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Abstract: Three synthetic aperture radar (SAR) data classification methodologies were used to assess
the ability of single-polarization and dual-polarization TerraSAR-X (TSX) data to classify surface
water, including open water, ice, and flooded vegetation. Multi-polarization SAR observations
contain more information than single-polarization SAR, but the availability of multi-polarization
data is much lower, which limits the temporal monitoring capabilities. The study area is a principally
natural landscape centered on a seasonally flooding river, in which four TSX dual-co-polarized
images were acquired between the months of April and June 2016. Previous studies have shown
that single-polarization SAR is useful for analyzing surface water extent and change using grey-level
thresholding. The H-Alpha–Wishart decomposition, adapted to dual-polarization data, and the
Kennaugh Element Framework were used to classify areas of water and flooded vegetation.
Although grey-level thresholding was able to identify areas of water and non-water, the percentage
of seasonal change was limited, indicating an increase in water area from 8% to 10%, which is
in disagreement with seasonal trends. The dual-polarization methods show a decrease in water
over the season and indicate a decrease in flooded vegetation, which agrees with expected seasonal
variations. When comparing the two dual-polarization methods, a clear benefit of the Kennaugh
Elements Framework is the ability to classify change in the transition zones of ice to open water,
open water to marsh, and flooded vegetation to land, using the differential Kennaugh technique.
The H-Alpha–Wishart classifier was not able to classify ice, and misclassified fields and ice as water.
Although single-polarization SAR was effective in classifying open water, the findings of this study
confirm the advantages of dual-polarization observations, with the Kennaugh Element Framework
being the best performing classification framework.

Keywords: synthetic aperture radar; PolSAR; TerraSAR-X; surface water monitoring; flooded
vegetation; classification; segmentation

1. Introduction

Synthetic aperture radar (SAR) is an active remote sensing technique and can penetrate cloud
cover and operate during the day or night. Often, flood events occur during unfavourable weather
conditions when optical visibility is low, which allows SAR to be a useful sensor for surface
water classification [1]. SAR missions and products vary in polarization, incidence angle, frequency,
and resolution, which allows the user to select the most suitable SAR observations to the application
at hand, which in this case is the classification of surface water and its varying states. Currently,
there exists a trade-off between spatio-temporal coverage and information content with respect
to single-polarization and multi-polarization SAR data. While multi-polarization contains more
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information about the scattering mechanism of the target, the temporal coverage over a single target
is limited and prohibits monitoring over regional scales. Many studies addressed the use of single-
or multi-polarization SAR individually using diverse classification algorithms, but few addressed
the comparison of single- and multi-polarization SAR data for surface water monitoring [1–4].
These comparative studies mainly address single-polarization and quad-polarization processing
methods, or address which dual-polarization channels are most effective for surface water monitoring,
but lack discussion of the dual-polarization processing methods. In this study, there are three
main objectives. The first is to create classified models of surface water using both single- and
dual-polarization TerraSAR-X (TSX) data. The second is to compare these models to better understand
the extent of the limitations of single-polarization data and to what extent they are aided by
dual-polarization data. The third objective is to create a surface water extent time series from the
initial snow melt period into spring, to demonstrate the feasibility of near-continuous surface water
monitoring from space. The current fleet of ~10 civil SAR missions in orbit and the planned missions
up to 2020 provide and will continue to provide an unprecedented amount of observations in the X-,
C-, and L-band, mostly in single-polarization mode, which will lead to near-continuous monitoring
capabilities. Different radar frequencies (X-, C-, and L-band) interact differently with vegetation,
and thus wetlands. The shorter the wavelength (X-band) of the radar, the less penetration into the
canopy, while L-band radar penetrates through the canopy to the ground. However, X-band SAR is
the preferred sensor for open water mapping as the shorter wavelength leads to increased diffuse
scattering when compared with the C-band and L-band radar, which suffer from specular reflections
leading to low energy return.

Previous studies have shown that single-polarization SAR data are a viable technology for
analyzing surface water extent and spatio-temporal change [4–16]. Single-polarization SAR provides
one channel of intensity data in either HH (horizontal linear transmission and horizontal linear
reception), HV (horizontal linear transmission and vertical linear reception), VH (vertical linear
transmission and horizontal linear reception), or VV (vertical linear transmission and vertical linear
reception). One of the most common and effective classification techniques is grey-level thresholding,
which can be applied to differentiate areas of water and non-water [4,17]. This has proved successful
to delineate open water bodies, but limitations arise with more heterogeneous targets, such as ice
covered water bodies and surface water beneath vegetation—which are abundant in Canada, with
approximately 14% of the Canadian landscape being covered in wetlands [4]. Vegetation cover
leads to misclassification due to shadow and layover effects, and ice can often be misclassified
because of the similar backscatter response to rough surface water [4,9]. Wind effects can also lead to
misclassification causing water to be mistaken as land, rough vegetation, or ice [4]. Multi-temporal
SAR acquisitions often occur during ice-off conditions to avoid misclassification. However, it is
important to document the initial stages of snowmelt and spring flooding, because the subsequent
hydrological conditions rely on this initial process [4]. The limitations of single-polarization SAR could
be aided by the use of dual-polarization SAR, which provides two channels of intensity and phase
information (HH/HV, VV/VH, or HH/VV). Having two channels of intensity and phase information
allows for discerning among scattering mechanisms, such as surface scattering, double bounce,
and volume scattering. Dual-polarization SAR data can be used to distinguish ice and vegetated areas
from open water, while those land cover types often lead to misclassification in single-polarization
data [4,18,19]. Several studies have identified the significant double-bounce component originating
from flooded vegetation and hence, quad-polarization SAR must often be used for classification [20–22].
Quad-polarization data are often not available, while dual-polarization have been demonstrated to be
sufficient [18,23–26].
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2. Data Description and Methodology

2.1. Study Area and Data Description

The ~6 km × 12 km study area is located south of Lac-Simon in Quebec, Canada (Figure 1).
This area was chosen because it is a principally natural landscape with open bodies of water,
marshland, and forested areas. Most importantly, it includes the Ruisseau Schryer, which flows from A
(Lac-Schryer) to B (Baie-de-l’Ours in Lac-Simon) in Figure 1, and is flooded during the snowmelt each
year. This could affect the urban areas located near the river, including the town of Montpellier located
on the north side of the stream. Montpellier experienced flooding due to seasonally high water levels
and overflowing rivers in April of 2017. These events threatened and damaged multiple homes and
a state of emergency was declared in towns near to Montpellier. The orange box in Figure 1 zooms
in on the river entering Baie-de-l’Ours, showing a distinct flood plain surrounding both sides of the
meandering river.
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Figure 1. Map of study area showing the town of Montpellier, southern extent of Lac-Simon, and stream
(Ruisseau Schryer) flowing from A (Lac-Schryer) to B (Baie-de-l’Ours). Base map is provided by the
Quebec Ministry of Energy and Natural Resources (MERN) showing urban areas (white), water (blue),
forest (dotted green), low vegetation (tan), golf course (light green), and marshlands (dashed areas).
Zoomed in orange box of Google Earth imagery from July 2017 shows a flood plain surrounding the
stream entering Lac-Simon at B.

Four TSX dual-co-polarization (HH/VV) strip-map mode scenes were acquired through the
spring and summer of 2016. Each scene has an areal extent of 15 km by 50 km and a slant range and
azimuth resolution of 1.2 m and 6.6 m, respectively. The incidence angle was chosen to be low enough
to be able to penetrate the vegetation types on site and cover the target area. Details of each product
are provided in Table 1.

Table 1. Specifications of the four dual-polarization TerraSAR-X strip-map beam mode scenes
used herein. VV—vertical linear transmission and vertical linear reception; HH—horizontal linear
transmission and horizontal linear reception.

ID Date (2016) Mode Polarization Product Look Direction Path Incidence Angle (o)

1 2 April stripmap HH/VV SSC Right Descending 39
2 24 April stripmap HH/VV SSC Right Descending 39
3 5 May stripmap HH/VV SSC Right Descending 39
4 18 June stripmap HH/VV SSC Right Descending 39
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Three eight-band multispectral Landsat 8 images from 13 April, 29 April, and 16 June 2016, with
a resolution of 30 m were used to aid in visual comparison and validation of the TSX data (Figure 2).
It is important to note the change in ice cover between the 13 April scene and the 29 April scenes.
By the 16 June scene, the vegetation canopy is fully developed, shown in green. In the 29 April scene,
cloud cover can be noticed, which is a clear limitation of optical imagery. In situ data of the region
does not exist, which means that the classification results have to be validated based on the satellite
image only. Hydrometric data for Lac Simon and Lac Schryer exist only until 2006, which is before
the SAR scenes were acquired. This compromises the evaluation of the absolute performance of the
classification methods, however, the relative comparison reveals performance differences that can be
validated with existing knowledge of the land cover types and the satellite imagery in the area.
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Figure 2. Time series of Landsat 8 true colour optical images (red-green-blue (RGB): 4-3-2) from the
following scenes: (A) 13 April 2016; (B) 29 April 2016; and (C) 16 June 2016.

2.2. Classification Methods

Each TSX scene was processed using three different methods: grey-level thresholding applied to
single-polarization data (HH), the Kennaugh Element Framework [27] applied to dual-polarization
data (HH, VV), and H-Alpha-Dual-Polarization decomposition (HH, VV). The processing workflow
for each method can be seen in Figure 3.

The HH band of the TSX data was used to simulate single-polarization data. HH polarization
tends to be used over HV or VV, because the difference in backscatter response between land and
water are greatest for HH polarization [4,17,28–31]. Grey-level thresholding was used to classify each
SAR scene because it is a simple and effective way to map surface water [7,32]. Because the histogram
of the intensity data is bimodal, a value in between the two modes can be chosen, in which everything
below this threshold is classified as water and everything above is classified as non-water. In this study,
the threshold value used was the minimum between the two modes. This method was applied to all
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four TSX images, producing four models each with two classes (water and other). The processing work
flow for this method is shown in Figure 3. The processing software used herein included SNAP, Matlab
code developed in house, and the Kennaugh Element Framework by Schmitt et al. [27]. The Shuttle
Radar Topography Mission (SRTM) finished Digital Elevation Model (DEM) was used for the terrain
correction and standard speckle filters were applied.
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Figure 3. Processing workflow for single- and dual-polarization data to create three final models for
each TerraSAR-X (TSX) scene.

Studies have shown successful results using dual-co-polarization HH/VV data for flooded
vegetation mapping [18,20,33]. Several common decomposition types exist to break down the data into
polarimetric parameters, but there are few that are adapted for dual-polarization data. In this study,
two dual-polarization decompositions will be used to classify water and flooded vegetation. The first
is the H-Alpha decomposition, which was developed in 2007 and modified for dual-polarization
data [34]. The second method is the Kennaugh Element Framework developed by Schmitt et al. [27].
A few studies have researched the use of this technique for mapping wetlands and have proved it
successful [18,26,27].

The H-Alpha decomposition for dual-polarization data uses an eigenvector analysis of the
coherency matrix [T2], which separates the parameters into scattering processes (the eigenvectors) and
their relative magnitudes (the eigenvalues) [34]. There are two parameters outputted from the H-Alpha
decomposition, entropy (H) and alpha (α). Entropy is calculated from the eigenvalue information and
represents the degree of randomness in the scattering. Alpha (α) is calculated from the eigenvectors and
represents a rotation that can indicate the type of scattering mechanism [35]. Figure 4 shows the entropy
and alpha parameters for the scene of 2 April 2016. Water is shown with orange colors in Figure 4A
(entropy), while ice is shown in blue colors. The alpha parameter shows water along the river, but does
not outline the ice-covered regions in the scene. In combination, entropy and alpha parameters are
able to distinguish water- and ice-covered areas. The quad-polarization decomposition of H-Alpha has
shown to work well in natural environments, because this method is an incoherent decomposition that
can characterize distributed targets [1]. However, the modified dual-polarized H-Alpha decomposition
is less well-studied. The unsupervised Wishart distribution clustering algorithm is applied to the
H-Alpha decomposition, as the coherency matrix can be modelled by this algorithm. The Wishart
distribution is robust and can be applied to any type of polarimetric SAR data, so it is often applied
to the H-Alpha decompositions (dual or quad) [1]. Nine different classes were created using the
Wishart classifier on the H-Alpha decomposition. These classes were visually inspected to determine
which classes could be re-clustered to represent the desired three classes; (i) open water, (ii) flooded
vegetation, and (iii) other. This processing method was applied to all four TSX images, producing four
models each with three classes (Figure 3).
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The Kennaugh Element Framework developed by Schmitt et al. [27] linearly transforms the
four-dimensional Stokes vector into a four-by-four scattering matrix, called the Kennaugh matrix [K].
Four normalized Kennaugh elements from this matrix K can be computed using dual-co-polarization
data. In the case of HH/VV data, the elements are K0, K3, K4, and K7. K0 represents the total intensity
as a sum of HH and VV intensity; K3 represents the difference between double-bounce and surface
intensity; K4 represents the difference between HH and VV intensity; and K7 represents the phase shift
between double-bounce and surface scattering mechanisms. These four elements have been shown to
be very useful for identifying flooded vegetation. A study by Moser et al. [25] has demonstrated that
open water has low values of K0, because of the specular scattering nature of calm water causing a
low backscatter signature. These areas generally form clusters that can be distinctly separated from
the other classes. Flooded vegetation is characterized by high values of K4, medium values of K3 and
lower values of K0. Another study identified the significant difference between HH and VV intensity
over flooded areas and inundated forests, emphasizing the importance of K4 [36]. Using a pre-process
Kennaugh chain, the Kennaugh elements were geocoded, calibrated, and enhanced using a multi-scale
and multi-looking technique developed by Schmitt [37] (Figure 3). An example of the four Kennaugh
elements produced for the 2 April 2016 scene can be seen in Figure 5. This scene was selected as it
exhibits open water, ice cover, inundated vegetation, and other land cover. Open water is represented
by the lowest values of K0 (dark blue in Figure 5A) and medium values of K3 (grey in Figure 5B).
Flooded vegetation is represented by medium values of K3 (grey and yellow in Figure 5B) and high
values of K4 (red and yellow in Figure 5C). Additionally, K7 (Figure 5D), representing the phase shift
between double-bounce and surface scattering, shows sensitivity to inundated vegetation, although
not as strong as K4, which was already found by Zalite et al. [36]. Ice cover is represented by low values
of K0 (light blue in Figure 5A) and low values of K3 (dark blue in Figure 5B). These elements were
processed using an unsupervised k-means classifier. The k-means clustering algorithm is one of the
simplest forms of clustering techniques that aims at minimizing the Euclidean distance between points.
The advantages of this technique are that it is fast and robust, and thus works well when applied to
large, linear data sets, such as the Kennaugh elements. The k-means classifier produced 11 classes that
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were then visualized and analyzed to determine which classes represented (i) open water, (ii) flooded
vegetation, and (iii) other. This processing method was applied to all four TSX images, producing four
models each with three classes.
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Figure 5. Four Kennaugh elements derived from the dual-pol TerraSAR-X image from 2 April 2016.
(A) K0—the total intensity sum of HH plus VV; (B) K3—difference double-bounce minus surface
scattering; (C) K4—difference HH minus VV intensity; (D) K7—phase shift between double-bounce
and surface scattering mechanisms. Open water is represented by dark blue in (A) and grey in (B).
Flooded vegetation is represented by grey and yellow in (B) and red and yellow in (C). Ice cover is
represented by light blue in (A) and dark blue in (B). Inundated vegetation is shown in yellow/red in
(C) and cyan in (D).
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3. Results

3.1. Single Polarization Classification

The four water classification models created using grey-level thresholding can be seen in Figure 6.
Areas of black represent water and grey areas represent non-water. Table 2 outlines the percentages
of the two classes through time, as well as the threshold value used. Water classification changes
from 8% to 10% throughout the four scenes, disagreeing with seasonal trends, which should show an
increase in temperature causing a decrease in water. However, several other processes are occurring to
account for this change. Ice can be seen in only the first scene (blue box in Figure 6A), as it is classified
as both other and water, and decreases the amount of total water classified. The marsh land shown in
the red box in Figure 6 is flooded in the first scene (A), but dried out by the last scene (D). This change
agrees with seasonal change, despite the overall trend of water classification showing an increase.
Counteracting this seasonal drying is an increase in overall misclassification in the first scene (A), as a
result of ice and snow, and last scene (D), as a result of vegetation growth (shown in the yellow box in
Figure 6). Although the single-polarization methodology was able to see seasonal changes in some
wetlands, flooded vegetation was not classified, and misclassification errors occurred as a result of ice
and tall vegetation causing an incorrect interpretation of the total surface water change in the area,
a clear limitation of using single-polarization data only.

Table 2. Percentages of each class and threshold values used in each TerraSAR-X (TSX) scene using
grey-level thresholding.

Date (2016) Threshold Value (dB) Water (%) Other (%)

2 April −17.38 8 92
24 April −19.68 9 91
5 May −18.56 10 90
18 June −18.87 10 90
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Figure 6. Grey-level thresholding classified models showing water (black) and other (grey) for
(A) 2 April 2016; (B) 24 April 2016; (C) 5 May 2016; and (D) 18 June 2016. Coloured boxes indicate
example areas of temporal change: blue—ice melting; red—marshland dries out; yellow—areas of
misclassification due to ice (A) and vegetation (C).
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3.2. Dual-Polarization Classification: H-Alpha–Wishart

The water classification models created using the unsupervised H-Alpha–Wishart classification
can be seen in Figure 7, showing three classes: water (black), flooded vegetation (blue), and other (grey).
Of the original nine classes, each model consistently identified Class 3 (blue) as flooded vegetation and
Class 7 (black) as open water.

Table 3 display the results for each scene classified using the H-Alpha–Wishart method.
The percent of water classified gradually decreases from the first scene until the last scene. This is
expected as the seasonal changes from wet to dry occur during the study time period. However, some
areas are misclassified as water, including a golf course located south of the Baie-de-l’Ours present in
the optical imagery (blue box in Figure 7). Some fields identifiable in the optical imagery are classified
as water as well (black areas in yellow box in Figure 7). The percent of flooded vegetation stays around
approximately 5%, which is inconsistent with season trends. However, in the April scenes (A and B),
there is flooded vegetation centered on the river, whereas this disappears in the later scenes (yellow
box in Figure 7). The marsh area seen in the red box is shown to dry up in the final scene (D), which is
consistent with the single-polarization SAR observations. Ice is not differentiable from open water
in the first scene. The sum of water and flooded vegetation (total surface water) decreases and is
consistent with the expected seasonal change. Some areas (yellow box in Figure 7) that are classified
as water on 5 May (C) are classified as flooded vegetation on 18 June (D). This is an indication that
vegetation changes may lead to a change in class, but not a change from water to non-water. Hence,
the classification of total surface water seems more robust than the discrimination of open water
and flooded vegetation. As the vegetation starts developing in May and is fully developed in June,
the change in class could be a consequence of that. It is worth noting that snow fall occurred in the
area throughout April, which may have led to snow and ice being misclassified as flooded vegetation
in both April scenes. A rise in temperature by 15–20 degrees in early May may have melted the snow
and ice, which became classified as water, considering that leafs have not developed yet. By June,
vegetation has developed in and around water bodies, indicated by the increasing areas of classified
flooded vegetation in the scene.

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 17 

 

3.2. Dual-Polarization Classification: H-Alpha–Wishart 

The water classification models created using the unsupervised H-Alpha–Wishart classification 
can be seen in Figure 7, showing three classes: water (black), flooded vegetation (blue), and other 
(grey). Of the original nine classes, each model consistently identified Class 3 (blue) as flooded 
vegetation and Class 7 (black) as open water. 

Table 3 display the results for each scene classified using the H-Alpha–Wishart method. The 
percent of water classified gradually decreases from the first scene until the last scene. This is 
expected as the seasonal changes from wet to dry occur during the study time period. However, some 
areas are misclassified as water, including a golf course located south of the Baie-de-l’Ours present 
in the optical imagery (blue box in Figure 7). Some fields identifiable in the optical imagery are 
classified as water as well (black areas in yellow box in Figure 7). The percent of flooded vegetation 
stays around approximately 5%, which is inconsistent with season trends. However, in the April 
scenes (A and B), there is flooded vegetation centered on the river, whereas this disappears in the 
later scenes (yellow box in Figure 7). The marsh area seen in the red box is shown to dry up in the 
final scene (D), which is consistent with the single-polarization SAR observations. Ice is not 
differentiable from open water in the first scene. The sum of water and flooded vegetation (total 
surface water) decreases and is consistent with the expected seasonal change. Some areas (yellow box 
in Figure 7) that are classified as water on 5 May (C) are classified as flooded vegetation on 18 June 
(D). This is an indication that vegetation changes may lead to a change in class, but not a change from 
water to non-water. Hence, the classification of total surface water seems more robust than the 
discrimination of open water and flooded vegetation. As the vegetation starts developing in May and 
is fully developed in June, the change in class could be a consequence of that. It is worth noting that 
snow fall occurred in the area throughout April, which may have led to snow and ice being 
misclassified as flooded vegetation in both April scenes. A rise in temperature by 15–20 degrees in 
early May may have melted the snow and ice, which became classified as water, considering that 
leafs have not developed yet. By June, vegetation has developed in and around water bodies, 
indicated by the increasing areas of classified flooded vegetation in the scene. 

 
Figure 7. H-Alpha–Wishart classified models showing water (black), flooded vegetation (blue), and 
other (grey) for (A) 2 April 2016; (B) 24 April 2016; (C) 5 May 2016; and (D) 18 June 2016. Coloured 
boxes indicate example areas of change: blue—golf course misclassified as water; red—marshland 
dries out; yellow—flooded vegetation decreases, and misclassification of fields. 

  

Figure 7. H-Alpha–Wishart classified models showing water (black), flooded vegetation (blue),
and other (grey) for (A) 2 April 2016; (B) 24 April 2016; (C) 5 May 2016; and (D) 18 June 2016.
Coloured boxes indicate example areas of change: blue—golf course misclassified as water;
red—marshland dries out; yellow—flooded vegetation decreases, and misclassification of fields.
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Table 3. Percentages of each class identified for each H-Alpha–Wishart model through time.

Date (2016) Water (%) Flooded Vegetation (%) Other (%)

2 April 17 5 78
24 April 15 6 79
5 May 16 2 82
18 June 12 6 82

3.3. Dual-Polarization Classification: Kennaugh Element Framework

A time series of the four false colour composites of the processed Kennaugh elements, K3-K0-K4,

are shown in Figure 8. Colours are used to clearly differentiate the four classes. Bright pink represents
open water; white/light pink colour represents flooded vegetation; green and blue represent the ‘other’
class, which includes forest, urban areas, agricultural land, or other classifications of land. The dark
purple colour seen in the 2 April scene represents ice, which corresponds to the optical imagery.
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Figure 8. False colour composites of the processed Kennaugh elements, K3-K0-K4, from (A) 2 April,
(B) 24 April, (C) 5 May, and (D) 18 June 2016. Open water appears in pink, ice in dark purple, flooded
vegetation in white/light pink, and ‘other’ in green and blue.

The Kennaugh element technique agrees with the optical imagery. The ice can be seen to disappear
by the end of April and the water bodies are consistent. The Kennaugh elements were able to observe
the flooded vegetation during melting, especially in the first two scenes, which the optical imagery
was not able to identify. The Kennaugh elements were then classified using an unsupervised k-means
classifier. This developed 11 classes for each scene. The average of each class of each Kennaugh
element was analyzed and results are shown in Figure 9. It shows three plots, K0 versus K4, K3 versus
K4, and K0 versus K3, for each of the four scenes. Using this technique, each point was assigned
one class of three possible classes; open water, flooded vegetation, and other. It can be seen that the
points assigned as water were consistently the lowest value of K0. Flooded vegetation was consistently
identified as the highest value in K4. These findings are consistent with Moser et al. [25].
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The water classification models for each of the four scenes can be seen in Figure 10. Table 4 outlines
the percentages of each class identified through time. The black areas represent open water and are
shown to decrease from the first scene to the last scene from 16% to approximately 12%. However,
in the first scene (green box in Figure 10A), the water is distributed and lakes are classified as both other
and water, indicating the presence of ice. The flooded vegetation (blue) decreases from 13% to 5% with
time. This corresponds with the seasonal melt that would occur in the first two scenes in early spring,
and the seasonal drying that could occur during late spring and early summer of the last two scenes.
Similar to H-Alpha–Wishart, misclassification of flooded vegetation can be seen distributed throughout
the scene. However, the flooding around the river is evident in the first two scenes and not the last two
(yellow box in Figure 10). A golf course south of Baie-de-l’Ours is misclassified as water (see Figure 1B),
which is not seen in the optical imagery (blue box in Figure 10). Finally, the marsh area seen in the red
box shows a drying out in the last scene similar to the other two classification methodologies.
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Table 4. Percentages of each class identified for each Kennaugh Element model through time.

Date (2016) Water (%) Flooded Vegetation (%) Other (%)

2 April 16 13 72
24 April 12 13 75
5 May 13 5 82
18 June 12 5 83
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Figure 10. Kennaugh Element models classified showing water (black), flooded vegetation (blue), and other
(grey) for (A) 2 April 2016; (B) 24 April 2016; (C) 5 May 2016; and (D) 18 June 2016. Coloured boxes indicate
example areas of change: blue—golf course misclassified as water; red—marshland dries with time;
yellow—flooded vegetation decrease, and misclassification of field areas; green—ice melting.

Differential Kennaugh elements [26] use the differences between the Kennaugh elements of two
scenes to understand how the landscape has changed with time. This technique was applied to the
first (2 April) and last (18 June) scene and can be seen in Figure 11. Each colour represents a type of
change. Green represents the change from ice to open water, which is mainly reflected as a change in
K0 showing a decrease in total intensity. Dark red represents the change from flooded vegetation to
land and accounts for a decrease in the difference between double-bounce and surface scattering or K3.
Yellow represents the change from open water to flooded vegetation, which is shown as an increase
in K3. This technique proves extremely useful, especially when comparing open water and flooded
vegetation, because a clear distinction can be seen. The ability to identify the change from ice cover to
open water is also important as it can indicate when the first seasonal melt and flooding occurs.
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Figure 11. False colour composite of the differential Kennaugh elements, K0-K3-K4, differenced
between the 18 June 2016 scene and the 2 April 2016 scene. Red represents the change from flooded
vegetation to land. Green represents the change from ice to open water. Yellow represents the change
from open water to marshland.

4. Discussion

A comparison of the three methods, k-means performed on the Kennaugh elements, unsupervised
H-Alpha–Wishart classification, and grey-level thresholding, can be seen in Figure 12. All methods
were able to classify open water, however, the dual-polarization methods consistently classified more
water than the grey-level thresholding technique. This was unexpected as the single-polarization
data often have errors of commission from shadow zones classified as water. However, more
misclassification occurred in the dual-polarization methods, including classifying fields and a golf
course as water. Both of the dual-polarization methods show the correct decreasing trend of water
over the study period from April to June 2016 that one would expect to see, including seasonal
melting. The results from thresholding disagree with this and show a slight increase over time
from 8% to 10%. No classification method was able to classify ice in a single class in the 2 April
scene, however, grey-level thresholding and the Kennaugh Element k-means classifier were able
to classify some portion of the ice covered lakes as other. Both dual-polarization methods were
able to identify flooded vegetation. However, the Kennaugh elements classifier sees a decrease
in flooded vegetation with time, which agrees better with seasonal trends. Both methods were
able to classify the river flooding in the April scenes and no flooding occurring in the later scenes.
The single-polarization method was unable to classify flooded vegetation, and instead classified
it as other or non-water. The findings presented here are in line with the results of Mleczko and
Mroz [38], who compared Sentinel-1 and Tandem-X multi-polarization data and concluded that dual
polarization of TanDEM-X achieves the best results, while full polarization shows only marginally
better performance for wetlands and flooded vegetation. Hence, full polarimetric acquisitions may not
be efficient or needed for wetland mapping. Alternative classification procedures, such as Shannon
Entropy [23] and interferometric coherence, have not shown to yield better results, unless full
polarimetric coherence is used for simultaneous image acquisition by TerraSAR-X and Tandem-X [38].
Other studies using dual-polarimetric TerraSAR-X acquisitions and a variety of polarimetric indices
demonstrate the strong dependence of the indices on vegetation conditions [39]. The performance of
polarimetric indices thus depends on seasonal conditions, which mandates a classification technique
such as differential Kennaugh elements, which is able to determine the change between different land
cover classes throughout the available acquisition time period. An additional valuable parameter for
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water classification would be water levels, which have successfully been determined from wetland
in SAR [40]. Multi-frequency acquisitions from different satellites, in combination with Kennaugh
element decomposition, has also shown great potential for discriminating different vegetation types
(e.g., [41]).

Remote Sens. 2018, 10, x FOR PEER REVIEW  14 of 17 

 

[40]. Multi-frequency acquisitions from different satellites, in combination with Kennaugh element 
decomposition, has also shown great potential for discriminating different vegetation types (e.g., [41]). 

 
Figure 12. Graphs showing percent of water and percent of flooded vegetation classified through time 
for each of the classification methods. Lines: Blue diamond—unsupervised k-means classification on 
Kennaugh Elements, orange square—H-Alpha–Wishart unsupervised classification, and grey 
triangle—grey-level thresholding. 

5. Conclusions 

In this study, three different SAR classification methods were used to identify areas of water, 
ice, and flooded vegetation in four TSX scenes over a principally natural landscape. A river, which is 
seasonally flooded in the centre of the study area, serves as a test-bed for these methodologies. Single-
polarization grey-level thresholding is an established technique for surface water monitoring and has 
the capability to classify areas of water and non-water. Using the techniques of H-Alpha–Wishart 
and the Kennaugh Element Framework applied to dual polarization data, the ability to analyze 
scattering mechanisms and classify water and flooded vegetation was tested and compared with the 
single-polarization method.  

The H-Alpha–Wishart unsupervised classification for dual-polarization data was able to classify 
areas of open water and flooded vegetation. Flooded vegetation was classified surrounding the river 
in the first two scenes acquired in April, and not in the last two scenes acquired in May and June. 
This corresponds with optical imagery of the same time period. This classifier was not able to 
distinguish areas of ice in the first scene, and misclassified them as open water.  

The Kennaugh Element Framework was able to classify areas of open water, flooded vegetation, 
and ice. K4 was used to distinguish areas of flooded vegetation and K0 was used to identify areas of 
open water. Similar conclusions were found by Moser et al. [25]. The differential Kennaugh analysis 

Figure 12. Graphs showing percent of water and percent of flooded vegetation classified through time
for each of the classification methods. Lines: Blue diamond—unsupervised k-means classification
on Kennaugh Elements, orange square—H-Alpha–Wishart unsupervised classification, and grey
triangle—grey-level thresholding.

5. Conclusions

In this study, three different SAR classification methods were used to identify areas of water, ice,
and flooded vegetation in four TSX scenes over a principally natural landscape. A river, which is
seasonally flooded in the centre of the study area, serves as a test-bed for these methodologies.
Single-polarization grey-level thresholding is an established technique for surface water monitoring
and has the capability to classify areas of water and non-water. Using the techniques of
H-Alpha–Wishart and the Kennaugh Element Framework applied to dual polarization data, the ability
to analyze scattering mechanisms and classify water and flooded vegetation was tested and compared
with the single-polarization method.

The H-Alpha–Wishart unsupervised classification for dual-polarization data was able to classify
areas of open water and flooded vegetation. Flooded vegetation was classified surrounding the
river in the first two scenes acquired in April, and not in the last two scenes acquired in May and
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June. This corresponds with optical imagery of the same time period. This classifier was not able to
distinguish areas of ice in the first scene, and misclassified them as open water.

The Kennaugh Element Framework was able to classify areas of open water, flooded vegetation,
and ice. K4 was used to distinguish areas of flooded vegetation and K0 was used to identify areas of
open water. Similar conclusions were found by Moser et al. [25]. The differential Kennaugh analysis
on all four elements, looking at the difference from the first scene to the last scene, was able to indicate
where changes occurred, as well as what changes occurred. The change between ice and open water,
open water and marshland, and flooded vegetation and land were clearly identified using this method.
Applying the k-means classifier allowed for the classification of open water and flooded vegetation
which agreed with seasonality, but the areas of ice cover are less well-defined.

Finally, the single-polarization grey-level thresholding method proved to identify open water
well. Part of the lakes were classified as other in the first scene, which indicates the potential to
classify ice (or rather not misclassify water). However, the total surface water in each scene shows
little change and no seasonal variation compared to the result of the Kennaugh Element Framework,
which shows a decrease in flooded vegetation from 12% to 5%, indicating a seasonal change from
flooding to drying. These conclusions could not have been drawn from the single-polarization data
and, therefore, a clear advantage to dual-polarization data is the ability to show seasonal fluctuations.
In addition, dual-polarization is able to distinguish open water and flooded vegetation.

The findings of this study confirm the expected advantages of dual-polarization observations,
however, single-polarization observations are still useful in classifying water, albeit not sufficiently
for identifying seasonal changes in vegetated areas. The applicability of single-polarization SAR for
landscape dynamics is thus limited. Considering potential applications in earth system monitoring
and process understanding, where not only the land cover type, but also the spatio-temporal transition
from one type to another is highly relevant, the use of dual-polarization (or multi-polarization for
specific land cover types) SAR data is a necessity.
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