tailed) 0.005
N 6 6

** Correlation is significant at the 0.01 level (2-tailed).

5. Discussion

Vulnerability is multi-dimensional differential, and varies across physical space and within social
groups. In addition, it is scale-dependent with regards to space and units of analysis such as individual,
household, region, or system with dynamic characteristics and driving forces of vulnerability change
over time. Vulnerability assessment is a broad concept that can be discussed in several different
contexts. However, it is not a variable that can be measured directly; rather, it can be assessed indirectly
according to a set of dimensions. For assessing urban vulnerability, it is necessary to consider all main
dimensions of vulnerability including environmental, physical, and socio-economic [131,132].

Physical factors are usually materially-oriented, arising from the field of engineering, architecture,
and land use planning. Vulnerability from a physical perspective, despite its broad scope,
refers mainly to the consideration and susceptibilities of location and building environment.
Environmental vulnerability includes the fraction of the slope, geological features, drainage and
distance to the fault. The social dimension is multi-faceted and cross-cutting. It focuses primarily on
the social organization and collective aspects rather than individuals. Lastly, economic vulnerability
describes the susceptibility of an economic system, including public and private sectors, to potential
(or direct) disaster damage and loss. Furthermore, it refers to the inability of affected individuals,
communities, businesses, and governments to absorb or cushion the damage [132]. In this research,
a new hybrid framework of ANP-ANN model was established for earthquake vulnerability assessment
by constructing a composite social, economic, environmental, and physical vulnerability index and
applied to Tabriz City as a case study. Results demonstrate that it is a robust approach to construct
a composite vulnerability index using the four categories of vulnerability factors. The application
of the vulnerability index derived from various aspects of earthquake hazard and vulnerability is
more accurate than using only physical and/or socio-economic characteristics of urban areas at
local [55,133,134]. The outline of the hybrid ANP-ANN model developed in this contribution is flexible,
as it is an integrated approach to earthquake vulnerability assessment. Due to its robust nature, it can be
broadly applicable to any urban environments on different geographical scales and mapping units.

The identification of vulnerability and understanding of related methodologies helps
the development of policies and action plans for mitigation. The assessment of main criteria of
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vulnerability indices in relation to earthquake risks improves research studies on natural hazards.
The assessment procedure of social, economic, environmental, and physical vulnerability was found to
be more reliable. Hence, the results can enhance urban policy and scientific based debates as a possible
key-element for urban public policies. The main advantage of the research was its simplicity in applying
the applying the indices, which could be a solution for different stakeholders in vulnerability studies.
Thus, vulnerability assessment fits into the general approach of informed decision making which links
academic research, policy, and practice [133]. Since all indicators have neither equal importance value nor
play an effective role in vulnerability, assessing vulnerability cannot be reviewed only by an individual
inspection of each element. Therefore, all elements must be considered simultaneously to achieve
the correct results.

The EVM derived from the hybrid model can provide substantial information for the development
of the city. In addition, the EVM is strategic to planning design of future land infrastructure, crises
confrontation procedures, and public protection services of the state. For example, the EVM can
provide information on the proper location for the construction of vital infrastructure (such as hospitals
or fire services) during crises. Considering that, modern construction techniques can provide solid
anti-seismic buildings. One of the most important issues in selecting the location for the construction of
a new infrastructure is to provide free access during crises situations. Based on the information provided
from the EVM for the case study (Tabriz City), such locations can be selected at the perimeter of the city
and along main roads entering the city center without crossing high-risk sections. In addition, the EVM
can be used by the public protection services for the definition of proper concentration and distribution
points to correctly cover high-risk sections. Currently, the selected concentration points sufficiently cover
the perimeters of the high-risk sections, although their distribution is not uniform across the city.

According to the EVM generated by MLP for Tabriz City, zones 5, 4, and 1 are recognized as
the most vulnerable areas. These zones were identified as the most crowded areas with high building
and population densities. In addition, the absence of spatial planning in the construction of buildings
in these zones has worsened the condition. The percentage results in terms of vulnerability show
that these zones are in greatly undesirable conditions; hence, the important rule of planning before
construction is inevitable. Statistics revealed that more than 400,000 people in Tabriz City live in
informal settlements located in the three zones with undesirable conditions. The informal settlements
around the aforementioned zones are characterized by poor conditions based on criteria such as
land cover. Other factors include the age, material, and density of buildings. In the context of land
cover, more than 52% of the region is at the rate of +75%. In terms of building age, around 48% of
the buildings in these zones are more than 20 years old, which is rather undesirable. In the case of
building materials, around 55% of the buildings are constructed with poor materials such as bricks and
iron structures, increasing the vulnerability of these zones to earthquakes. However, this is not the case
in the southern part of zone 1, where occupants reside in desirable conditions. Essentially, this zone
is considered a planned area with different conditions. In this manner, the existence of systematic
planning, such as creating ample green spaces and modern urbanism, has improved the safety of
the region. Based on land cover statistics, over 80% of the region is at the rate of −75%. In case
of building date, nearly 70% of the area is newly built-up, whereas, in terms of materials used for
building, about 80% of buildings in the region have appropriate materials (steel and concrete structure).
This has made the region less vulnerable.

In zones 5, 4, and 1, it is evident that building codes, policies, and zoning regulations are
neglected due to expansion in areas prone to seismic activity. It should be noted that buildings are not
designed to be ruined under the pressure of an earthquake. Therefore, it is pertinent to enforce and
observe building codes (or policies) during design, to ensure stronger and safer buildings. In addition,
building codes can be adjusted during the design and construction of buildings to ensure health and
safety in communities. The purpose of seismic provisions in building codes is to protect people’s lives
and ensure their safety during evacuation from ruined or damaged buildings. Hence, the aim of this
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new design is to evaluate survival of buildings against a moderate earthquake without noticeable
damage, and a major earthquake without collapsing.

In order to be well-prepared for an earthquake, the adoption and enforcement of modern building
codes is a crucial factor. Building codes provide the minimum acceptable standards for regulating
the design, construction and maintenance of buildings required to protect the health, safety and general
welfare of residents. Modern codes are unified documents established based on scientific knowledge
and engineering principles, as ratified by technical experts. Conversely, some actions should be taken
to prevent future disasters. Early response to natural disasters and socio-economic vulnerabilities are
cost-effective and manageable; it is time to take action. The post-disaster period is a good time to
commence disaster and vulnerability reduction programs. These policies are based on two factors: public
awareness and political will to enforce policies.

6. Conclusions

A new hybrid framework of ANP-ANN model was established for earthquake vulnerability
assessment and applied to Tabriz City as a case study. Results demonstrate that it is a robust
approach to construct a composite vulnerability index using four categories of vulnerability, including
social, economic, physical, and environmental factors. The outline of the hybrid ANP-ANN model
developed in this contribution is flexible, and it can be used for any urban environments with different
geographical scales. In the hybrid ANP-ANN model, ANP would be conducted to extract training
data for the network. This extracted training data are then entered into a network model using ANN
to produce EVM. This was made possible by taking into consideration the combined strengths of
two multi-criteria decision and statistical methods: (i) The ANP provided the framework, to take
into consideration the hierarchical as well as network structure (interdependencies of variables) of
the complex problem at hand, through which the relative and appropriate weights for the different
variables selected to depict main dimensions of vulnerability were calculated; (ii) The relationship of
variables in input and output datasets that is not linear could be detected through artificial neural
network (ANN) modeling that uses a learning (training) process to estimate values of output variables
in input data; (iii) The model validation showed that there is a strong positive relationship between
the most vulnerable zones and least vulnerable zones of the EVM and PV.

The results of its application in municipality zones in Tabriz City highlight the finding that the main
aspects differ greatly in terms of city’s susceptibility to earthquake hazards. The resultant EVM and its
overlay with PV provides a foundation for analyzing spatial variation and identifying the hot-spots of
vulnerability and pointing out zones that need more in-depth attention. The results show that the most
vulnerable zones are clustered in zones 5, 4, and 1 (northeastern tract) of Tabriz City. Other zones in
the rest of the city exhibit relatively low to moderate levels of earthquake vulnerability. Reviews of the
development plans and master plan of the study area indicate that the expansion of Tabriz City was
toward the North Tabriz Fault (NTF), and a huge volume of marginal areas and informal settlements
are located in the vicinity of the fault. Unplanned construction in the form of mass-housing and lack of
monitoring of constructions in informal settlements point to a lack of attention being paid to the fault
risk and its consequences. Moreover, the existence of narrow passages and their irregularity in zones 5, 4,
and 1, compaction of urban fabric in these zones, poor quality of buildings materials, lack of open spaces,
and lack of access to relief centers have added to the critical nature of the situation. The pronounced
regional variations in vulnerability to earthquake hazards in the Tabriz warrants special attention by
both local authorities and the national government to reconsider current natural disaster management
strategies. The ANP and ANN Models can be broadly replicated, and are applicable to other urban
regions around the world for sustainability and environmental management.
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